xref: /aosp_15_r20/external/tensorflow/tensorflow/c/experimental/gradients/custom_gradient_test.cc (revision b6fb3261f9314811a0f4371741dbb8839866f948)
1 /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include <memory>
16 
17 #include "tensorflow/c/eager/abstract_context.h"
18 #include "tensorflow/c/eager/c_api.h"
19 #include "tensorflow/c/eager/c_api_unified_experimental.h"
20 #include "tensorflow/c/eager/c_api_unified_experimental_internal.h"
21 #include "tensorflow/c/eager/gradients.h"
22 #include "tensorflow/c/eager/unified_api_testutil.h"
23 #include "tensorflow/c/experimental/ops/math_ops.h"
24 #include "tensorflow/c/tf_status_helper.h"
25 #include "tensorflow/core/platform/errors.h"
26 #include "tensorflow/core/platform/test.h"
27 
28 namespace tensorflow {
29 namespace gradients {
30 namespace internal {
31 namespace {
32 using std::vector;
33 
34 class CustomGradientTest
35     : public ::testing::TestWithParam<std::tuple<const char*, bool, bool>> {
36  protected:
SetUp()37   void SetUp() override {
38     TF_StatusPtr status(TF_NewStatus());
39     TF_SetTracingImplementation(std::get<0>(GetParam()), status.get());
40     Status s = StatusFromTF_Status(status.get());
41     CHECK_EQ(errors::OK, s.code()) << s.error_message();
42   }
43 };
44 
45 class PassThroughGradientFunction : public GradientFunction {
46  public:
Compute(AbstractContext * ctx,absl::Span<AbstractTensorHandle * const> grad_outputs,absl::Span<AbstractTensorHandle * > grad_inputs)47   Status Compute(AbstractContext* ctx,
48                  absl::Span<AbstractTensorHandle* const> grad_outputs,
49                  absl::Span<AbstractTensorHandle*> grad_inputs) override {
50     CHECK_EQ(grad_outputs.size(), 1);
51     CHECK_EQ(grad_inputs.size(), 1);
52     grad_inputs[0] = grad_outputs[0];
53     if (grad_inputs[0]) {
54       grad_inputs[0]->Ref();
55     }
56     return OkStatus();
57   }
58 };
59 
60 // Computes:
61 //
62 // @tf.custom_gradient
63 // def f(input):
64 //   def grad(grads):
65 //     return grads[0]
66 //   return tf.exp(input), grad
67 // outputs = [f(inputs[0])]
ExpWithPassThroughGrad(AbstractContext * ctx,absl::Span<AbstractTensorHandle * const> inputs,absl::Span<AbstractTensorHandle * > outputs)68 Status ExpWithPassThroughGrad(AbstractContext* ctx,
69                               absl::Span<AbstractTensorHandle* const> inputs,
70                               absl::Span<AbstractTensorHandle*> outputs) {
71   Tape tape(/*persistent=*/false);
72   tape.Watch(inputs[0]);  // Watch x.
73   AbstractTensorHandle* exp_output;
74   TF_RETURN_IF_ERROR(ops::Exp(ctx, inputs[0], &exp_output, "Exp"));
75   std::unique_ptr<GradientFunction> gradient_function(
76       new PassThroughGradientFunction);
77   tape.RecordOperation(inputs, {exp_output}, gradient_function.release());
78   TF_RETURN_IF_ERROR(tape.ComputeGradient(ctx,
79                                           /*targets*/ {exp_output},
80                                           /*sources=*/inputs,
81                                           /*output_gradients=*/{},
82                                           /*result=*/outputs));
83   exp_output->Unref();
84   return OkStatus();
85 }
86 
TEST_P(CustomGradientTest,ExpWithPassThroughGrad)87 TEST_P(CustomGradientTest, ExpWithPassThroughGrad) {
88   std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
89       TF_NewStatus(), TF_DeleteStatus);
90   AbstractContextPtr ctx;
91   {
92     AbstractContext* ctx_raw = nullptr;
93     Status s =
94         BuildImmediateExecutionContext(std::get<1>(GetParam()), &ctx_raw);
95     ASSERT_EQ(errors::OK, s.code()) << s.error_message();
96     ctx.reset(ctx_raw);
97   }
98 
99   AbstractTensorHandlePtr x;
100   {
101     AbstractTensorHandle* x_raw = nullptr;
102     Status s = TestScalarTensorHandle<float, TF_FLOAT>(ctx.get(), 1.0f, &x_raw);
103     ASSERT_EQ(errors::OK, s.code()) << s.error_message();
104     x.reset(x_raw);
105   }
106 
107   // Pseudo-code:
108   //
109   // tape.watch(x)
110   // y = exp(x)
111   // outputs = tape.gradient(y, x)
112   std::vector<AbstractTensorHandle*> outputs(1);
113   Status s = RunModel(ExpWithPassThroughGrad, ctx.get(), {x.get()},
114                       absl::MakeSpan(outputs),
115                       /*use_function=*/!std::get<2>(GetParam()));
116   ASSERT_EQ(errors::OK, s.code()) << s.error_message();
117 
118   TF_Tensor* result_tensor;
119   s = GetValue(outputs[0], &result_tensor);
120   ASSERT_EQ(errors::OK, s.code()) << s.error_message();
121   auto result_value = static_cast<float*>(TF_TensorData(result_tensor));
122   EXPECT_EQ(*result_value, 1.0);
123   outputs[0]->Unref();
124   TF_DeleteTensor(result_tensor);
125   result_tensor = nullptr;
126 }
127 
128 #ifdef PLATFORM_GOOGLE
129 INSTANTIATE_TEST_SUITE_P(
130     CustomGradientTest, CustomGradientTest,
131     ::testing::Combine(::testing::Values("graphdef", "mlir"),
132                        /*tfrt*/ ::testing::Values(true, false),
133                        /*executing_eagerly*/ ::testing::Values(true, false)));
134 #else
135 INSTANTIATE_TEST_SUITE_P(
136     CustomGradientTest, CustomGradientTest,
137     ::testing::Combine(::testing::Values("graphdef", "mlir"),
138                        /*tfrt*/ ::testing::Values(false),
139                        /*executing_eagerly*/ ::testing::Values(true, false)));
140 #endif
141 }  // namespace
142 }  // namespace internal
143 }  // namespace gradients
144 }  // namespace tensorflow
145