xref: /aosp_15_r20/external/ComputeLibrary/src/core/NEON/kernels/NEPadLayerKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/NEON/kernels/NEPadLayerKernel.h"
25 
26 #include "arm_compute/core/Error.h"
27 #include "arm_compute/core/Helpers.h"
28 #include "arm_compute/core/ITensor.h"
29 #include "arm_compute/core/TensorInfo.h"
30 #include "arm_compute/core/Types.h"
31 #include "arm_compute/core/Validate.h"
32 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
33 #include "src/core/NEON/wrapper/wrapper.h"
34 #include "src/core/helpers/AutoConfiguration.h"
35 #include "src/core/helpers/WindowHelpers.h"
36 
37 namespace arm_compute
38 {
39 namespace
40 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * output,const PaddingList & paddings,const PaddingMode mode)41 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output, const PaddingList &paddings, const PaddingMode mode)
42 {
43     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
44     ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN);
45     ARM_COMPUTE_RETURN_ERROR_ON_MSG(mode != PaddingMode::CONSTANT, "Only constant padding mode is supported");
46     ARM_COMPUTE_RETURN_ERROR_ON_MSG(paddings.size() > 4, "Padding list bigger than 4 dimensions");
47     if(output->total_size() != 0)
48     {
49         const TensorShape expected_output_shape = arm_compute::misc::shape_calculator::compute_padded_shape(input->tensor_shape(), paddings);
50         const TensorInfo  expected_output_info  = input->clone()->set_tensor_shape(expected_output_shape);
51         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output, &expected_output_info);
52         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
53     }
54     return Status{};
55 }
56 } // namespace
57 
58 template <typename T>
run_pad_constant(const Window & window)59 void NEPadLayerKernel::run_pad_constant(const Window &window)
60 {
61     Window output_window{ window };
62     output_window.set(Window::DimX, Window::Dimension(0, 1, 1));
63 
64     const size_t element_size = _input->info()->element_size();
65     Iterator     output_it(_output, output_window);
66     execute_window_loop(output_window, [&](const Coordinates & id)
67     {
68         Coordinates idin{ id };
69         for(size_t dim = _padding.size() - 1; dim > 0; --dim)
70         {
71             idin[dim] -= _padding[dim].first;
72             if(idin[dim] < 0 || static_cast<int>(_input->info()->dimension(dim)) - 1 < idin[dim])
73             {
74                 std::fill_n(reinterpret_cast<T *>(output_it.ptr()), _output->info()->dimension(0), _constant_value.get<T>());
75                 return;
76             }
77         }
78         T *input_it_ptr  = reinterpret_cast<T *>(_input->ptr_to_element(idin));
79         T *output_it_ptr = reinterpret_cast<T *>(output_it.ptr());
80         std::fill_n(output_it_ptr, _padding[0].first, _constant_value.get<T>());
81         memcpy(output_it_ptr + _padding[0].first, input_it_ptr, _input->info()->dimension(0) * element_size);
82         std::fill_n(output_it_ptr + _padding[0].first + _input->info()->dimension(0), _padding[0].second, _constant_value.get<T>());
83     },
84     output_it);
85 }
86 
run_pad_constant_uint8_3Dinput_3Dpad(const Window & window)87 void NEPadLayerKernel::run_pad_constant_uint8_3Dinput_3Dpad(const Window &window)
88 {
89     ARM_COMPUTE_UNUSED(window);
90 
91     const size_t start_plane = window.z().start();
92     const size_t end_plane   = window.z().end();
93 
94     size_t start_plane_input = start_plane;
95     if(_padding.size() > 2)
96     {
97         start_plane_input = (start_plane < _padding[2].first) ? 0 : start_plane - _padding[2].first;
98     }
99     const int output_plane_size = _output->info()->dimension(0) * _output->info()->dimension(1);
100     const int input_plane_size  = _input->info()->dimension(0) * _input->info()->dimension(1);
101 
102     const int pad_y_elems_top = (_padding.size() > 1 ? _padding[1].first : 0) * _output->info()->dimension(0);
103     const int pad_y_elems_bot = (_padding.size() > 1 ? _padding[1].second : 0) * _output->info()->dimension(0);
104 
105     const size_t jump_to_next_row_input  = _input->info()->dimension(0);
106     const size_t jump_to_next_row_output = _padding[0].first + _padding[0].second;
107 
108     uint8_t       *output_row_ptr = _output->buffer() + _output->info()->offset_first_element_in_bytes() + start_plane * output_plane_size;
109     const uint8_t *input_it_ptr   = _input->buffer() + _input->info()->offset_first_element_in_bytes() + start_plane_input * input_plane_size;
110     const auto     pad_value      = _constant_value.get<uint8_t>();
111 
112     for(size_t z_i = start_plane; z_i < end_plane; ++z_i)
113     {
114         if(_padding.size() > 2 && z_i < _padding[2].first)
115         {
116             memset(output_row_ptr, pad_value, output_plane_size);
117             output_row_ptr += output_plane_size;
118         }
119         else if(_padding.size() > 2 && z_i > (_input->info()->dimension(2) + _padding[2].first - 1))
120         {
121             memset(output_row_ptr, pad_value, output_plane_size);
122             output_row_ptr += output_plane_size;
123         }
124         else
125         {
126             memset(output_row_ptr, pad_value, pad_y_elems_top);
127             output_row_ptr += pad_y_elems_top;
128             size_t y_i = _input->info()->dimension(1);
129             // Basic loop unrolling
130             for(; y_i > 3; y_i -= 4)
131             {
132                 memset(output_row_ptr, pad_value, _padding[0].first);
133                 output_row_ptr += _padding[0].first;
134 
135                 memcpy(output_row_ptr, input_it_ptr, _input->info()->dimension(0));
136                 output_row_ptr += _input->info()->dimension(0);
137                 input_it_ptr += jump_to_next_row_input;
138 
139                 memset(output_row_ptr, pad_value, _padding[0].second + _padding[0].first);
140                 output_row_ptr += jump_to_next_row_output;
141 
142                 memcpy(output_row_ptr, input_it_ptr, _input->info()->dimension(0));
143                 output_row_ptr += _input->info()->dimension(0);
144                 input_it_ptr += jump_to_next_row_input;
145 
146                 memset(output_row_ptr, pad_value, _padding[0].second + _padding[0].first);
147                 output_row_ptr += jump_to_next_row_output;
148 
149                 memcpy(output_row_ptr, input_it_ptr, _input->info()->dimension(0));
150                 output_row_ptr += _input->info()->dimension(0);
151                 input_it_ptr += jump_to_next_row_input;
152 
153                 memset(output_row_ptr, pad_value, _padding[0].second + _padding[0].first);
154                 output_row_ptr += jump_to_next_row_output;
155 
156                 memcpy(output_row_ptr, input_it_ptr, _input->info()->dimension(0));
157                 output_row_ptr += _input->info()->dimension(0);
158                 input_it_ptr += jump_to_next_row_input;
159 
160                 memset(output_row_ptr, pad_value, _padding[0].second);
161                 output_row_ptr += _padding[0].second;
162             }
163             for(; y_i > 0; --y_i)
164             {
165                 memset(output_row_ptr, pad_value, _padding[0].first);
166                 output_row_ptr += _padding[0].first;
167 
168                 memcpy(output_row_ptr, input_it_ptr, _input->info()->dimension(0));
169                 output_row_ptr += _input->info()->dimension(0);
170                 input_it_ptr += _input->info()->dimension(0);
171 
172                 memset(output_row_ptr, pad_value, _padding[0].second);
173                 output_row_ptr += _padding[0].second;
174             }
175             memset(output_row_ptr, pad_value, pad_y_elems_bot);
176             output_row_ptr += pad_y_elems_bot;
177         }
178     }
179 }
180 
NEPadLayerKernel()181 NEPadLayerKernel::NEPadLayerKernel()
182     : _func(), _input(nullptr), _output(nullptr), _padding(), _constant_value(), _mode()
183 {
184 }
185 
configure(ITensor * input,ITensor * output,const PaddingList & padding,const PixelValue constant_value,const PaddingMode mode)186 void NEPadLayerKernel::configure(ITensor *input, ITensor *output, const PaddingList &padding, const PixelValue constant_value, const PaddingMode mode)
187 {
188     ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
189     // Auto-init
190     const TensorShape expected_output_shape = arm_compute::misc::shape_calculator::compute_padded_shape(input->info()->tensor_shape(), padding);
191     const TensorInfo  expected_output_info  = input->info()->clone()->set_tensor_shape(expected_output_shape);
192     auto_init_if_empty(*output->info(), expected_output_info);
193 
194     // Perform validation step
195     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), padding, mode));
196 
197     _input          = input;
198     _output         = output;
199     _padding        = padding;
200     _constant_value = constant_value;
201     _mode           = mode;
202 
203     if(_mode == PaddingMode::CONSTANT)
204     {
205         switch(_input->info()->element_size())
206         {
207             case 1:
208                 if(_input->info()->num_dimensions() == 3 &&                           // Is 3D
209                    padding.size() <= 3 &&                                             // Has 3D padding
210                    !_input->info()->has_padding() && !_output->info()->has_padding()) // Input & Output have no padding
211                 {
212                     _func = &NEPadLayerKernel::run_pad_constant_uint8_3Dinput_3Dpad;
213                 }
214                 else
215                 {
216                     _func = &NEPadLayerKernel::run_pad_constant<uint8_t>;
217                 }
218                 break;
219             case 2:
220                 _func = &NEPadLayerKernel::run_pad_constant<uint16_t>;
221                 break;
222             case 4:
223                 _func = &NEPadLayerKernel::run_pad_constant<uint32_t>;
224                 break;
225             default:
226                 ARM_COMPUTE_ERROR("Element size not supported");
227                 break;
228         }
229     }
230     else
231     {
232         ARM_COMPUTE_ERROR("Padding mode not supported");
233     }
234 
235     // Configure kernel window
236     Window win = calculate_max_window(*output->info(), Steps());
237 
238     // The NEPad doesn't need padding so update_window_and_padding() can be skipped
239 
240     ICPPKernel::configure(win);
241 }
242 
validate(const ITensorInfo * input,const ITensorInfo * output,const PaddingList & padding,const PixelValue constant_value,const PaddingMode mode)243 Status NEPadLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output, const PaddingList &padding, const PixelValue constant_value, const PaddingMode mode)
244 {
245     ARM_COMPUTE_UNUSED(constant_value);
246     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, padding, mode));
247     return Status{};
248 }
249 
run(const Window & window,const ThreadInfo & info)250 void NEPadLayerKernel::run(const Window &window, const ThreadInfo &info)
251 {
252     ARM_COMPUTE_UNUSED(info);
253     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
254     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
255 
256     if(_func != nullptr)
257     {
258         (this->*_func)(window);
259     }
260 }
261 
get_mws(const CPUInfo & platform,size_t thread_count) const262 size_t NEPadLayerKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
263 {
264     ARM_COMPUTE_UNUSED(thread_count);
265     ARM_COMPUTE_UNUSED(platform);
266 
267     return ICPPKernel::default_mws;
268 }
269 
270 } // namespace arm_compute
271