1 /*
2 * Copyright (c) 2021-2022 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "src/cpu/kernels/elementwise_binary/generic/sve/impl.h"
26 #include "src/core/NEON/SVEMath.h"
27 #include <arm_sve.h>
28
29 namespace arm_compute
30 {
31 namespace cpu
32 {
33 using namespace arm_compute::wrapper;
34
35 template <typename ScalarType>
elementwise_arithmetic_op(const ITensor * in1,const ITensor * in2,ITensor * out,ArithmeticOperation op,const Window & window)36 void elementwise_arithmetic_op(const ITensor *in1, const ITensor *in2, ITensor *out, ArithmeticOperation op, const Window &window)
37 {
38 using VectorType = typename sve_vector<ScalarType>::type;
39
40 const auto all_true_pg = svptrue<ScalarType>();
41
42 // Create input windows
43 Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
44 Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
45
46 // Clear X Dimension on execution window as we handle manually
47 Window win = window;
48 win.set(Window::DimX, Window::Dimension(0, 1, 1));
49
50 const auto window_start_x = static_cast<int>(window.x().start());
51 const auto window_end_x = static_cast<int>(window.x().end());
52 const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
53
54 if(is_broadcast_across_x)
55 {
56 const bool is_broadcast_input_2 = input2_win.x().step() == 0;
57 Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
58 Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
59 const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
60 const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
61
62 // Clear X Dimension on execution window as we handle manually
63 non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
64
65 Iterator broadcast_input(broadcast_tensor, broadcast_win);
66 Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
67 Iterator output(out, win);
68
69 execute_window_loop(win, [&](const Coordinates &)
70 {
71 auto output_ptr = reinterpret_cast<ScalarType *>(output.ptr());
72 const auto non_broadcast_input_ptr = reinterpret_cast<const ScalarType *>(non_broadcast_input.ptr());
73 const ScalarType broadcast_value = *reinterpret_cast<const ScalarType *>(broadcast_input.ptr());
74 const auto broadcast_vector = svdup_n(broadcast_value);
75
76 int x = window_start_x;
77
78 svbool_t pg = svwhilelt<ScalarType>(x, window_end_x);
79 do
80 {
81 const auto non_broadcast_vector = svld1(pg, non_broadcast_input_ptr + x);
82 VectorType res{};
83
84 if(is_broadcast_input_2)
85 {
86 res = elementwise_arithmetic_op<typename sve_vector<ScalarType>::type>(pg, non_broadcast_vector, broadcast_vector, op);
87 }
88 else
89 {
90 res = elementwise_arithmetic_op<typename sve_vector<ScalarType>::type>(pg, broadcast_vector, non_broadcast_vector, op);
91 }
92 svst1(pg, output_ptr + x, res);
93
94 x += svcnt<ScalarType>();
95 pg = svwhilelt<ScalarType>(x, window_end_x);
96 }
97 while(svptest_any(all_true_pg, pg));
98 },
99 broadcast_input, non_broadcast_input, output);
100 }
101 else
102 {
103 // Clear X Dimension on execution window as we handle manually
104 input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
105 input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
106
107 Iterator input1(in1, input1_win);
108 Iterator input2(in2, input2_win);
109 Iterator output(out, win);
110
111 execute_window_loop(win, [&](const Coordinates &)
112 {
113 auto output_ptr = reinterpret_cast<ScalarType *>(output.ptr());
114 const auto input1_ptr = reinterpret_cast<const ScalarType *>(input1.ptr());
115 const auto input2_ptr = reinterpret_cast<const ScalarType *>(input2.ptr());
116
117 int x = window_start_x;
118
119 svbool_t pg = svwhilelt<ScalarType>(x, window_end_x);
120 do
121 {
122 const auto in1 = svld1(pg, input1_ptr + x);
123 const auto in2 = svld1(pg, input2_ptr + x);
124 const auto res = elementwise_arithmetic_op<typename sve_vector<ScalarType>::type>(pg, in1, in2, op);
125 svst1(pg, output_ptr + x, res);
126
127 x += svcnt<ScalarType>();
128 pg = svwhilelt<ScalarType>(x, window_end_x);
129 }
130 while(svptest_any(all_true_pg, pg));
131 },
132 input1, input2, output);
133 }
134 }
135 template void elementwise_arithmetic_op<float32_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
136 template void elementwise_arithmetic_op<float16_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
137 template void elementwise_arithmetic_op<int16_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
138 template void elementwise_arithmetic_op<int32_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
139
140 template <typename InputScalarType, typename OutputScalarType>
elementwise_comparison_op(const ITensor * in1,const ITensor * in2,ITensor * out,ComparisonOperation op,const Window & window)141 void elementwise_comparison_op(const ITensor *in1, const ITensor *in2, ITensor *out, ComparisonOperation op, const Window &window)
142 {
143 static_assert(sizeof(InputScalarType) >= sizeof(OutputScalarType), "input data type's width should be equal to or greater than output data type's width");
144
145 using OutputVectorType = typename sve_vector<OutputScalarType>::type;
146 const auto all_true_pg = svptrue<InputScalarType>();
147
148 // Create input windows
149 Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
150 Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
151
152 // Clear X Dimension on execution window as we handle manually
153 Window win = window;
154 win.set(Window::DimX, Window::Dimension(0, 1, 1));
155
156 const auto window_start_x = static_cast<int>(window.x().start());
157 const auto window_end_x = static_cast<int>(window.x().end());
158 const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
159
160 if(is_broadcast_across_x)
161 {
162 const bool is_broadcast_input_2 = input2_win.x().step() == 0;
163 Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
164 Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
165 const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
166 const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
167
168 // Clear X Dimension on execution window as we handle manually
169 non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
170
171 Iterator broadcast_input(broadcast_tensor, broadcast_win);
172 Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
173 Iterator output(out, win);
174
175 execute_window_loop(win, [&](const Coordinates &)
176 {
177 auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
178 const auto non_broadcast_input_ptr = reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
179 const InputScalarType broadcast_value = *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());
180 const auto broadcast_vector = svdup_n(broadcast_value);
181
182 int x = window_start_x;
183
184 svbool_t pg = svwhilelt<InputScalarType>(x, window_end_x);
185 do
186 {
187 const auto non_broadcast_vector = svld1(pg, non_broadcast_input_ptr + x);
188 const svbool_t output_pg = narrow_to_byte_predicate<sizeof(InputScalarType)>(pg);
189 OutputVectorType res{};
190 if(is_broadcast_input_2)
191 {
192 res = elementwise_comparison_op<typename sve_vector<InputScalarType>::type, typename sve_vector<OutputScalarType>::type>(pg, non_broadcast_vector, broadcast_vector, op);
193 }
194 else
195 {
196 res = elementwise_comparison_op<typename sve_vector<InputScalarType>::type, typename sve_vector<OutputScalarType>::type>(pg, broadcast_vector, non_broadcast_vector, op);
197 }
198 svst1(output_pg, output_ptr + x, res);
199
200 x += svcnt<InputScalarType>();
201 pg = svwhilelt<InputScalarType>(x, window_end_x);
202 }
203 while(svptest_any(all_true_pg, pg));
204 },
205 broadcast_input, non_broadcast_input, output);
206 }
207 else
208 {
209 // Clear X Dimension on execution window as we handle manually
210 input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
211 input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
212
213 Iterator input1(in1, input1_win);
214 Iterator input2(in2, input2_win);
215 Iterator output(out, win);
216
217 execute_window_loop(win, [&](const Coordinates &)
218 {
219 auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
220 const auto input1_ptr = reinterpret_cast<const InputScalarType *>(input1.ptr());
221 const auto input2_ptr = reinterpret_cast<const InputScalarType *>(input2.ptr());
222
223 int x = window_start_x;
224
225 svbool_t pg = svwhilelt<InputScalarType>(x, window_end_x);
226 do
227 {
228 const auto in1 = svld1(pg, input1_ptr + x);
229 const auto in2 = svld1(pg, input2_ptr + x);
230 const auto res = elementwise_comparison_op<typename sve_vector<InputScalarType>::type, typename sve_vector<OutputScalarType>::type>(pg, in1, in2, op);
231 const svbool_t output_pg = narrow_to_byte_predicate<sizeof(InputScalarType)>(pg);
232 svst1(output_pg, output_ptr + x, res);
233
234 x += svcnt<InputScalarType>();
235 pg = svwhilelt<InputScalarType>(x, window_end_x);
236 }
237 while(svptest_any(all_true_pg, pg));
238 },
239 input1, input2, output);
240 }
241 }
242
243 template void elementwise_comparison_op<float32_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
244 template void elementwise_comparison_op<float16_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
245 template void elementwise_comparison_op<uint8_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
246 template void elementwise_comparison_op<int16_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
247 template void elementwise_comparison_op<int32_t>(const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
248
249 template <>
elementwise_pow(svbool_t & pg,const svint32_t & a,const svint32_t & b)250 svint32_t elementwise_pow<svint32_t>(svbool_t &pg, const svint32_t &a, const svint32_t &b)
251 {
252 return svcvt_s32_z(pg, svpow_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b)));
253 }
254
255 template <>
elementwise_div(svbool_t & pg,const svint32_t & a,const svint32_t & b)256 svint32_t elementwise_div<svint32_t>(svbool_t &pg, const svint32_t &a, const svint32_t &b)
257 {
258 return svcvt_s32_z(pg, svdiv_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b)));
259 }
260
261 template <>
elementwise_div(svbool_t & pg,const svint16_t & a,const svint16_t & b)262 svint16_t elementwise_div<svint16_t>(svbool_t &pg, const svint16_t &a, const svint16_t &b)
263 {
264 ARM_COMPUTE_UNUSED(pg, a, b);
265 ARM_COMPUTE_ERROR("Not supported");
266 }
267
268 } // namespace cpu
269 } // namespace arm_compute
270