1 /*
2 * Copyright (c) 2019-2020 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24 #include "src/core/NEON/kernels/NEBatchToSpaceLayerKernel.h"
25
26 #include "arm_compute/core/Helpers.h"
27 #include "arm_compute/core/ITensor.h"
28 #include "arm_compute/core/Types.h"
29 #include "arm_compute/core/Validate.h"
30 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
31 #include "src/core/helpers/AutoConfiguration.h"
32 #include "src/core/helpers/WindowHelpers.h"
33
34 using namespace arm_compute::misc::shape_calculator;
35
36 namespace arm_compute
37 {
38 namespace
39 {
validate_arguments(const ITensorInfo * input,const ITensorInfo * block_info,const ITensorInfo * output)40 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *block_info, const ITensorInfo *output)
41 {
42 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, block_info, output);
43 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(block_info, 1, DataType::S32);
44 ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4);
45 ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN);
46
47 // Validate output if initialized
48 if(output->total_size() != 0)
49 {
50 ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() > 4);
51 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
52 }
53
54 return Status{};
55 }
validate_arguments_static(const ITensorInfo * input,const int block_shape_x,const int block_shape_y,const ITensorInfo * output)56 Status validate_arguments_static(const ITensorInfo *input, const int block_shape_x, const int block_shape_y, const ITensorInfo *output)
57 {
58 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
59 ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4);
60 ARM_COMPUTE_RETURN_ERROR_ON(block_shape_x <= 0);
61 ARM_COMPUTE_RETURN_ERROR_ON(block_shape_y <= 0);
62
63 const DataLayout data_layout = input->data_layout();
64 const int idx_batch = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
65 ARM_COMPUTE_RETURN_ERROR_ON(input->tensor_shape()[idx_batch] % (block_shape_x * block_shape_y) != 0);
66 // Validate output if initialized
67 if(output->total_size() != 0)
68 {
69 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
70 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
71 const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
72 ARM_COMPUTE_RETURN_ERROR_ON(output->tensor_shape()[idx_width] != (block_shape_x * input->tensor_shape()[idx_width]));
73 ARM_COMPUTE_RETURN_ERROR_ON(output->tensor_shape()[idx_height] != (block_shape_y * input->tensor_shape()[idx_height]));
74 ARM_COMPUTE_RETURN_ERROR_ON(output->tensor_shape()[idx_channel] != input->tensor_shape()[idx_channel]);
75 ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() > 4);
76 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
77 }
78
79 return Status{};
80 }
81 } // namespace
82
NEBatchToSpaceLayerKernel()83 NEBatchToSpaceLayerKernel::NEBatchToSpaceLayerKernel()
84 : _input(nullptr), _block_shape(nullptr), _output(nullptr), _data_layout(DataLayout::UNKNOWN), _block_shape_x(), _block_shape_y()
85 {
86 }
87
configure(const ITensor * input,const ITensor * block_shape,ITensor * output)88 void NEBatchToSpaceLayerKernel::configure(const ITensor *input, const ITensor *block_shape, ITensor *output)
89 {
90 ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
91 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), block_shape->info(), output->info()));
92
93 _input = input;
94 _block_shape = block_shape;
95 _output = output;
96 _data_layout = input->info()->data_layout();
97
98 // Configure kernel window
99 Window win = calculate_max_window(*input->info(), Steps());
100 ICPPKernel::configure(win);
101 }
102
configure(const ITensor * input,const int32_t block_shape_x,const int32_t block_shape_y,ITensor * output)103 void NEBatchToSpaceLayerKernel::configure(const ITensor *input, const int32_t block_shape_x, const int32_t block_shape_y, ITensor *output)
104 {
105 ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
106 TensorShape output_shape = compute_batch_to_space_shape(input->info(), block_shape_x, block_shape_y);
107 // Output auto inizialitation if not yet initialized
108 auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));
109
110 // Perform validation step
111 ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_static(input->info(), block_shape_x, block_shape_y, output->info()));
112
113 _input = input;
114 _output = output;
115 _block_shape_x = block_shape_x;
116 _block_shape_y = block_shape_y;
117 _data_layout = input->info()->data_layout();
118
119 // Configure kernel window
120 Window win = calculate_max_window(*input->info(), Steps());
121 ICPPKernel::configure(win);
122 }
123
validate(const ITensorInfo * input,const ITensorInfo * block_shape,const ITensorInfo * output)124 Status NEBatchToSpaceLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *block_shape, const ITensorInfo *output)
125 {
126 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, block_shape, output);
127 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, block_shape, output));
128 return Status{};
129 }
130
validate(const ITensorInfo * input,const int32_t block_shape_x,const int32_t block_shape_y,const ITensorInfo * output)131 Status NEBatchToSpaceLayerKernel::validate(const ITensorInfo *input, const int32_t block_shape_x, const int32_t block_shape_y, const ITensorInfo *output)
132 {
133 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
134 ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_static(input, block_shape_x, block_shape_y, output));
135 return Status{};
136 }
137
run(const Window & window,const ThreadInfo & info)138 void NEBatchToSpaceLayerKernel::run(const Window &window, const ThreadInfo &info)
139 {
140 ARM_COMPUTE_UNUSED(info);
141 ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
142 ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICPPKernel::window(), window);
143
144 if(_block_shape != nullptr)
145 {
146 // Retrieve the block shapes dynamically
147 _block_shape_x = *(reinterpret_cast<const int *>(_block_shape->ptr_to_element(0)));
148 _block_shape_y = *(reinterpret_cast<const int *>(_block_shape->ptr_to_element(1)));
149 }
150
151 const int batch_size = _input->info()->dimension(3);
152 const int r = (batch_size / (_block_shape_x * _block_shape_y));
153 const int element_size = _input->info()->element_size();
154
155 Window slice_in = window.first_slice_window_3D();
156 Window slice_out = window.first_slice_window_4D();
157
158 // The slice_out slice does not move
159 slice_out.set(Window::DimX, Window::Dimension(0, 0, 0));
160 slice_out.set(Window::DimY, Window::Dimension(0, 0, 0));
161 slice_out.set(Window::DimZ, Window::Dimension(0, 0, 0));
162 slice_out.set(3, Window::Dimension(0, 0, 0));
163
164 int batch_id = 0;
165 // Main loop for NCHW and NHWC
166 if(_data_layout == DataLayout::NCHW)
167 {
168 do
169 {
170 Iterator in(_input, slice_in);
171 execute_window_loop(slice_in, [&](const Coordinates & id)
172 {
173
174 const int x = id.x();
175 const int y = id.y();
176 const int z = id.z();
177
178 const int w = batch_id % r;
179 const int out_x = x * _block_shape_x + (batch_id / r) % _block_shape_x;
180 const int out_y = y * _block_shape_y + (batch_id / r) / _block_shape_x;
181 Coordinates output_coords{ out_x, out_y, z, w };
182 memcpy(_output->ptr_to_element(output_coords), in.ptr(), element_size);
183 },
184 in);
185 ++batch_id;
186 }
187 while(window.slide_window_slice_3D(slice_in));
188 }
189 else
190 {
191 do
192 {
193 Iterator in(_input, slice_in);
194 execute_window_loop(slice_in, [&](const Coordinates & id)
195 {
196
197 const int z = id.x();
198 const int x = id.y();
199 const int y = id.z();
200
201 const int w = batch_id % r;
202 const int out_x = x * _block_shape_x + (batch_id / r) % _block_shape_x;
203 const int out_y = y * _block_shape_y + (batch_id / r) / _block_shape_x;
204 Coordinates output_coords{ z, out_x, out_y, w };
205 memcpy(_output->ptr_to_element(output_coords), in.ptr(), element_size);
206 },
207 in);
208 ++batch_id;
209 }
210 while(window.slide_window_slice_3D(slice_in));
211 }
212 }
213 } // namespace arm_compute
214