xref: /aosp_15_r20/external/pytorch/ios/TestApp/benchmark/coreml_backend.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1from torchvision import models
2
3import torch
4from torch.backends._coreml.preprocess import CompileSpec, CoreMLComputeUnit, TensorSpec
5
6
7def mobilenetv2_spec():
8    return {
9        "forward": CompileSpec(
10            inputs=(TensorSpec(shape=[1, 3, 224, 224]),),
11            outputs=(TensorSpec(shape=[1, 1000]),),
12            backend=CoreMLComputeUnit.CPU,
13            allow_low_precision=True,
14        ),
15    }
16
17
18def main():
19    model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1)
20    model.eval()
21    example = torch.rand(1, 3, 224, 224)
22    model = torch.jit.trace(model, example)
23    compile_spec = mobilenetv2_spec()
24    mlmodel = torch._C._jit_to_backend("coreml", model, compile_spec)
25    print(mlmodel._c._get_method("forward").graph)
26    mlmodel._save_for_lite_interpreter("../models/model_coreml.ptl")
27    torch.jit.save(mlmodel, "../models/model_coreml.pt")
28
29
30if __name__ == "__main__":
31    main()
32