xref: /aosp_15_r20/frameworks/native/libs/binder/tests/binderRpcTest.cpp (revision 38e8c45f13ce32b0dcecb25141ffecaf386fa17f)
1 /*
2  * Copyright (C) 2020 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef __ANDROID_VENDOR__
18 // only used on NDK tests outside of vendor
19 #include <aidl/IBinderRpcTest.h>
20 #endif
21 
22 #if defined(__LP64__)
23 #define TEST_FILE_SUFFIX "64"
24 #else
25 #define TEST_FILE_SUFFIX "32"
26 #endif
27 
28 #include <chrono>
29 #include <cstdlib>
30 #include <iostream>
31 #include <thread>
32 #include <type_traits>
33 
34 #include <dirent.h>
35 #include <dlfcn.h>
36 #include <poll.h>
37 #include <sys/prctl.h>
38 #include <sys/socket.h>
39 
40 #ifdef BINDER_RPC_TO_TRUSTY_TEST
41 #include <binder/RpcTransportTipcAndroid.h>
42 #include <trusty/tipc.h>
43 #endif // BINDER_RPC_TO_TRUSTY_TEST
44 
45 #include "../Utils.h"
46 #include "binderRpcTestCommon.h"
47 #include "binderRpcTestFixture.h"
48 
49 // TODO need to add IServiceManager.cpp/.h to libbinder_no_kernel
50 #ifdef BINDER_WITH_KERNEL_IPC
51 #include "android-base/logging.h"
52 #include "android/binder_manager.h"
53 #include "android/binder_rpc.h"
54 #endif // BINDER_WITH_KERNEL_IPC
55 
56 using namespace std::chrono_literals;
57 using namespace std::placeholders;
58 using android::binder::borrowed_fd;
59 using android::binder::GetExecutableDirectory;
60 using android::binder::ReadFdToString;
61 using android::binder::unique_fd;
62 using testing::AssertionFailure;
63 using testing::AssertionResult;
64 using testing::AssertionSuccess;
65 
66 namespace android {
67 
68 #ifdef BINDER_TEST_NO_SHARED_LIBS
69 constexpr bool kEnableSharedLibs = false;
70 #else
71 constexpr bool kEnableSharedLibs = true;
72 #endif
73 
74 #ifdef BINDER_RPC_TO_TRUSTY_TEST
75 constexpr char kTrustyIpcDevice[] = "/dev/trusty-ipc-dev0";
76 #endif
77 
78 constexpr char kKnownAidlService[] = "activity";
79 
WaitStatusToString(int wstatus)80 static std::string WaitStatusToString(int wstatus) {
81     if (WIFEXITED(wstatus)) {
82         return "exit status " + std::to_string(WEXITSTATUS(wstatus));
83     }
84     if (WIFSIGNALED(wstatus)) {
85         return "term signal " + std::to_string(WTERMSIG(wstatus));
86     }
87     return "unexpected state " + std::to_string(wstatus);
88 }
89 
debugBacktrace(pid_t pid)90 static void debugBacktrace(pid_t pid) {
91     std::cerr << "TAKING BACKTRACE FOR PID " << pid << std::endl;
92     system((std::string("debuggerd -b ") + std::to_string(pid)).c_str());
93 }
94 
95 class Process {
96 public:
Process(Process && other)97     Process(Process&& other)
98           : mCustomExitStatusCheck(std::move(other.mCustomExitStatusCheck)),
99             mReadEnd(std::move(other.mReadEnd)),
100             mWriteEnd(std::move(other.mWriteEnd)) {
101         // The default move constructor doesn't clear mPid after moving it,
102         // which we need to do because the destructor checks for mPid!=0
103         mPid = other.mPid;
104         other.mPid = 0;
105     }
Process(const std::function<void (borrowed_fd,borrowed_fd)> & f)106     Process(const std::function<void(borrowed_fd /* writeEnd */, borrowed_fd /* readEnd */)>& f) {
107         unique_fd childWriteEnd;
108         unique_fd childReadEnd;
109         if (!binder::Pipe(&mReadEnd, &childWriteEnd, 0)) PLOGF("child write pipe failed");
110         if (!binder::Pipe(&childReadEnd, &mWriteEnd, 0)) PLOGF("child read pipe failed");
111         if (0 == (mPid = fork())) {
112             // racey: assume parent doesn't crash before this is set
113             prctl(PR_SET_PDEATHSIG, SIGHUP);
114 
115             f(childWriteEnd, childReadEnd);
116 
117             exit(0);
118         }
119     }
~Process()120     ~Process() {
121         if (mPid != 0) {
122             int wstatus;
123             waitpid(mPid, &wstatus, 0);
124             if (mCustomExitStatusCheck) {
125                 mCustomExitStatusCheck(wstatus);
126             } else {
127                 EXPECT_TRUE(WIFEXITED(wstatus) && WEXITSTATUS(wstatus) == 0)
128                         << "server process failed: " << WaitStatusToString(wstatus);
129             }
130         }
131     }
readEnd()132     borrowed_fd readEnd() { return mReadEnd; }
writeEnd()133     borrowed_fd writeEnd() { return mWriteEnd; }
134 
setCustomExitStatusCheck(std::function<void (int wstatus)> f)135     void setCustomExitStatusCheck(std::function<void(int wstatus)> f) {
136         mCustomExitStatusCheck = std::move(f);
137     }
138 
139     // Kill the process. Avoid if possible. Shutdown gracefully via an RPC instead.
terminate()140     void terminate() { kill(mPid, SIGTERM); }
141 
getPid()142     pid_t getPid() { return mPid; }
143 
144 private:
145     std::function<void(int wstatus)> mCustomExitStatusCheck;
146     pid_t mPid = 0;
147     unique_fd mReadEnd;
148     unique_fd mWriteEnd;
149 };
150 
allocateSocketAddress()151 static std::string allocateSocketAddress() {
152     static size_t id = 0;
153     std::string temp = getenv("TMPDIR") ?: "/tmp";
154     auto ret = temp + "/binderRpcTest_" + std::to_string(getpid()) + "_" + std::to_string(id++);
155     unlink(ret.c_str());
156     return ret;
157 };
158 
initUnixSocket(std::string addr)159 static unique_fd initUnixSocket(std::string addr) {
160     auto socket_addr = UnixSocketAddress(addr.c_str());
161     unique_fd fd(TEMP_FAILURE_RETRY(socket(socket_addr.addr()->sa_family, SOCK_STREAM, AF_UNIX)));
162     if (!fd.ok()) PLOGF("initUnixSocket failed to create socket");
163     if (0 != TEMP_FAILURE_RETRY(bind(fd.get(), socket_addr.addr(), socket_addr.addrSize()))) {
164         PLOGF("initUnixSocket failed to bind");
165     }
166     return fd;
167 }
168 
169 // Destructors need to be defined, even if pure virtual
~ProcessSession()170 ProcessSession::~ProcessSession() {}
171 
172 class LinuxProcessSession : public ProcessSession {
173 public:
174     // reference to process hosting a socket server
175     Process host;
176 
177     LinuxProcessSession(LinuxProcessSession&&) = default;
LinuxProcessSession(Process && host)178     LinuxProcessSession(Process&& host) : host(std::move(host)) {}
~LinuxProcessSession()179     ~LinuxProcessSession() override {
180         for (auto& session : sessions) {
181             session.root = nullptr;
182         }
183 
184         for (size_t sessionNum = 0; sessionNum < sessions.size(); sessionNum++) {
185             auto& info = sessions.at(sessionNum);
186             sp<RpcSession>& session = info.session;
187 
188             EXPECT_NE(nullptr, session);
189             EXPECT_NE(nullptr, session->state());
190             EXPECT_EQ(0u, session->state()->countBinders()) << (session->state()->dump(), "dump:");
191 
192             wp<RpcSession> weakSession = session;
193             session = nullptr;
194 
195             // b/244325464 - 'getStrongCount' is printing '1' on failure here, which indicates the
196             // the object should not actually be promotable. By looping, we distinguish a race here
197             // from a bug causing the object to not be promotable.
198             for (size_t i = 0; i < 3; i++) {
199                 sp<RpcSession> strongSession = weakSession.promote();
200                 EXPECT_EQ(nullptr, strongSession)
201                         << "For session " << sessionNum << ". "
202                         << (debugBacktrace(host.getPid()), debugBacktrace(getpid()),
203                             "Leaked sess: ")
204                         << strongSession->getStrongCount() << " checked time " << i;
205 
206                 if (strongSession != nullptr) {
207                     sleep(1);
208                 }
209             }
210         }
211     }
212 
setCustomExitStatusCheck(std::function<void (int wstatus)> f)213     void setCustomExitStatusCheck(std::function<void(int wstatus)> f) override {
214         host.setCustomExitStatusCheck(std::move(f));
215     }
216 
terminate()217     void terminate() override { host.terminate(); }
218 };
219 
connectTo(const RpcSocketAddress & addr)220 static unique_fd connectTo(const RpcSocketAddress& addr) {
221     unique_fd serverFd(
222             TEMP_FAILURE_RETRY(socket(addr.addr()->sa_family, SOCK_STREAM | SOCK_CLOEXEC, 0)));
223     if (!serverFd.ok()) {
224         PLOGF("Could not create socket %s", addr.toString().c_str());
225     }
226 
227     if (0 != TEMP_FAILURE_RETRY(connect(serverFd.get(), addr.addr(), addr.addrSize()))) {
228         PLOGF("Could not connect to socket %s", addr.toString().c_str());
229     }
230     return serverFd;
231 }
232 
233 #ifndef BINDER_RPC_TO_TRUSTY_TEST
connectToUnixBootstrap(const RpcTransportFd & transportFd)234 static unique_fd connectToUnixBootstrap(const RpcTransportFd& transportFd) {
235     unique_fd sockClient, sockServer;
236     if (!binder::Socketpair(SOCK_STREAM, &sockClient, &sockServer)) {
237         PLOGF("Failed socketpair()");
238     }
239 
240     int zero = 0;
241     iovec iov{&zero, sizeof(zero)};
242     std::vector<std::variant<unique_fd, borrowed_fd>> fds;
243     fds.emplace_back(std::move(sockServer));
244 
245     if (binder::os::sendMessageOnSocket(transportFd, &iov, 1, &fds) < 0) {
246         PLOGF("Failed sendMessageOnSocket");
247     }
248     return sockClient;
249 }
250 #endif // BINDER_RPC_TO_TRUSTY_TEST
251 
newFactory(RpcSecurity rpcSecurity)252 std::unique_ptr<RpcTransportCtxFactory> BinderRpc::newFactory(RpcSecurity rpcSecurity) {
253     return newTlsFactory(rpcSecurity);
254 }
255 
256 // This creates a new process serving an interface on a certain number of
257 // threads.
createRpcTestSocketServerProcessEtc(const BinderRpcOptions & options)258 std::unique_ptr<ProcessSession> BinderRpc::createRpcTestSocketServerProcessEtc(
259         const BinderRpcOptions& options) {
260     LOG_ALWAYS_FATAL_IF(options.numSessions < 1, "Must have at least one session to a server");
261 
262     if (options.numIncomingConnectionsBySession.size() != 0) {
263         LOG_ALWAYS_FATAL_IF(options.numIncomingConnectionsBySession.size() != options.numSessions,
264                             "%s: %zu != %zu", __func__,
265                             options.numIncomingConnectionsBySession.size(), options.numSessions);
266     }
267 
268     SocketType socketType = GetParam().type;
269     RpcSecurity rpcSecurity = GetParam().security;
270     uint32_t clientVersion = GetParam().clientVersion;
271     uint32_t serverVersion = GetParam().serverVersion;
272     bool singleThreaded = GetParam().singleThreaded;
273     bool noKernel = GetParam().noKernel;
274 
275     std::string path = GetExecutableDirectory();
276     auto servicePath = path + "/binder_rpc_test_service" +
277             (singleThreaded ? "_single_threaded" : "") + (noKernel ? "_no_kernel" : "") +
278             TEST_FILE_SUFFIX;
279 
280     unique_fd bootstrapClientFd, socketFd;
281 
282     auto addr = allocateSocketAddress();
283     // Initializes the socket before the fork/exec.
284     if (socketType == SocketType::UNIX_RAW) {
285         socketFd = initUnixSocket(addr);
286     } else if (socketType == SocketType::UNIX_BOOTSTRAP) {
287         // Do not set O_CLOEXEC, bootstrapServerFd needs to survive fork/exec.
288         // This is because we cannot pass ParcelFileDescriptor over a pipe.
289         if (!binder::Socketpair(SOCK_STREAM, &bootstrapClientFd, &socketFd)) {
290             PLOGF("Failed socketpair()");
291         }
292     }
293 
294     auto ret = std::make_unique<LinuxProcessSession>(
295             Process([=](borrowed_fd writeEnd, borrowed_fd readEnd) {
296                 if (socketType == SocketType::TIPC) {
297                     // Trusty has a single persistent service
298                     return;
299                 }
300 
301                 auto writeFd = std::to_string(writeEnd.get());
302                 auto readFd = std::to_string(readEnd.get());
303                 auto status = execl(servicePath.c_str(), servicePath.c_str(), writeFd.c_str(),
304                                     readFd.c_str(), NULL);
305                 PLOGF("execl('%s', _, %s, %s) should not return at all, but it returned %d",
306                       servicePath.c_str(), writeFd.c_str(), readFd.c_str(), status);
307             }));
308 
309     BinderRpcTestServerConfig serverConfig;
310     serverConfig.numThreads = options.numThreads;
311     serverConfig.socketType = static_cast<int32_t>(socketType);
312     serverConfig.rpcSecurity = static_cast<int32_t>(rpcSecurity);
313     serverConfig.serverVersion = serverVersion;
314     serverConfig.addr = addr;
315     serverConfig.socketFd = socketFd.get();
316     for (auto mode : options.serverSupportedFileDescriptorTransportModes) {
317         serverConfig.serverSupportedFileDescriptorTransportModes.push_back(
318                 static_cast<int32_t>(mode));
319     }
320     if (socketType != SocketType::TIPC) {
321         writeToFd(ret->host.writeEnd(), serverConfig);
322     }
323 
324     std::vector<sp<RpcSession>> sessions;
325     auto certVerifier = std::make_shared<RpcCertificateVerifierSimple>();
326     for (size_t i = 0; i < options.numSessions; i++) {
327         std::unique_ptr<RpcTransportCtxFactory> factory;
328         if (socketType == SocketType::TIPC) {
329 #ifdef BINDER_RPC_TO_TRUSTY_TEST
330             factory = RpcTransportCtxFactoryTipcAndroid::make();
331 #else
332             LOG_ALWAYS_FATAL("TIPC socket type only supported on vendor");
333 #endif
334         } else {
335             factory = newTlsFactory(rpcSecurity, certVerifier);
336         }
337         sessions.emplace_back(RpcSession::make(std::move(factory)));
338     }
339 
340     BinderRpcTestServerInfo serverInfo;
341     if (socketType != SocketType::TIPC) {
342         serverInfo = readFromFd<BinderRpcTestServerInfo>(ret->host.readEnd());
343         BinderRpcTestClientInfo clientInfo;
344         for (const auto& session : sessions) {
345             auto& parcelableCert = clientInfo.certs.emplace_back();
346             parcelableCert.data = session->getCertificate(RpcCertificateFormat::PEM);
347         }
348         writeToFd(ret->host.writeEnd(), clientInfo);
349 
350         LOG_ALWAYS_FATAL_IF(serverInfo.port > std::numeric_limits<unsigned int>::max());
351         if (socketType == SocketType::INET) {
352             LOG_ALWAYS_FATAL_IF(0 == serverInfo.port);
353         }
354 
355         if (rpcSecurity == RpcSecurity::TLS) {
356             const auto& serverCert = serverInfo.cert.data;
357             LOG_ALWAYS_FATAL_IF(
358                     OK !=
359                     certVerifier->addTrustedPeerCertificate(RpcCertificateFormat::PEM, serverCert));
360         }
361     }
362 
363     status_t status;
364 
365     for (size_t i = 0; i < sessions.size(); i++) {
366         const auto& session = sessions.at(i);
367 
368         size_t numIncoming = options.numIncomingConnectionsBySession.size() > 0
369                 ? options.numIncomingConnectionsBySession.at(i)
370                 : 0;
371 
372         LOG_ALWAYS_FATAL_IF(!session->setProtocolVersion(clientVersion));
373         session->setMaxIncomingThreads(numIncoming);
374         session->setMaxOutgoingConnections(options.numOutgoingConnections);
375         session->setFileDescriptorTransportMode(options.clientFileDescriptorTransportMode);
376 
377         sockaddr_storage addr{};
378         socklen_t addrLen = 0;
379 
380         switch (socketType) {
381             case SocketType::PRECONNECTED: {
382                 sockaddr_un addr_un{};
383                 addr_un.sun_family = AF_UNIX;
384                 strcpy(addr_un.sun_path, serverConfig.addr.c_str());
385                 addr = *reinterpret_cast<sockaddr_storage*>(&addr_un);
386                 addrLen = sizeof(sockaddr_un);
387 
388                 status = session->setupPreconnectedClient({}, [=]() {
389                     return connectTo(UnixSocketAddress(serverConfig.addr.c_str()));
390                 });
391             } break;
392             case SocketType::UNIX_RAW:
393             case SocketType::UNIX: {
394                 sockaddr_un addr_un{};
395                 addr_un.sun_family = AF_UNIX;
396                 strcpy(addr_un.sun_path, serverConfig.addr.c_str());
397                 addr = *reinterpret_cast<sockaddr_storage*>(&addr_un);
398                 addrLen = sizeof(sockaddr_un);
399 
400                 status = session->setupUnixDomainClient(serverConfig.addr.c_str());
401             } break;
402             case SocketType::UNIX_BOOTSTRAP:
403                 status = session->setupUnixDomainSocketBootstrapClient(
404                         unique_fd(dup(bootstrapClientFd.get())));
405                 break;
406             case SocketType::VSOCK: {
407                 sockaddr_vm addr_vm{
408                         .svm_family = AF_VSOCK,
409                         .svm_port = static_cast<unsigned int>(serverInfo.port),
410                         .svm_cid = VMADDR_CID_LOCAL,
411                 };
412                 addr = *reinterpret_cast<sockaddr_storage*>(&addr_vm);
413                 addrLen = sizeof(sockaddr_vm);
414 
415                 status = session->setupVsockClient(VMADDR_CID_LOCAL, serverInfo.port);
416             } break;
417             case SocketType::INET: {
418                 const std::string ip_addr = "127.0.0.1";
419                 sockaddr_in addr_in{};
420                 addr_in.sin_family = AF_INET;
421                 addr_in.sin_port = htons(serverInfo.port);
422                 inet_aton(ip_addr.c_str(), &addr_in.sin_addr);
423                 addr = *reinterpret_cast<sockaddr_storage*>(&addr_in);
424                 addrLen = sizeof(sockaddr_in);
425 
426                 status = session->setupInetClient(ip_addr.c_str(), serverInfo.port);
427             } break;
428             case SocketType::TIPC:
429                 status = session->setupPreconnectedClient({}, [=]() {
430 #ifdef BINDER_RPC_TO_TRUSTY_TEST
431                     auto port = trustyIpcPort(serverVersion);
432                     for (size_t i = 0; i < 5; i++) {
433                         // Try to connect several times,
434                         // in case the service is slow to start
435                         int tipcFd = tipc_connect(kTrustyIpcDevice, port.c_str());
436                         if (tipcFd >= 0) {
437                             return unique_fd(tipcFd);
438                         }
439                         usleep(50000);
440                     }
441                     return unique_fd();
442 #else
443                     LOG_ALWAYS_FATAL("Tried to connect to Trusty outside of vendor");
444                     return unique_fd();
445 #endif
446                 });
447                 break;
448             default:
449                 LOG_ALWAYS_FATAL("Unknown socket type");
450         }
451         if (options.allowConnectFailure && status != OK) {
452             ret->sessions.clear();
453             break;
454         }
455         LOG_ALWAYS_FATAL_IF(status != OK, "Could not connect: %s", statusToString(status).c_str());
456         ret->sessions.push_back({session, session->getRootObject(), addr, addrLen});
457     }
458     return ret;
459 }
460 
TEST_P(BinderRpc,ThreadPoolGreaterThanEqualRequested)461 TEST_P(BinderRpc, ThreadPoolGreaterThanEqualRequested) {
462     if (clientOrServerSingleThreaded()) {
463         GTEST_SKIP() << "This test requires multiple threads";
464     }
465 
466     constexpr size_t kNumThreads = 5;
467 
468     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
469 
470     EXPECT_OK(proc.rootIface->lock());
471 
472     // block all but one thread taking locks
473     std::vector<std::thread> ts;
474     for (size_t i = 0; i < kNumThreads - 1; i++) {
475         ts.push_back(std::thread([&] { proc.rootIface->lockUnlock(); }));
476     }
477 
478     usleep(100000); // give chance for calls on other threads
479 
480     // other calls still work
481     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
482 
483     constexpr size_t blockTimeMs = 100;
484     size_t epochMsBefore = epochMillis();
485     // after this, we should never see a response within this time
486     EXPECT_OK(proc.rootIface->unlockInMsAsync(blockTimeMs));
487 
488     // this call should be blocked for blockTimeMs
489     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
490 
491     size_t epochMsAfter = epochMillis();
492     EXPECT_GE(epochMsAfter, epochMsBefore + blockTimeMs) << epochMsBefore;
493 
494     for (auto& t : ts) t.join();
495 }
496 
testThreadPoolOverSaturated(sp<IBinderRpcTest> iface,size_t numCalls,size_t sleepMs)497 static void testThreadPoolOverSaturated(sp<IBinderRpcTest> iface, size_t numCalls, size_t sleepMs) {
498     size_t epochMsBefore = epochMillis();
499 
500     std::vector<std::thread> ts;
501     for (size_t i = 0; i < numCalls; i++) {
502         ts.push_back(std::thread([&] { iface->sleepMs(sleepMs); }));
503     }
504 
505     for (auto& t : ts) t.join();
506 
507     size_t epochMsAfter = epochMillis();
508 
509     EXPECT_GE(epochMsAfter, epochMsBefore + 2 * sleepMs);
510 
511     // b/272429574, b/365294257
512     // This flakes too much to test. Parallelization is tested
513     // in ThreadPoolGreaterThanEqualRequested and other tests.
514     // Test to make sure calls are handled in parallel.
515     // EXPECT_LE(epochMsAfter, epochMsBefore + (numCalls - 1) * sleepMs);
516 }
517 
TEST_P(BinderRpc,ThreadPoolOverSaturated)518 TEST_P(BinderRpc, ThreadPoolOverSaturated) {
519     if (clientOrServerSingleThreaded()) {
520         GTEST_SKIP() << "This test requires multiple threads";
521     }
522 
523     constexpr size_t kNumThreads = 10;
524     constexpr size_t kNumCalls = kNumThreads + 3;
525     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
526 
527     testThreadPoolOverSaturated(proc.rootIface, kNumCalls, 200 /*ms*/);
528 }
529 
TEST_P(BinderRpc,ThreadPoolLimitOutgoing)530 TEST_P(BinderRpc, ThreadPoolLimitOutgoing) {
531     if (clientOrServerSingleThreaded()) {
532         GTEST_SKIP() << "This test requires multiple threads";
533     }
534 
535     constexpr size_t kNumThreads = 20;
536     constexpr size_t kNumOutgoingConnections = 10;
537     constexpr size_t kNumCalls = kNumOutgoingConnections + 3;
538     auto proc = createRpcTestSocketServerProcess(
539             {.numThreads = kNumThreads, .numOutgoingConnections = kNumOutgoingConnections});
540 
541     testThreadPoolOverSaturated(proc.rootIface, kNumCalls, 200 /*ms*/);
542 }
543 
TEST_P(BinderRpc,ThreadingStressTest)544 TEST_P(BinderRpc, ThreadingStressTest) {
545     if (clientOrServerSingleThreaded()) {
546         GTEST_SKIP() << "This test requires multiple threads";
547     }
548 
549     constexpr size_t kNumClientThreads = 5;
550     constexpr size_t kNumServerThreads = 5;
551     constexpr size_t kNumCalls = 50;
552 
553     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumServerThreads});
554 
555     std::vector<std::thread> threads;
556     for (size_t i = 0; i < kNumClientThreads; i++) {
557         threads.push_back(std::thread([&] {
558             for (size_t j = 0; j < kNumCalls; j++) {
559                 sp<IBinder> out;
560                 EXPECT_OK(proc.rootIface->repeatBinder(proc.rootBinder, &out));
561                 EXPECT_EQ(proc.rootBinder, out);
562             }
563         }));
564     }
565 
566     for (auto& t : threads) t.join();
567 }
568 
saturateThreadPool(size_t threadCount,const sp<IBinderRpcTest> & iface)569 static void saturateThreadPool(size_t threadCount, const sp<IBinderRpcTest>& iface) {
570     std::vector<std::thread> threads;
571     for (size_t i = 0; i < threadCount; i++) {
572         threads.push_back(std::thread([&] { EXPECT_OK(iface->sleepMs(500)); }));
573     }
574     for (auto& t : threads) t.join();
575 }
576 
TEST_P(BinderRpc,OnewayStressTest)577 TEST_P(BinderRpc, OnewayStressTest) {
578     if (clientOrServerSingleThreaded()) {
579         GTEST_SKIP() << "This test requires multiple threads";
580     }
581 
582     constexpr size_t kNumClientThreads = 10;
583     constexpr size_t kNumServerThreads = 10;
584     constexpr size_t kNumCalls = 1000;
585 
586     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumServerThreads});
587 
588     std::vector<std::thread> threads;
589     for (size_t i = 0; i < kNumClientThreads; i++) {
590         threads.push_back(std::thread([&] {
591             for (size_t j = 0; j < kNumCalls; j++) {
592                 EXPECT_OK(proc.rootIface->sendString("a"));
593             }
594         }));
595     }
596 
597     for (auto& t : threads) t.join();
598 
599     saturateThreadPool(kNumServerThreads, proc.rootIface);
600 }
601 
TEST_P(BinderRpc,OnewayCallQueueingWithFds)602 TEST_P(BinderRpc, OnewayCallQueueingWithFds) {
603     if (!supportsFdTransport()) {
604         GTEST_SKIP() << "Would fail trivially (which is tested elsewhere)";
605     }
606     if (clientOrServerSingleThreaded()) {
607         GTEST_SKIP() << "This test requires multiple threads";
608     }
609 
610     constexpr size_t kNumServerThreads = 3;
611 
612     // This test forces a oneway transaction to be queued by issuing two
613     // `blockingSendFdOneway` calls, then drains the queue by issuing two
614     // `blockingRecvFd` calls.
615     //
616     // For more details about the queuing semantics see
617     // https://developer.android.com/reference/android/os/IBinder#FLAG_ONEWAY
618 
619     auto proc = createRpcTestSocketServerProcess({
620             .numThreads = kNumServerThreads,
621             .clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
622             .serverSupportedFileDescriptorTransportModes =
623                     {RpcSession::FileDescriptorTransportMode::UNIX},
624     });
625 
626     EXPECT_OK(proc.rootIface->blockingSendFdOneway(
627             android::os::ParcelFileDescriptor(mockFileDescriptor("a"))));
628     EXPECT_OK(proc.rootIface->blockingSendFdOneway(
629             android::os::ParcelFileDescriptor(mockFileDescriptor("b"))));
630 
631     android::os::ParcelFileDescriptor fdA;
632     EXPECT_OK(proc.rootIface->blockingRecvFd(&fdA));
633     std::string result;
634     ASSERT_TRUE(ReadFdToString(fdA.get(), &result));
635     EXPECT_EQ(result, "a");
636 
637     android::os::ParcelFileDescriptor fdB;
638     EXPECT_OK(proc.rootIface->blockingRecvFd(&fdB));
639     ASSERT_TRUE(ReadFdToString(fdB.get(), &result));
640     EXPECT_EQ(result, "b");
641 
642     saturateThreadPool(kNumServerThreads, proc.rootIface);
643 }
644 
TEST_P(BinderRpc,OnewayCallQueueing)645 TEST_P(BinderRpc, OnewayCallQueueing) {
646     if (clientOrServerSingleThreaded()) {
647         GTEST_SKIP() << "This test requires multiple threads";
648     }
649 
650     constexpr size_t kNumQueued = 10;
651     constexpr size_t kNumExtraServerThreads = 4;
652 
653     // make sure calls to the same object happen on the same thread
654     auto proc = createRpcTestSocketServerProcess({.numThreads = 1 + kNumExtraServerThreads});
655 
656     // all these *Oneway commands should be queued on the server sequentially,
657     // even though there are multiple threads.
658     for (size_t i = 0; i + 1 < kNumQueued; i++) {
659         proc.rootIface->blockingSendIntOneway(i);
660     }
661     for (size_t i = 0; i + 1 < kNumQueued; i++) {
662         int n;
663         proc.rootIface->blockingRecvInt(&n);
664         EXPECT_EQ(n, static_cast<ssize_t>(i));
665     }
666 
667     saturateThreadPool(1 + kNumExtraServerThreads, proc.rootIface);
668 }
669 
TEST_P(BinderRpc,OnewayCallExhaustion)670 TEST_P(BinderRpc, OnewayCallExhaustion) {
671     if (clientOrServerSingleThreaded()) {
672         GTEST_SKIP() << "This test requires multiple threads";
673     }
674 
675     constexpr size_t kNumClients = 2;
676     constexpr size_t kTooLongMs = 1000;
677 
678     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumClients, .numSessions = 2});
679 
680     // Build up oneway calls on the second session to make sure it terminates
681     // and shuts down. The first session should be unaffected (proc destructor
682     // checks the first session).
683     auto iface = interface_cast<IBinderRpcTest>(proc.proc->sessions.at(1).root);
684 
685     std::vector<std::thread> threads;
686     for (size_t i = 0; i < kNumClients; i++) {
687         // one of these threads will get stuck queueing a transaction once the
688         // socket fills up, the other will be able to fill up transactions on
689         // this object
690         threads.push_back(std::thread([&] {
691             while (iface->sleepMsAsync(kTooLongMs).isOk()) {
692             }
693         }));
694     }
695     for (auto& t : threads) t.join();
696 
697     Status status = iface->sleepMsAsync(kTooLongMs);
698     EXPECT_EQ(DEAD_OBJECT, status.transactionError()) << status;
699 
700     // now that it has died, wait for the remote session to shutdown
701     std::vector<int32_t> remoteCounts;
702     do {
703         EXPECT_OK(proc.rootIface->countBinders(&remoteCounts));
704     } while (remoteCounts.size() == kNumClients);
705 
706     // the second session should be shutdown in the other process by the time we
707     // are able to join above (it'll only be hung up once it finishes processing
708     // any pending commands). We need to erase this session from the record
709     // here, so that the destructor for our session won't check that this
710     // session is valid, but we still want it to test the other session.
711     proc.proc->sessions.erase(proc.proc->sessions.begin() + 1);
712 }
713 
TEST_P(BinderRpc,SessionWithIncomingThreadpoolDoesntLeak)714 TEST_P(BinderRpc, SessionWithIncomingThreadpoolDoesntLeak) {
715     if (clientOrServerSingleThreaded()) {
716         GTEST_SKIP() << "This test requires multiple threads";
717     }
718 
719     // session 0 - will check for leaks in destrutor of proc
720     // session 1 - we want to make sure it gets deleted when we drop all references to it
721     auto proc = createRpcTestSocketServerProcess(
722             {.numThreads = 1, .numSessions = 2, .numIncomingConnectionsBySession = {0, 1}});
723 
724     wp<RpcSession> session = proc.proc->sessions.at(1).session;
725 
726     // remove all references to the second session
727     proc.proc->sessions.at(1).root = nullptr;
728     proc.proc->sessions.erase(proc.proc->sessions.begin() + 1);
729 
730     // TODO(b/271830568) more efficient way to wait for other incoming threadpool
731     // to drain commands.
732     for (size_t i = 0; i < 100; i++) {
733         usleep(10 * 1000);
734         if (session.promote() == nullptr) break;
735     }
736 
737     EXPECT_EQ(nullptr, session.promote());
738 
739     // now that it has died, wait for the remote session to shutdown
740     std::vector<int32_t> remoteCounts;
741     do {
742         EXPECT_OK(proc.rootIface->countBinders(&remoteCounts));
743     } while (remoteCounts.size() > 1);
744 }
745 
TEST_P(BinderRpc,SingleDeathRecipient)746 TEST_P(BinderRpc, SingleDeathRecipient) {
747     if (clientOrServerSingleThreaded()) {
748         GTEST_SKIP() << "This test requires multiple threads";
749     }
750     class MyDeathRec : public IBinder::DeathRecipient {
751     public:
752         void binderDied(const wp<IBinder>& /* who */) override {
753             dead = true;
754             mCv.notify_one();
755         }
756         std::mutex mMtx;
757         std::condition_variable mCv;
758         bool dead = false;
759     };
760 
761     // Death recipient needs to have an incoming connection to be called
762     auto proc = createRpcTestSocketServerProcess(
763             {.numThreads = 1, .numSessions = 1, .numIncomingConnectionsBySession = {1}});
764 
765     auto dr = sp<MyDeathRec>::make();
766     ASSERT_EQ(OK, proc.rootBinder->linkToDeath(dr, (void*)1, 0));
767 
768     if (auto status = proc.rootIface->scheduleShutdown(); !status.isOk()) {
769         EXPECT_EQ(DEAD_OBJECT, status.transactionError()) << status;
770     }
771 
772     std::unique_lock<std::mutex> lock(dr->mMtx);
773     ASSERT_TRUE(dr->mCv.wait_for(lock, 100ms, [&]() { return dr->dead; }));
774 
775     // need to wait for the session to shutdown so we don't "Leak session"
776     // can't do this before checking the death recipient by calling
777     // forceShutdown earlier, because shutdownAndWait will also trigger
778     // a death recipient, but if we had a way to wait for the service
779     // to gracefully shutdown, we could use that here.
780     EXPECT_TRUE(proc.proc->sessions.at(0).session->shutdownAndWait(true));
781     proc.expectAlreadyShutdown = true;
782 }
783 
TEST_P(BinderRpc,SingleDeathRecipientOnShutdown)784 TEST_P(BinderRpc, SingleDeathRecipientOnShutdown) {
785     if (clientOrServerSingleThreaded()) {
786         GTEST_SKIP() << "This test requires multiple threads";
787     }
788     class MyDeathRec : public IBinder::DeathRecipient {
789     public:
790         void binderDied(const wp<IBinder>& /* who */) override {
791             dead = true;
792             mCv.notify_one();
793         }
794         std::mutex mMtx;
795         std::condition_variable mCv;
796         bool dead = false;
797     };
798 
799     // Death recipient needs to have an incoming connection to be called
800     auto proc = createRpcTestSocketServerProcess(
801             {.numThreads = 1, .numSessions = 1, .numIncomingConnectionsBySession = {1}});
802 
803     auto dr = sp<MyDeathRec>::make();
804     EXPECT_EQ(OK, proc.rootBinder->linkToDeath(dr, (void*)1, 0));
805 
806     // Explicitly calling shutDownAndWait will cause the death recipients
807     // to be called.
808     EXPECT_TRUE(proc.proc->sessions.at(0).session->shutdownAndWait(true));
809 
810     std::unique_lock<std::mutex> lock(dr->mMtx);
811     if (!dr->dead) {
812         EXPECT_EQ(std::cv_status::no_timeout, dr->mCv.wait_for(lock, 100ms));
813     }
814     EXPECT_TRUE(dr->dead) << "Failed to receive the death notification.";
815 
816     proc.proc->terminate();
817     proc.proc->setCustomExitStatusCheck([](int wstatus) {
818         EXPECT_TRUE(WIFSIGNALED(wstatus) && WTERMSIG(wstatus) == SIGTERM)
819                 << "server process failed incorrectly: " << WaitStatusToString(wstatus);
820     });
821     proc.expectAlreadyShutdown = true;
822 }
823 
TEST_P(BinderRpc,DeathRecipientFailsWithoutIncoming)824 TEST_P(BinderRpc, DeathRecipientFailsWithoutIncoming) {
825     if (socketType() == SocketType::TIPC) {
826         // This should work, but Trusty takes too long to restart the service
827         GTEST_SKIP() << "Service death test not supported on Trusty";
828     }
829     class MyDeathRec : public IBinder::DeathRecipient {
830     public:
831         void binderDied(const wp<IBinder>& /* who */) override {}
832     };
833 
834     auto proc = createRpcTestSocketServerProcess({.numThreads = 1, .numSessions = 1});
835 
836     auto dr = sp<MyDeathRec>::make();
837     EXPECT_EQ(INVALID_OPERATION, proc.rootBinder->linkToDeath(dr, (void*)1, 0));
838 }
839 
TEST_P(BinderRpc,UnlinkDeathRecipient)840 TEST_P(BinderRpc, UnlinkDeathRecipient) {
841     if (clientOrServerSingleThreaded()) {
842         GTEST_SKIP() << "This test requires multiple threads";
843     }
844     class MyDeathRec : public IBinder::DeathRecipient {
845     public:
846         void binderDied(const wp<IBinder>& /* who */) override {
847             GTEST_FAIL() << "This should not be called after unlinkToDeath";
848         }
849     };
850 
851     // Death recipient needs to have an incoming connection to be called
852     auto proc = createRpcTestSocketServerProcess(
853             {.numThreads = 1, .numSessions = 1, .numIncomingConnectionsBySession = {1}});
854 
855     auto dr = sp<MyDeathRec>::make();
856     ASSERT_EQ(OK, proc.rootBinder->linkToDeath(dr, (void*)1, 0));
857     ASSERT_EQ(OK, proc.rootBinder->unlinkToDeath(dr, (void*)1, 0, nullptr));
858 
859     proc.forceShutdown();
860 }
861 
TEST_P(BinderRpc,Die)862 TEST_P(BinderRpc, Die) {
863     if (socketType() == SocketType::TIPC) {
864         // This should work, but Trusty takes too long to restart the service
865         GTEST_SKIP() << "Service death test not supported on Trusty";
866     }
867 
868     for (bool doDeathCleanup : {true, false}) {
869         auto proc = createRpcTestSocketServerProcess({});
870 
871         // make sure there is some state during crash
872         // 1. we hold their binder
873         sp<IBinderRpcSession> session;
874         EXPECT_OK(proc.rootIface->openSession("happy", &session));
875         // 2. they hold our binder
876         sp<IBinder> binder = new BBinder();
877         EXPECT_OK(proc.rootIface->holdBinder(binder));
878 
879         EXPECT_EQ(DEAD_OBJECT, proc.rootIface->die(doDeathCleanup).transactionError())
880                 << "Do death cleanup: " << doDeathCleanup;
881 
882         proc.proc->setCustomExitStatusCheck([](int wstatus) {
883             EXPECT_TRUE(WIFEXITED(wstatus) && WEXITSTATUS(wstatus) == 1)
884                     << "server process failed incorrectly: " << WaitStatusToString(wstatus);
885         });
886         proc.expectAlreadyShutdown = true;
887     }
888 }
889 
TEST_P(BinderRpc,UseKernelBinderCallingId)890 TEST_P(BinderRpc, UseKernelBinderCallingId) {
891     // This test only works if the current process shared the internal state of
892     // ProcessState with the service across the call to fork(). Both the static
893     // libraries and libbinder.so have their own separate copies of all the
894     // globals, so the test only works when the test client and service both use
895     // libbinder.so (when using static libraries, even a client and service
896     // using the same kind of static library should have separate copies of the
897     // variables).
898     if (!kEnableSharedLibs || serverSingleThreaded() || noKernel()) {
899         GTEST_SKIP() << "Test disabled because Binder kernel driver was disabled "
900                         "at build time.";
901     }
902 
903     auto proc = createRpcTestSocketServerProcess({});
904 
905     // we can't allocate IPCThreadState so actually the first time should
906     // succeed :(
907     EXPECT_OK(proc.rootIface->useKernelBinderCallingId());
908 
909     // second time! we catch the error :)
910     EXPECT_EQ(DEAD_OBJECT, proc.rootIface->useKernelBinderCallingId().transactionError());
911 
912     proc.proc->setCustomExitStatusCheck([](int wstatus) {
913         EXPECT_TRUE(WIFSIGNALED(wstatus) && WTERMSIG(wstatus) == SIGABRT)
914                 << "server process failed incorrectly: " << WaitStatusToString(wstatus);
915     });
916     proc.expectAlreadyShutdown = true;
917 }
918 
TEST_P(BinderRpc,FileDescriptorTransportRejectNone)919 TEST_P(BinderRpc, FileDescriptorTransportRejectNone) {
920     if (socketType() == SocketType::TIPC) {
921         GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
922     }
923 
924     auto proc = createRpcTestSocketServerProcess({
925             .clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::NONE,
926             .serverSupportedFileDescriptorTransportModes =
927                     {RpcSession::FileDescriptorTransportMode::UNIX},
928             .allowConnectFailure = true,
929     });
930     EXPECT_TRUE(proc.proc->sessions.empty()) << "session connections should have failed";
931     proc.proc->terminate();
932     proc.proc->setCustomExitStatusCheck([](int wstatus) {
933         EXPECT_TRUE(WIFSIGNALED(wstatus) && WTERMSIG(wstatus) == SIGTERM)
934                 << "server process failed incorrectly: " << WaitStatusToString(wstatus);
935     });
936     proc.expectAlreadyShutdown = true;
937 }
938 
TEST_P(BinderRpc,FileDescriptorTransportRejectUnix)939 TEST_P(BinderRpc, FileDescriptorTransportRejectUnix) {
940     if (socketType() == SocketType::TIPC) {
941         GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
942     }
943 
944     auto proc = createRpcTestSocketServerProcess({
945             .clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
946             .serverSupportedFileDescriptorTransportModes =
947                     {RpcSession::FileDescriptorTransportMode::NONE},
948             .allowConnectFailure = true,
949     });
950     EXPECT_TRUE(proc.proc->sessions.empty()) << "session connections should have failed";
951     proc.proc->terminate();
952     proc.proc->setCustomExitStatusCheck([](int wstatus) {
953         EXPECT_TRUE(WIFSIGNALED(wstatus) && WTERMSIG(wstatus) == SIGTERM)
954                 << "server process failed incorrectly: " << WaitStatusToString(wstatus);
955     });
956     proc.expectAlreadyShutdown = true;
957 }
958 
TEST_P(BinderRpc,FileDescriptorTransportOptionalUnix)959 TEST_P(BinderRpc, FileDescriptorTransportOptionalUnix) {
960     if (socketType() == SocketType::TIPC) {
961         GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
962     }
963 
964     auto proc = createRpcTestSocketServerProcess({
965             .clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::NONE,
966             .serverSupportedFileDescriptorTransportModes =
967                     {RpcSession::FileDescriptorTransportMode::NONE,
968                      RpcSession::FileDescriptorTransportMode::UNIX},
969     });
970 
971     android::os::ParcelFileDescriptor out;
972     auto status = proc.rootIface->echoAsFile("hello", &out);
973     EXPECT_EQ(status.transactionError(), FDS_NOT_ALLOWED) << status;
974 }
975 
TEST_P(BinderRpc,ReceiveFile)976 TEST_P(BinderRpc, ReceiveFile) {
977     if (socketType() == SocketType::TIPC) {
978         GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
979     }
980 
981     auto proc = createRpcTestSocketServerProcess({
982             .clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
983             .serverSupportedFileDescriptorTransportModes =
984                     {RpcSession::FileDescriptorTransportMode::UNIX},
985     });
986 
987     android::os::ParcelFileDescriptor out;
988     auto status = proc.rootIface->echoAsFile("hello", &out);
989     if (!supportsFdTransport()) {
990         EXPECT_EQ(status.transactionError(), BAD_VALUE) << status;
991         return;
992     }
993     ASSERT_TRUE(status.isOk()) << status;
994 
995     std::string result;
996     ASSERT_TRUE(ReadFdToString(out.get(), &result));
997     ASSERT_EQ(result, "hello");
998 }
999 
TEST_P(BinderRpc,SendFiles)1000 TEST_P(BinderRpc, SendFiles) {
1001     if (socketType() == SocketType::TIPC) {
1002         GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
1003     }
1004 
1005     auto proc = createRpcTestSocketServerProcess({
1006             .clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
1007             .serverSupportedFileDescriptorTransportModes =
1008                     {RpcSession::FileDescriptorTransportMode::UNIX},
1009     });
1010 
1011     std::vector<android::os::ParcelFileDescriptor> files;
1012     files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("123")));
1013     files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("a")));
1014     files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("b")));
1015     files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("cd")));
1016 
1017     android::os::ParcelFileDescriptor out;
1018     auto status = proc.rootIface->concatFiles(files, &out);
1019     if (!supportsFdTransport()) {
1020         EXPECT_EQ(status.transactionError(), BAD_VALUE) << status;
1021         return;
1022     }
1023     ASSERT_TRUE(status.isOk()) << status;
1024 
1025     std::string result;
1026     EXPECT_TRUE(ReadFdToString(out.get(), &result));
1027     EXPECT_EQ(result, "123abcd");
1028 }
1029 
TEST_P(BinderRpc,SendMaxFiles)1030 TEST_P(BinderRpc, SendMaxFiles) {
1031     if (!supportsFdTransport()) {
1032         GTEST_SKIP() << "Would fail trivially (which is tested by BinderRpc::SendFiles)";
1033     }
1034 
1035     auto proc = createRpcTestSocketServerProcess({
1036             .clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
1037             .serverSupportedFileDescriptorTransportModes =
1038                     {RpcSession::FileDescriptorTransportMode::UNIX},
1039     });
1040 
1041     std::vector<android::os::ParcelFileDescriptor> files;
1042     for (int i = 0; i < 253; i++) {
1043         files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("a")));
1044     }
1045 
1046     android::os::ParcelFileDescriptor out;
1047     auto status = proc.rootIface->concatFiles(files, &out);
1048     ASSERT_TRUE(status.isOk()) << status;
1049 
1050     std::string result;
1051     EXPECT_TRUE(ReadFdToString(out.get(), &result));
1052     EXPECT_EQ(result, std::string(253, 'a'));
1053 }
1054 
TEST_P(BinderRpc,SendTooManyFiles)1055 TEST_P(BinderRpc, SendTooManyFiles) {
1056     if (!supportsFdTransport()) {
1057         GTEST_SKIP() << "Would fail trivially (which is tested by BinderRpc::SendFiles)";
1058     }
1059 
1060     auto proc = createRpcTestSocketServerProcess({
1061             .clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
1062             .serverSupportedFileDescriptorTransportModes =
1063                     {RpcSession::FileDescriptorTransportMode::UNIX},
1064     });
1065 
1066     std::vector<android::os::ParcelFileDescriptor> files;
1067     for (int i = 0; i < 254; i++) {
1068         files.emplace_back(android::os::ParcelFileDescriptor(mockFileDescriptor("a")));
1069     }
1070 
1071     android::os::ParcelFileDescriptor out;
1072     auto status = proc.rootIface->concatFiles(files, &out);
1073     EXPECT_EQ(status.transactionError(), BAD_VALUE) << status;
1074 }
1075 
TEST_P(BinderRpc,AppendInvalidFd)1076 TEST_P(BinderRpc, AppendInvalidFd) {
1077     if (socketType() == SocketType::TIPC) {
1078         GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
1079     }
1080 
1081     auto proc = createRpcTestSocketServerProcess({
1082             .clientFileDescriptorTransportMode = RpcSession::FileDescriptorTransportMode::UNIX,
1083             .serverSupportedFileDescriptorTransportModes =
1084                     {RpcSession::FileDescriptorTransportMode::UNIX},
1085     });
1086 
1087     int badFd = fcntl(STDERR_FILENO, F_DUPFD_CLOEXEC, 0);
1088     ASSERT_NE(badFd, -1);
1089 
1090     // Close the file descriptor so it becomes invalid for dup
1091     close(badFd);
1092 
1093     Parcel p1;
1094     p1.markForBinder(proc.rootBinder);
1095     p1.writeInt32(3);
1096     EXPECT_EQ(OK, p1.writeFileDescriptor(badFd, false));
1097 
1098     Parcel pRaw;
1099     pRaw.markForBinder(proc.rootBinder);
1100     EXPECT_EQ(OK, pRaw.appendFrom(&p1, 0, p1.dataSize()));
1101 
1102     pRaw.setDataPosition(0);
1103     EXPECT_EQ(3, pRaw.readInt32());
1104     ASSERT_EQ(-1, pRaw.readFileDescriptor());
1105 }
1106 
1107 #ifndef __ANDROID_VENDOR__ // No AIBinder_fromPlatformBinder on vendor
TEST_P(BinderRpc,WorksWithLibbinderNdkPing)1108 TEST_P(BinderRpc, WorksWithLibbinderNdkPing) {
1109     if constexpr (!kEnableSharedLibs) {
1110         GTEST_SKIP() << "Test disabled because Binder was built as a static library";
1111     }
1112 
1113     auto proc = createRpcTestSocketServerProcess({});
1114 
1115     ndk::SpAIBinder binder = ndk::SpAIBinder(AIBinder_fromPlatformBinder(proc.rootBinder));
1116     ASSERT_NE(binder, nullptr);
1117 
1118     ASSERT_EQ(STATUS_OK, AIBinder_ping(binder.get()));
1119 }
1120 
TEST_P(BinderRpc,WorksWithLibbinderNdkUserTransaction)1121 TEST_P(BinderRpc, WorksWithLibbinderNdkUserTransaction) {
1122     if constexpr (!kEnableSharedLibs) {
1123         GTEST_SKIP() << "Test disabled because Binder was built as a static library";
1124     }
1125 
1126     auto proc = createRpcTestSocketServerProcess({});
1127 
1128     ndk::SpAIBinder binder = ndk::SpAIBinder(AIBinder_fromPlatformBinder(proc.rootBinder));
1129     ASSERT_NE(binder, nullptr);
1130 
1131     auto ndkBinder = aidl::IBinderRpcTest::fromBinder(binder);
1132     ASSERT_NE(ndkBinder, nullptr);
1133 
1134     std::string out;
1135     ndk::ScopedAStatus status = ndkBinder->doubleString("aoeu", &out);
1136     ASSERT_TRUE(status.isOk()) << status.getDescription();
1137     ASSERT_EQ("aoeuaoeu", out);
1138 }
1139 #endif // __ANDROID_VENDOR__
1140 
countFds()1141 ssize_t countFds() {
1142     DIR* dir = opendir("/proc/self/fd/");
1143     if (dir == nullptr) return -1;
1144     ssize_t ret = 0;
1145     dirent* ent;
1146     while ((ent = readdir(dir)) != nullptr) ret++;
1147     closedir(dir);
1148     return ret;
1149 }
1150 
TEST_P(BinderRpc,Fds)1151 TEST_P(BinderRpc, Fds) {
1152     if (serverSingleThreaded()) {
1153         GTEST_SKIP() << "This test requires multiple threads";
1154     }
1155     if (socketType() == SocketType::TIPC) {
1156         GTEST_SKIP() << "File descriptor tests not supported on Trusty (yet)";
1157     }
1158 
1159     ssize_t beforeFds = countFds();
1160     ASSERT_GE(beforeFds, 0);
1161     {
1162         auto proc = createRpcTestSocketServerProcess({.numThreads = 10});
1163         ASSERT_EQ(OK, proc.rootBinder->pingBinder());
1164     }
1165     ASSERT_EQ(beforeFds, countFds()) << (system("ls -l /proc/self/fd/"), "fd leak?");
1166 }
1167 
1168 // TODO need to add IServiceManager.cpp/.h to libbinder_no_kernel
1169 #ifdef BINDER_WITH_KERNEL_IPC
1170 
1171 class BinderRpcAccessor : public BinderRpc {
SetUp()1172     void SetUp() override {
1173         if (serverSingleThreaded()) {
1174             // This blocks on android::FdTrigger::triggerablePoll when attempting to set
1175             // up the client RpcSession
1176             GTEST_SKIP() << "Accessors are not supported for single threaded libbinder";
1177         }
1178         if (rpcSecurity() == RpcSecurity::TLS) {
1179             GTEST_SKIP() << "Accessors are not supported with TLS";
1180             // ... for now
1181         }
1182 
1183         if (socketType() == SocketType::UNIX_BOOTSTRAP) {
1184             GTEST_SKIP() << "Accessors do not support UNIX_BOOTSTRAP because no connection "
1185                             "information is known";
1186         }
1187         if (socketType() == SocketType::TIPC) {
1188             GTEST_SKIP() << "Accessors do not support TIPC because the socket transport is not "
1189                             "known in libbinder";
1190         }
1191         BinderRpc::SetUp();
1192     }
1193 };
1194 
waitForExtraSessionCleanup(const BinderRpcTestProcessSession & proc)1195 inline void waitForExtraSessionCleanup(const BinderRpcTestProcessSession& proc) {
1196     // Need to give the server some time to delete its RpcSession after our last
1197     // reference is dropped, closing the connection. Check for up to 1 second,
1198     // every 10 ms.
1199     for (size_t i = 0; i < 100; i++) {
1200         std::vector<int32_t> remoteCounts;
1201         EXPECT_OK(proc.rootIface->countBinders(&remoteCounts));
1202         // We exect the original binder to still be alive, we just want to wait
1203         // for this extra session to be cleaned up.
1204         if (remoteCounts.size() == proc.proc->sessions.size()) break;
1205         usleep(10000);
1206     }
1207 }
1208 
TEST_P(BinderRpcAccessor,InjectAndGetServiceHappyPath)1209 TEST_P(BinderRpcAccessor, InjectAndGetServiceHappyPath) {
1210     constexpr size_t kNumThreads = 10;
1211     const String16 kInstanceName("super.cool.service/better_than_default");
1212 
1213     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
1214     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
1215 
1216     auto receipt = addAccessorProvider(
1217             {String8(kInstanceName).c_str()}, [&](const String16& name) -> sp<IBinder> {
1218                 return createAccessor(name,
1219                                       [&](const String16& name, sockaddr* outAddr,
1220                                           socklen_t addrSize) -> status_t {
1221                                           if (outAddr == nullptr ||
1222                                               addrSize < proc.proc->sessions[0].addrLen) {
1223                                               return BAD_VALUE;
1224                                           }
1225                                           if (name == kInstanceName) {
1226                                               if (proc.proc->sessions[0].addr.ss_family ==
1227                                                   AF_UNIX) {
1228                                                   sockaddr_un* un = reinterpret_cast<sockaddr_un*>(
1229                                                           &proc.proc->sessions[0].addr);
1230                                                   ALOGE("inside callback: %s", un->sun_path);
1231                                               }
1232                                               std::memcpy(outAddr, &proc.proc->sessions[0].addr,
1233                                                           proc.proc->sessions[0].addrLen);
1234                                               return OK;
1235                                           }
1236                                           return NAME_NOT_FOUND;
1237                                       });
1238             });
1239 
1240     EXPECT_FALSE(receipt.expired());
1241 
1242     sp<IBinder> binder = defaultServiceManager()->checkService(kInstanceName);
1243     sp<IBinderRpcTest> service = checked_interface_cast<IBinderRpcTest>(binder);
1244     EXPECT_NE(service, nullptr);
1245 
1246     sp<IBinder> out;
1247     EXPECT_OK(service->repeatBinder(binder, &out));
1248     EXPECT_EQ(binder, out);
1249 
1250     out.clear();
1251     binder.clear();
1252     service.clear();
1253 
1254     status_t status = removeAccessorProvider(receipt);
1255     EXPECT_EQ(status, OK);
1256 
1257     waitForExtraSessionCleanup(proc);
1258 }
1259 
TEST_P(BinderRpcAccessor,InjectNoAccessorProvided)1260 TEST_P(BinderRpcAccessor, InjectNoAccessorProvided) {
1261     const String16 kInstanceName("doesnt_matter_nothing_checks");
1262 
1263     bool isProviderDeleted = false;
1264 
1265     auto receipt = addAccessorProvider({String8(kInstanceName).c_str()},
1266                                        [&](const String16&) -> sp<IBinder> { return nullptr; });
1267     EXPECT_FALSE(receipt.expired());
1268 
1269     sp<IBinder> binder = defaultServiceManager()->checkService(kInstanceName);
1270     EXPECT_EQ(binder, nullptr);
1271 
1272     status_t status = removeAccessorProvider(receipt);
1273     EXPECT_EQ(status, OK);
1274 }
1275 
TEST_P(BinderRpcAccessor,InjectDuplicateAccessorProvider)1276 TEST_P(BinderRpcAccessor, InjectDuplicateAccessorProvider) {
1277     const String16 kInstanceName("super.cool.service/better_than_default");
1278     const String16 kInstanceName2("super.cool.service/better_than_default2");
1279 
1280     auto receipt =
1281             addAccessorProvider({String8(kInstanceName).c_str(), String8(kInstanceName2).c_str()},
1282                                 [&](const String16&) -> sp<IBinder> { return nullptr; });
1283     EXPECT_FALSE(receipt.expired());
1284     // reject this because it's associated with an already used instance name
1285     auto receipt2 = addAccessorProvider({String8(kInstanceName).c_str()},
1286                                         [&](const String16&) -> sp<IBinder> { return nullptr; });
1287     EXPECT_TRUE(receipt2.expired());
1288 
1289     // the first provider should still be usable
1290     sp<IBinder> binder = defaultServiceManager()->checkService(kInstanceName);
1291     EXPECT_EQ(binder, nullptr);
1292 
1293     status_t status = removeAccessorProvider(receipt);
1294     EXPECT_EQ(status, OK);
1295 }
1296 
TEST_P(BinderRpcAccessor,InjectAccessorProviderNoInstance)1297 TEST_P(BinderRpcAccessor, InjectAccessorProviderNoInstance) {
1298     auto receipt = addAccessorProvider({}, [&](const String16&) -> sp<IBinder> { return nullptr; });
1299     EXPECT_TRUE(receipt.expired());
1300 }
1301 
TEST_P(BinderRpcAccessor,InjectNoSockaddrProvided)1302 TEST_P(BinderRpcAccessor, InjectNoSockaddrProvided) {
1303     constexpr size_t kNumThreads = 10;
1304     const String16 kInstanceName("super.cool.service/better_than_default");
1305 
1306     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
1307     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
1308 
1309     bool isProviderDeleted = false;
1310     bool isAccessorDeleted = false;
1311 
1312     auto receipt = addAccessorProvider({String8(kInstanceName).c_str()},
1313                                        [&](const String16& name) -> sp<IBinder> {
1314                                            return createAccessor(name,
1315                                                                  [&](const String16&, sockaddr*,
1316                                                                      socklen_t) -> status_t {
1317                                                                      // don't fill in outAddr
1318                                                                      return NAME_NOT_FOUND;
1319                                                                  });
1320                                        });
1321 
1322     EXPECT_FALSE(receipt.expired());
1323 
1324     sp<IBinder> binder = defaultServiceManager()->checkService(kInstanceName);
1325     EXPECT_EQ(binder, nullptr);
1326 
1327     status_t status = removeAccessorProvider(receipt);
1328     EXPECT_EQ(status, OK);
1329 }
1330 
1331 constexpr const char* kARpcInstance = "some.instance.name.IFoo/default";
1332 const char* kARpcSupportedServices[] = {
1333         kARpcInstance,
1334 };
1335 const uint32_t kARpcNumSupportedServices = 1;
1336 
1337 struct ConnectionInfoData {
1338     sockaddr_storage addr;
1339     socklen_t len;
1340     bool* isDeleted;
~ConnectionInfoDataandroid::ConnectionInfoData1341     ~ConnectionInfoData() {
1342         if (isDeleted) *isDeleted = true;
1343     }
1344 };
1345 
1346 struct AccessorProviderData {
1347     sockaddr_storage addr;
1348     socklen_t len;
1349     bool* isDeleted;
~AccessorProviderDataandroid::AccessorProviderData1350     ~AccessorProviderData() {
1351         if (isDeleted) *isDeleted = true;
1352     }
1353 };
1354 
accessorProviderDataOnDelete(void * data)1355 void accessorProviderDataOnDelete(void* data) {
1356     delete reinterpret_cast<AccessorProviderData*>(data);
1357 }
infoProviderDataOnDelete(void * data)1358 void infoProviderDataOnDelete(void* data) {
1359     delete reinterpret_cast<ConnectionInfoData*>(data);
1360 }
1361 
infoProvider(const char * instance,void * cookie)1362 ABinderRpc_ConnectionInfo* infoProvider(const char* instance, void* cookie) {
1363     if (instance == nullptr || cookie == nullptr) return nullptr;
1364     ConnectionInfoData* data = reinterpret_cast<ConnectionInfoData*>(cookie);
1365     return ABinderRpc_ConnectionInfo_new(reinterpret_cast<const sockaddr*>(&data->addr), data->len);
1366 }
1367 
getAccessor(const char * instance,void * cookie)1368 ABinderRpc_Accessor* getAccessor(const char* instance, void* cookie) {
1369     if (instance == nullptr || cookie == nullptr) return nullptr;
1370     if (0 != strcmp(instance, kARpcInstance)) return nullptr;
1371 
1372     AccessorProviderData* data = reinterpret_cast<AccessorProviderData*>(cookie);
1373 
1374     ConnectionInfoData* info = new ConnectionInfoData{
1375             .addr = data->addr,
1376             .len = data->len,
1377             .isDeleted = nullptr,
1378     };
1379 
1380     return ABinderRpc_Accessor_new(instance, infoProvider, info, infoProviderDataOnDelete);
1381 }
1382 
1383 class BinderARpcNdk : public ::testing::Test {};
1384 
TEST_F(BinderARpcNdk,ARpcProviderNewDelete)1385 TEST_F(BinderARpcNdk, ARpcProviderNewDelete) {
1386     bool isDeleted = false;
1387 
1388     AccessorProviderData* data = new AccessorProviderData{{}, 0, &isDeleted};
1389 
1390     ABinderRpc_AccessorProvider* provider =
1391             ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices,
1392                                                 kARpcNumSupportedServices, data,
1393                                                 accessorProviderDataOnDelete);
1394 
1395     ASSERT_NE(provider, nullptr);
1396     EXPECT_FALSE(isDeleted);
1397 
1398     ABinderRpc_unregisterAccessorProvider(provider);
1399 
1400     EXPECT_TRUE(isDeleted);
1401 }
1402 
TEST_F(BinderARpcNdk,ARpcProviderDeleteOnError)1403 TEST_F(BinderARpcNdk, ARpcProviderDeleteOnError) {
1404     bool isDeleted = false;
1405     AccessorProviderData* data = new AccessorProviderData{{}, 0, &isDeleted};
1406 
1407     ABinderRpc_AccessorProvider* provider =
1408             ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices, 0, data,
1409                                                 accessorProviderDataOnDelete);
1410 
1411     ASSERT_EQ(provider, nullptr);
1412     EXPECT_TRUE(isDeleted);
1413 }
1414 
TEST_F(BinderARpcNdk,ARpcProvideOnErrorNoDeleteCbNoCrash)1415 TEST_F(BinderARpcNdk, ARpcProvideOnErrorNoDeleteCbNoCrash) {
1416     ABinderRpc_AccessorProvider* provider =
1417             ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices, 0, nullptr,
1418                                                 nullptr);
1419 
1420     ASSERT_EQ(provider, nullptr);
1421 }
1422 
TEST_F(BinderARpcNdk,ARpcProviderDuplicateInstance)1423 TEST_F(BinderARpcNdk, ARpcProviderDuplicateInstance) {
1424     const char* instance = "some.instance.name.IFoo/default";
1425     const uint32_t numInstances = 2;
1426     const char* instances[numInstances] = {
1427             instance,
1428             "some.other.instance/default",
1429     };
1430 
1431     bool isDeleted = false;
1432 
1433     AccessorProviderData* data = new AccessorProviderData{{}, 0, &isDeleted};
1434 
1435     ABinderRpc_AccessorProvider* provider =
1436             ABinderRpc_registerAccessorProvider(getAccessor, instances, numInstances, data,
1437                                                 accessorProviderDataOnDelete);
1438 
1439     ASSERT_NE(provider, nullptr);
1440     EXPECT_FALSE(isDeleted);
1441 
1442     const uint32_t numInstances2 = 1;
1443     const char* instances2[numInstances2] = {
1444             instance,
1445     };
1446     bool isDeleted2 = false;
1447     AccessorProviderData* data2 = new AccessorProviderData{{}, 0, &isDeleted2};
1448     ABinderRpc_AccessorProvider* provider2 =
1449             ABinderRpc_registerAccessorProvider(getAccessor, instances2, numInstances2, data2,
1450                                                 accessorProviderDataOnDelete);
1451 
1452     EXPECT_EQ(provider2, nullptr);
1453     // If it fails to be registered, the data is still cleaned up with
1454     // accessorProviderDataOnDelete
1455     EXPECT_TRUE(isDeleted2);
1456 
1457     ABinderRpc_unregisterAccessorProvider(provider);
1458 
1459     EXPECT_TRUE(isDeleted);
1460 }
1461 
TEST_F(BinderARpcNdk,ARpcProviderRegisterNoInstance)1462 TEST_F(BinderARpcNdk, ARpcProviderRegisterNoInstance) {
1463     const uint32_t numInstances = 0;
1464     const char* instances[numInstances] = {};
1465 
1466     bool isDeleted = false;
1467     AccessorProviderData* data = new AccessorProviderData{{}, 0, &isDeleted};
1468 
1469     ABinderRpc_AccessorProvider* provider =
1470             ABinderRpc_registerAccessorProvider(getAccessor, instances, numInstances, data,
1471                                                 accessorProviderDataOnDelete);
1472     ASSERT_EQ(provider, nullptr);
1473 }
1474 
TEST_F(BinderARpcNdk,ARpcAccessorNewDelete)1475 TEST_F(BinderARpcNdk, ARpcAccessorNewDelete) {
1476     bool isDeleted = false;
1477 
1478     ConnectionInfoData* data = new ConnectionInfoData{{}, 0, &isDeleted};
1479 
1480     ABinderRpc_Accessor* accessor =
1481             ABinderRpc_Accessor_new("gshoe_service", infoProvider, data, infoProviderDataOnDelete);
1482     ASSERT_NE(accessor, nullptr);
1483     EXPECT_FALSE(isDeleted);
1484 
1485     ABinderRpc_Accessor_delete(accessor);
1486     EXPECT_TRUE(isDeleted);
1487 }
1488 
TEST_F(BinderARpcNdk,ARpcConnectionInfoNewDelete)1489 TEST_F(BinderARpcNdk, ARpcConnectionInfoNewDelete) {
1490     sockaddr_vm addr{
1491             .svm_family = AF_VSOCK,
1492             .svm_port = VMADDR_PORT_ANY,
1493             .svm_cid = VMADDR_CID_ANY,
1494     };
1495 
1496     ABinderRpc_ConnectionInfo* info =
1497             ABinderRpc_ConnectionInfo_new(reinterpret_cast<sockaddr*>(&addr), sizeof(sockaddr_vm));
1498     EXPECT_NE(info, nullptr);
1499 
1500     ABinderRpc_ConnectionInfo_delete(info);
1501 }
1502 
TEST_F(BinderARpcNdk,ARpcAsFromBinderAsBinder)1503 TEST_F(BinderARpcNdk, ARpcAsFromBinderAsBinder) {
1504     bool isDeleted = false;
1505 
1506     ConnectionInfoData* data = new ConnectionInfoData{{}, 0, &isDeleted};
1507 
1508     ABinderRpc_Accessor* accessor =
1509             ABinderRpc_Accessor_new("gshoe_service", infoProvider, data, infoProviderDataOnDelete);
1510     ASSERT_NE(accessor, nullptr);
1511     EXPECT_FALSE(isDeleted);
1512 
1513     {
1514         ndk::SpAIBinder binder = ndk::SpAIBinder(ABinderRpc_Accessor_asBinder(accessor));
1515         EXPECT_NE(binder.get(), nullptr);
1516 
1517         ABinderRpc_Accessor* accessor2 =
1518                 ABinderRpc_Accessor_fromBinder("wrong_service_name", binder.get());
1519         // The API checks for the expected service name that is associated with
1520         // the accessor!
1521         EXPECT_EQ(accessor2, nullptr);
1522 
1523         accessor2 = ABinderRpc_Accessor_fromBinder("gshoe_service", binder.get());
1524         EXPECT_NE(accessor2, nullptr);
1525 
1526         // this is a new ABinderRpc_Accessor object that wraps the underlying
1527         // libbinder object.
1528         EXPECT_NE(accessor, accessor2);
1529 
1530         ndk::SpAIBinder binder2 = ndk::SpAIBinder(ABinderRpc_Accessor_asBinder(accessor2));
1531         EXPECT_EQ(binder.get(), binder2.get());
1532 
1533         ABinderRpc_Accessor_delete(accessor2);
1534     }
1535 
1536     EXPECT_FALSE(isDeleted);
1537     ABinderRpc_Accessor_delete(accessor);
1538     EXPECT_TRUE(isDeleted);
1539 }
1540 
TEST_F(BinderARpcNdk,ARpcRequireProviderOnDeleteCallback)1541 TEST_F(BinderARpcNdk, ARpcRequireProviderOnDeleteCallback) {
1542     EXPECT_EQ(nullptr,
1543               ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices,
1544                                                   kARpcNumSupportedServices,
1545                                                   reinterpret_cast<void*>(1), nullptr));
1546 }
1547 
TEST_F(BinderARpcNdk,ARpcRequireInfoOnDeleteCallback)1548 TEST_F(BinderARpcNdk, ARpcRequireInfoOnDeleteCallback) {
1549     EXPECT_EQ(nullptr,
1550               ABinderRpc_Accessor_new("the_best_service_name", infoProvider,
1551                                       reinterpret_cast<void*>(1), nullptr));
1552 }
1553 
TEST_F(BinderARpcNdk,ARpcNoDataNoProviderOnDeleteCallback)1554 TEST_F(BinderARpcNdk, ARpcNoDataNoProviderOnDeleteCallback) {
1555     ABinderRpc_AccessorProvider* provider =
1556             ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices,
1557                                                 kARpcNumSupportedServices, nullptr, nullptr);
1558     ASSERT_NE(nullptr, provider);
1559     ABinderRpc_unregisterAccessorProvider(provider);
1560 }
1561 
TEST_F(BinderARpcNdk,ARpcNoDataNoInfoOnDeleteCallback)1562 TEST_F(BinderARpcNdk, ARpcNoDataNoInfoOnDeleteCallback) {
1563     ABinderRpc_Accessor* accessor =
1564             ABinderRpc_Accessor_new("the_best_service_name", infoProvider, nullptr, nullptr);
1565     ASSERT_NE(nullptr, accessor);
1566     ABinderRpc_Accessor_delete(accessor);
1567 }
1568 
TEST_F(BinderARpcNdk,ARpcNullArgs_ConnectionInfo_new)1569 TEST_F(BinderARpcNdk, ARpcNullArgs_ConnectionInfo_new) {
1570     sockaddr_storage addr;
1571     EXPECT_EQ(nullptr, ABinderRpc_ConnectionInfo_new(reinterpret_cast<const sockaddr*>(&addr), 0));
1572 }
1573 
TEST_F(BinderARpcNdk,ARpcDelegateAccessorWrongInstance)1574 TEST_F(BinderARpcNdk, ARpcDelegateAccessorWrongInstance) {
1575     AccessorProviderData* data = new AccessorProviderData();
1576     ABinderRpc_Accessor* accessor = getAccessor(kARpcInstance, data);
1577     ASSERT_NE(accessor, nullptr);
1578     AIBinder* localAccessorBinder = ABinderRpc_Accessor_asBinder(accessor);
1579     EXPECT_NE(localAccessorBinder, nullptr);
1580 
1581     AIBinder* delegatorBinder = nullptr;
1582     binder_status_t status =
1583             ABinderRpc_Accessor_delegateAccessor("bar", localAccessorBinder, &delegatorBinder);
1584     EXPECT_EQ(status, NAME_NOT_FOUND);
1585 
1586     AIBinder_decStrong(localAccessorBinder);
1587     ABinderRpc_Accessor_delete(accessor);
1588     delete data;
1589 }
1590 
TEST_F(BinderARpcNdk,ARpcDelegateNonAccessor)1591 TEST_F(BinderARpcNdk, ARpcDelegateNonAccessor) {
1592     auto service = defaultServiceManager()->checkService(String16(kKnownAidlService));
1593     ASSERT_NE(nullptr, service);
1594     ndk::SpAIBinder binder = ndk::SpAIBinder(AIBinder_fromPlatformBinder(service));
1595 
1596     AIBinder* delegatorBinder = nullptr;
1597     binder_status_t status =
1598             ABinderRpc_Accessor_delegateAccessor("bar", binder.get(), &delegatorBinder);
1599 
1600     EXPECT_EQ(status, BAD_TYPE);
1601 }
1602 
getServiceTest(BinderRpcTestProcessSession & proc,ABinderRpc_AccessorProvider_getAccessorCallback getAccessor)1603 inline void getServiceTest(BinderRpcTestProcessSession& proc,
1604                            ABinderRpc_AccessorProvider_getAccessorCallback getAccessor) {
1605     constexpr size_t kNumThreads = 10;
1606     bool isDeleted = false;
1607 
1608     AccessorProviderData* data =
1609             new AccessorProviderData{proc.proc->sessions[0].addr, proc.proc->sessions[0].addrLen,
1610                                      &isDeleted};
1611     ABinderRpc_AccessorProvider* provider =
1612             ABinderRpc_registerAccessorProvider(getAccessor, kARpcSupportedServices,
1613                                                 kARpcNumSupportedServices, data,
1614                                                 accessorProviderDataOnDelete);
1615     EXPECT_NE(provider, nullptr);
1616     EXPECT_FALSE(isDeleted);
1617 
1618     {
1619         ndk::SpAIBinder binder = ndk::SpAIBinder(AServiceManager_checkService(kARpcInstance));
1620         ASSERT_NE(binder.get(), nullptr);
1621         EXPECT_EQ(STATUS_OK, AIBinder_ping(binder.get()));
1622     }
1623 
1624     ABinderRpc_unregisterAccessorProvider(provider);
1625     EXPECT_TRUE(isDeleted);
1626 
1627     waitForExtraSessionCleanup(proc);
1628 }
1629 
TEST_P(BinderRpcAccessor,ARpcGetService)1630 TEST_P(BinderRpcAccessor, ARpcGetService) {
1631     constexpr size_t kNumThreads = 10;
1632     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
1633     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
1634 
1635     getServiceTest(proc, getAccessor);
1636 }
1637 
1638 // Create accessors and wrap each of the accessors in a delegator
getDelegatedAccessor(const char * instance,void * cookie)1639 ABinderRpc_Accessor* getDelegatedAccessor(const char* instance, void* cookie) {
1640     ABinderRpc_Accessor* accessor = getAccessor(instance, cookie);
1641     AIBinder* accessorBinder = ABinderRpc_Accessor_asBinder(accessor);
1642     // Once we have a handle to the AIBinder which holds a reference to the
1643     // underlying accessor IBinder, we can get rid of the ABinderRpc_Accessor
1644     ABinderRpc_Accessor_delete(accessor);
1645 
1646     AIBinder* delegatorBinder = nullptr;
1647     binder_status_t status =
1648             ABinderRpc_Accessor_delegateAccessor(instance, accessorBinder, &delegatorBinder);
1649     // No longer need this AIBinder. The delegator has a reference to the
1650     // underlying IBinder on success, and on failure we are done here.
1651     AIBinder_decStrong(accessorBinder);
1652     if (status != OK || delegatorBinder == nullptr) {
1653         ALOGE("Unexpected behavior. Status: %s, delegator ptr: %p", statusToString(status).c_str(),
1654               delegatorBinder);
1655         return nullptr;
1656     }
1657 
1658     return ABinderRpc_Accessor_fromBinder(instance, delegatorBinder);
1659 }
1660 
TEST_P(BinderRpcAccessor,ARpcGetServiceWithDelegator)1661 TEST_P(BinderRpcAccessor, ARpcGetServiceWithDelegator) {
1662     constexpr size_t kNumThreads = 10;
1663     auto proc = createRpcTestSocketServerProcess({.numThreads = kNumThreads});
1664     EXPECT_EQ(OK, proc.rootBinder->pingBinder());
1665 
1666     getServiceTest(proc, getDelegatedAccessor);
1667 }
1668 
1669 #endif // BINDER_WITH_KERNEL_IPC
1670 
1671 #ifdef BINDER_RPC_TO_TRUSTY_TEST
1672 
getTrustyBinderRpcParams()1673 static std::vector<BinderRpc::ParamType> getTrustyBinderRpcParams() {
1674     std::vector<BinderRpc::ParamType> ret;
1675 
1676     for (const auto& clientVersion : testVersions()) {
1677         for (const auto& serverVersion : testVersions()) {
1678             ret.push_back(BinderRpc::ParamType{
1679                     .type = SocketType::TIPC,
1680                     .security = RpcSecurity::RAW,
1681                     .clientVersion = clientVersion,
1682                     .serverVersion = serverVersion,
1683                     .singleThreaded = true,
1684                     .noKernel = true,
1685             });
1686         }
1687     }
1688 
1689     return ret;
1690 }
1691 
1692 INSTANTIATE_TEST_SUITE_P(Trusty, BinderRpc, ::testing::ValuesIn(getTrustyBinderRpcParams()),
1693                          BinderRpc::PrintParamInfo);
1694 #else // BINDER_RPC_TO_TRUSTY_TEST
testSupportVsockLoopback()1695 bool testSupportVsockLoopback() {
1696     // We don't need to enable TLS to know if vsock is supported.
1697     unique_fd serverFd(
1698             TEMP_FAILURE_RETRY(socket(AF_VSOCK, SOCK_STREAM | SOCK_CLOEXEC | SOCK_NONBLOCK, 0)));
1699 
1700     if (errno == EAFNOSUPPORT) {
1701         return false;
1702     }
1703 
1704     LOG_ALWAYS_FATAL_IF(!serverFd.ok(), "Could not create socket: %s", strerror(errno));
1705 
1706     sockaddr_vm serverAddr{
1707             .svm_family = AF_VSOCK,
1708             .svm_port = VMADDR_PORT_ANY,
1709             .svm_cid = VMADDR_CID_ANY,
1710     };
1711     int ret = TEMP_FAILURE_RETRY(
1712             bind(serverFd.get(), reinterpret_cast<sockaddr*>(&serverAddr), sizeof(serverAddr)));
1713     LOG_ALWAYS_FATAL_IF(0 != ret, "Could not bind socket to port VMADDR_PORT_ANY: %s",
1714                         strerror(errno));
1715 
1716     socklen_t len = sizeof(serverAddr);
1717     ret = getsockname(serverFd.get(), reinterpret_cast<sockaddr*>(&serverAddr), &len);
1718     LOG_ALWAYS_FATAL_IF(0 != ret, "Failed to getsockname: %s", strerror(errno));
1719     LOG_ALWAYS_FATAL_IF(len < static_cast<socklen_t>(sizeof(serverAddr)),
1720                         "getsockname didn't read the full addr struct");
1721 
1722     ret = TEMP_FAILURE_RETRY(listen(serverFd.get(), 1 /*backlog*/));
1723     LOG_ALWAYS_FATAL_IF(0 != ret, "Could not listen socket on port %u: %s", serverAddr.svm_port,
1724                         strerror(errno));
1725 
1726     // Try to connect to the server using the VMADDR_CID_LOCAL cid
1727     // to see if the kernel supports it. It's safe to use a blocking
1728     // connect because vsock sockets have a 2 second connection timeout,
1729     // and they return ETIMEDOUT after that.
1730     unique_fd connectFd(
1731             TEMP_FAILURE_RETRY(socket(AF_VSOCK, SOCK_STREAM | SOCK_CLOEXEC | SOCK_NONBLOCK, 0)));
1732     LOG_ALWAYS_FATAL_IF(!connectFd.ok(), "Could not create socket for port %u: %s",
1733                         serverAddr.svm_port, strerror(errno));
1734 
1735     bool success = false;
1736     sockaddr_vm connectAddr{
1737             .svm_family = AF_VSOCK,
1738             .svm_port = serverAddr.svm_port,
1739             .svm_cid = VMADDR_CID_LOCAL,
1740     };
1741     ret = TEMP_FAILURE_RETRY(connect(connectFd.get(), reinterpret_cast<sockaddr*>(&connectAddr),
1742                                      sizeof(connectAddr)));
1743     if (ret != 0 && (errno == EAGAIN || errno == EINPROGRESS)) {
1744         unique_fd acceptFd;
1745         while (true) {
1746             pollfd pfd[]{
1747                     {.fd = serverFd.get(), .events = POLLIN, .revents = 0},
1748                     {.fd = connectFd.get(), .events = POLLOUT, .revents = 0},
1749             };
1750             ret = TEMP_FAILURE_RETRY(poll(pfd, countof(pfd), -1));
1751             LOG_ALWAYS_FATAL_IF(ret < 0, "Error polling: %s", strerror(errno));
1752 
1753             if (pfd[0].revents & POLLIN) {
1754                 sockaddr_vm acceptAddr;
1755                 socklen_t acceptAddrLen = sizeof(acceptAddr);
1756                 ret = TEMP_FAILURE_RETRY(accept4(serverFd.get(),
1757                                                  reinterpret_cast<sockaddr*>(&acceptAddr),
1758                                                  &acceptAddrLen, SOCK_CLOEXEC));
1759                 LOG_ALWAYS_FATAL_IF(ret < 0, "Could not accept4 socket: %s", strerror(errno));
1760                 LOG_ALWAYS_FATAL_IF(acceptAddrLen != static_cast<socklen_t>(sizeof(acceptAddr)),
1761                                     "Truncated address");
1762 
1763                 // Store the fd in acceptFd so we keep the connection alive
1764                 // while polling connectFd
1765                 acceptFd.reset(ret);
1766             }
1767 
1768             if (pfd[1].revents & POLLOUT) {
1769                 // Connect either succeeded or timed out
1770                 int connectErrno;
1771                 socklen_t connectErrnoLen = sizeof(connectErrno);
1772                 int ret = getsockopt(connectFd.get(), SOL_SOCKET, SO_ERROR, &connectErrno,
1773                                      &connectErrnoLen);
1774                 LOG_ALWAYS_FATAL_IF(ret == -1,
1775                                     "Could not getsockopt() after connect() "
1776                                     "on non-blocking socket: %s.",
1777                                     strerror(errno));
1778 
1779                 // We're done, this is all we wanted
1780                 success = connectErrno == 0;
1781                 break;
1782             }
1783         }
1784     } else {
1785         success = ret == 0;
1786     }
1787 
1788     ALOGE("Detected vsock loopback supported: %s", success ? "yes" : "no");
1789 
1790     return success;
1791 }
1792 
testSocketTypes(bool hasPreconnected=true)1793 static std::vector<SocketType> testSocketTypes(bool hasPreconnected = true) {
1794     std::vector<SocketType> ret = {SocketType::UNIX, SocketType::UNIX_BOOTSTRAP, SocketType::INET,
1795                                    SocketType::UNIX_RAW};
1796 
1797     if (hasPreconnected) ret.push_back(SocketType::PRECONNECTED);
1798 
1799 #ifdef __BIONIC__
1800     // Devices may not have vsock support. AVF tests will verify whether they do, but
1801     // we can't require it due to old kernels for the time being.
1802     static bool hasVsockLoopback = testSupportVsockLoopback();
1803 #else
1804     // On host machines, we always assume we have vsock loopback. If we don't, the
1805     // subsequent failures will be more clear than showing one now.
1806     static bool hasVsockLoopback = true;
1807 #endif
1808 
1809     if (hasVsockLoopback) {
1810         ret.push_back(SocketType::VSOCK);
1811     }
1812 
1813     return ret;
1814 }
1815 
getBinderRpcParams()1816 static std::vector<BinderRpc::ParamType> getBinderRpcParams() {
1817     std::vector<BinderRpc::ParamType> ret;
1818 
1819     constexpr bool full = false;
1820 
1821     for (const auto& type : testSocketTypes()) {
1822         if (full || type == SocketType::UNIX) {
1823             for (const auto& security : RpcSecurityValues()) {
1824                 for (const auto& clientVersion : testVersions()) {
1825                     for (const auto& serverVersion : testVersions()) {
1826                         for (bool singleThreaded : {false, true}) {
1827                             for (bool noKernel : noKernelValues()) {
1828                                 ret.push_back(BinderRpc::ParamType{
1829                                         .type = type,
1830                                         .security = security,
1831                                         .clientVersion = clientVersion,
1832                                         .serverVersion = serverVersion,
1833                                         .singleThreaded = singleThreaded,
1834                                         .noKernel = noKernel,
1835                                 });
1836                             }
1837                         }
1838                     }
1839                 }
1840             }
1841         } else {
1842             ret.push_back(BinderRpc::ParamType{
1843                     .type = type,
1844                     .security = RpcSecurity::RAW,
1845                     .clientVersion = RPC_WIRE_PROTOCOL_VERSION,
1846                     .serverVersion = RPC_WIRE_PROTOCOL_VERSION,
1847                     .singleThreaded = false,
1848                     .noKernel = !kEnableKernelIpcTesting,
1849             });
1850         }
1851     }
1852 
1853     return ret;
1854 }
1855 
1856 INSTANTIATE_TEST_SUITE_P(PerSocket, BinderRpc, ::testing::ValuesIn(getBinderRpcParams()),
1857                          BinderRpc::PrintParamInfo);
1858 
1859 #ifdef BINDER_WITH_KERNEL_IPC
1860 INSTANTIATE_TEST_SUITE_P(PerSocket, BinderRpcAccessor, ::testing::ValuesIn(getBinderRpcParams()),
1861                          BinderRpc::PrintParamInfo);
1862 #endif // BINDER_WITH_KERNEL_IPC
1863 
1864 class BinderRpcServerRootObject
1865       : public ::testing::TestWithParam<std::tuple<bool, bool, RpcSecurity>> {};
1866 
TEST_P(BinderRpcServerRootObject,WeakRootObject)1867 TEST_P(BinderRpcServerRootObject, WeakRootObject) {
1868     using SetFn = std::function<void(RpcServer*, sp<IBinder>)>;
1869     auto setRootObject = [](bool isStrong) -> SetFn {
1870         return isStrong ? SetFn(&RpcServer::setRootObject) : SetFn(&RpcServer::setRootObjectWeak);
1871     };
1872 
1873     auto [isStrong1, isStrong2, rpcSecurity] = GetParam();
1874     auto server = RpcServer::make(newTlsFactory(rpcSecurity));
1875     auto binder1 = sp<BBinder>::make();
1876     IBinder* binderRaw1 = binder1.get();
1877     setRootObject(isStrong1)(server.get(), binder1);
1878     EXPECT_EQ(binderRaw1, server->getRootObject());
1879     binder1.clear();
1880     EXPECT_EQ((isStrong1 ? binderRaw1 : nullptr), server->getRootObject());
1881 
1882     auto binder2 = sp<BBinder>::make();
1883     IBinder* binderRaw2 = binder2.get();
1884     setRootObject(isStrong2)(server.get(), binder2);
1885     EXPECT_EQ(binderRaw2, server->getRootObject());
1886     binder2.clear();
1887     EXPECT_EQ((isStrong2 ? binderRaw2 : nullptr), server->getRootObject());
1888 }
1889 
1890 INSTANTIATE_TEST_SUITE_P(BinderRpc, BinderRpcServerRootObject,
1891                          ::testing::Combine(::testing::Bool(), ::testing::Bool(),
1892                                             ::testing::ValuesIn(RpcSecurityValues())));
1893 
1894 class OneOffSignal {
1895 public:
1896     // If notify() was previously called, or is called within |duration|, return true; else false.
1897     template <typename R, typename P>
wait(std::chrono::duration<R,P> duration)1898     bool wait(std::chrono::duration<R, P> duration) {
1899         std::unique_lock<std::mutex> lock(mMutex);
1900         return mCv.wait_for(lock, duration, [this] { return mValue; });
1901     }
notify()1902     void notify() {
1903         std::unique_lock<std::mutex> lock(mMutex);
1904         mValue = true;
1905         lock.unlock();
1906         mCv.notify_all();
1907     }
1908 
1909 private:
1910     std::mutex mMutex;
1911     std::condition_variable mCv;
1912     bool mValue = false;
1913 };
1914 
TEST(BinderRpc,Java)1915 TEST(BinderRpc, Java) {
1916     bool expectDebuggable = false;
1917 #if defined(__ANDROID__)
1918     expectDebuggable = android::base::GetBoolProperty("ro.debuggable", false) &&
1919             android::base::GetProperty("ro.build.type", "") != "user";
1920 #else
1921     GTEST_SKIP() << "This test is only run on Android. Though it can technically run on host on"
1922                     "createRpcDelegateServiceManager() with a device attached, such test belongs "
1923                     "to binderHostDeviceTest. Hence, just disable this test on host.";
1924 #endif // !__ANDROID__
1925     if constexpr (!kEnableKernelIpc) {
1926         GTEST_SKIP() << "Test disabled because Binder kernel driver was disabled "
1927                         "at build time.";
1928     }
1929 
1930     sp<IServiceManager> sm = defaultServiceManager();
1931     ASSERT_NE(nullptr, sm);
1932     // Any Java service with non-empty getInterfaceDescriptor() would do.
1933     // Let's pick activity.
1934     auto binder = sm->checkService(String16(kKnownAidlService));
1935     ASSERT_NE(nullptr, binder);
1936     auto descriptor = binder->getInterfaceDescriptor();
1937     ASSERT_GE(descriptor.size(), 0u);
1938     ASSERT_EQ(OK, binder->pingBinder());
1939 
1940     auto rpcServer = RpcServer::make();
1941     unsigned int port;
1942     ASSERT_EQ(OK, rpcServer->setupInetServer(kLocalInetAddress, 0, &port));
1943     auto socket = rpcServer->releaseServer();
1944 
1945     auto keepAlive = sp<BBinder>::make();
1946     auto setRpcClientDebugStatus = binder->setRpcClientDebug(std::move(socket), keepAlive);
1947 
1948     if (!expectDebuggable) {
1949         ASSERT_EQ(INVALID_OPERATION, setRpcClientDebugStatus)
1950                 << "setRpcClientDebug should return INVALID_OPERATION on non-debuggable or user "
1951                    "builds, but get "
1952                 << statusToString(setRpcClientDebugStatus);
1953         GTEST_SKIP();
1954     }
1955 
1956     ASSERT_EQ(OK, setRpcClientDebugStatus);
1957 
1958     auto rpcSession = RpcSession::make();
1959     ASSERT_EQ(OK, rpcSession->setupInetClient("127.0.0.1", port));
1960     auto rpcBinder = rpcSession->getRootObject();
1961     ASSERT_NE(nullptr, rpcBinder);
1962 
1963     ASSERT_EQ(OK, rpcBinder->pingBinder());
1964 
1965     ASSERT_EQ(descriptor, rpcBinder->getInterfaceDescriptor())
1966             << "getInterfaceDescriptor should not crash system_server";
1967     ASSERT_EQ(OK, rpcBinder->pingBinder());
1968 }
1969 
1970 class BinderRpcServerOnly : public ::testing::TestWithParam<std::tuple<RpcSecurity, uint32_t>> {
1971 public:
PrintTestParam(const::testing::TestParamInfo<ParamType> & info)1972     static std::string PrintTestParam(const ::testing::TestParamInfo<ParamType>& info) {
1973         return std::string(newTlsFactory(std::get<0>(info.param))->toCString()) + "_serverV" +
1974                 std::to_string(std::get<1>(info.param));
1975     }
1976 };
1977 
TEST_P(BinderRpcServerOnly,SetExternalServerTest)1978 TEST_P(BinderRpcServerOnly, SetExternalServerTest) {
1979     unique_fd sink(TEMP_FAILURE_RETRY(open("/dev/null", O_RDWR)));
1980     int sinkFd = sink.get();
1981     auto server = RpcServer::make(newTlsFactory(std::get<0>(GetParam())));
1982     ASSERT_TRUE(server->setProtocolVersion(std::get<1>(GetParam())));
1983     ASSERT_FALSE(server->hasServer());
1984     ASSERT_EQ(OK, server->setupExternalServer(std::move(sink)));
1985     ASSERT_TRUE(server->hasServer());
1986     unique_fd retrieved = server->releaseServer();
1987     ASSERT_FALSE(server->hasServer());
1988     ASSERT_EQ(sinkFd, retrieved.get());
1989 }
1990 
TEST_P(BinderRpcServerOnly,Shutdown)1991 TEST_P(BinderRpcServerOnly, Shutdown) {
1992     if constexpr (!kEnableRpcThreads) {
1993         GTEST_SKIP() << "Test skipped because threads were disabled at build time";
1994     }
1995 
1996     auto addr = allocateSocketAddress();
1997     auto server = RpcServer::make(newTlsFactory(std::get<0>(GetParam())));
1998     ASSERT_TRUE(server->setProtocolVersion(std::get<1>(GetParam())));
1999     ASSERT_EQ(OK, server->setupUnixDomainServer(addr.c_str()));
2000     auto joinEnds = std::make_shared<OneOffSignal>();
2001 
2002     // If things are broken and the thread never stops, don't block other tests. Because the thread
2003     // may run after the test finishes, it must not access the stack memory of the test. Hence,
2004     // shared pointers are passed.
2005     std::thread([server, joinEnds] {
2006         server->join();
2007         joinEnds->notify();
2008     }).detach();
2009 
2010     bool shutdown = false;
2011     for (int i = 0; i < 10 && !shutdown; i++) {
2012         usleep(30 * 1000); // 30ms; total 300ms
2013         if (server->shutdown()) shutdown = true;
2014     }
2015     ASSERT_TRUE(shutdown) << "server->shutdown() never returns true";
2016 
2017     ASSERT_TRUE(joinEnds->wait(2s))
2018             << "After server->shutdown() returns true, join() did not stop after 2s";
2019 }
2020 
2021 INSTANTIATE_TEST_SUITE_P(BinderRpc, BinderRpcServerOnly,
2022                          ::testing::Combine(::testing::ValuesIn(RpcSecurityValues()),
2023                                             ::testing::ValuesIn(testVersions())),
2024                          BinderRpcServerOnly::PrintTestParam);
2025 
2026 class RpcTransportTestUtils {
2027 public:
2028     // Only parameterized only server version because `RpcSession` is bypassed
2029     // in the client half of the tests.
2030     using Param =
2031             std::tuple<SocketType, RpcSecurity, std::optional<RpcCertificateFormat>, uint32_t>;
2032     using ConnectToServer = std::function<unique_fd()>;
2033 
2034     // A server that handles client socket connections.
2035     class Server {
2036     public:
2037         using AcceptConnection = std::function<unique_fd(Server*)>;
2038 
Server()2039         explicit Server() {}
2040         Server(Server&&) = default;
~Server()2041         ~Server() { shutdownAndWait(); }
setUp(const Param & param,std::unique_ptr<RpcAuth> auth=std::make_unique<RpcAuthSelfSigned> ())2042         [[nodiscard]] AssertionResult setUp(
2043                 const Param& param,
2044                 std::unique_ptr<RpcAuth> auth = std::make_unique<RpcAuthSelfSigned>()) {
2045             auto [socketType, rpcSecurity, certificateFormat, serverVersion] = param;
2046             auto rpcServer = RpcServer::make(newTlsFactory(rpcSecurity));
2047             if (!rpcServer->setProtocolVersion(serverVersion)) {
2048                 return AssertionFailure() << "Invalid protocol version: " << serverVersion;
2049             }
2050             switch (socketType) {
2051                 case SocketType::PRECONNECTED: {
2052                     return AssertionFailure() << "Not supported by this test";
2053                 } break;
2054                 case SocketType::UNIX: {
2055                     auto addr = allocateSocketAddress();
2056                     auto status = rpcServer->setupUnixDomainServer(addr.c_str());
2057                     if (status != OK) {
2058                         return AssertionFailure()
2059                                 << "setupUnixDomainServer: " << statusToString(status);
2060                     }
2061                     mConnectToServer = [addr] {
2062                         return connectTo(UnixSocketAddress(addr.c_str()));
2063                     };
2064                 } break;
2065                 case SocketType::UNIX_BOOTSTRAP: {
2066                     unique_fd bootstrapFdClient, bootstrapFdServer;
2067                     if (!binder::Socketpair(SOCK_STREAM, &bootstrapFdClient, &bootstrapFdServer)) {
2068                         return AssertionFailure() << "Socketpair() failed";
2069                     }
2070                     auto status = rpcServer->setupUnixDomainSocketBootstrapServer(
2071                             std::move(bootstrapFdServer));
2072                     if (status != OK) {
2073                         return AssertionFailure() << "setupUnixDomainSocketBootstrapServer: "
2074                                                   << statusToString(status);
2075                     }
2076                     mBootstrapSocket = RpcTransportFd(std::move(bootstrapFdClient));
2077                     mAcceptConnection = &Server::recvmsgServerConnection;
2078                     mConnectToServer = [this] { return connectToUnixBootstrap(mBootstrapSocket); };
2079                 } break;
2080                 case SocketType::UNIX_RAW: {
2081                     auto addr = allocateSocketAddress();
2082                     auto status = rpcServer->setupRawSocketServer(initUnixSocket(addr));
2083                     if (status != OK) {
2084                         return AssertionFailure()
2085                                 << "setupRawSocketServer: " << statusToString(status);
2086                     }
2087                     mConnectToServer = [addr] {
2088                         return connectTo(UnixSocketAddress(addr.c_str()));
2089                     };
2090                 } break;
2091                 case SocketType::VSOCK: {
2092                     unsigned port;
2093                     auto status =
2094                             rpcServer->setupVsockServer(VMADDR_CID_LOCAL, VMADDR_PORT_ANY, &port);
2095                     if (status != OK) {
2096                         return AssertionFailure() << "setupVsockServer: " << statusToString(status);
2097                     }
2098                     mConnectToServer = [port] {
2099                         return connectTo(VsockSocketAddress(VMADDR_CID_LOCAL, port));
2100                     };
2101                 } break;
2102                 case SocketType::INET: {
2103                     unsigned int port;
2104                     auto status = rpcServer->setupInetServer(kLocalInetAddress, 0, &port);
2105                     if (status != OK) {
2106                         return AssertionFailure() << "setupInetServer: " << statusToString(status);
2107                     }
2108                     mConnectToServer = [port] {
2109                         const char* addr = kLocalInetAddress;
2110                         auto aiStart = InetSocketAddress::getAddrInfo(addr, port);
2111                         if (aiStart == nullptr) return unique_fd{};
2112                         for (auto ai = aiStart.get(); ai != nullptr; ai = ai->ai_next) {
2113                             auto fd = connectTo(
2114                                     InetSocketAddress(ai->ai_addr, ai->ai_addrlen, addr, port));
2115                             if (fd.ok()) return fd;
2116                         }
2117                         ALOGE("None of the socket address resolved for %s:%u can be connected",
2118                               addr, port);
2119                         return unique_fd{};
2120                     };
2121                 } break;
2122                 case SocketType::TIPC: {
2123                     LOG_ALWAYS_FATAL("RpcTransportTest should not be enabled for TIPC");
2124                 } break;
2125             }
2126             mFd = rpcServer->releaseServer();
2127             if (!mFd.fd.ok()) return AssertionFailure() << "releaseServer returns invalid fd";
2128             mCtx = newTlsFactory(rpcSecurity, mCertVerifier, std::move(auth))->newServerCtx();
2129             if (mCtx == nullptr) return AssertionFailure() << "newServerCtx";
2130             mSetup = true;
2131             return AssertionSuccess();
2132         }
getCtx() const2133         RpcTransportCtx* getCtx() const { return mCtx.get(); }
getCertVerifier() const2134         std::shared_ptr<RpcCertificateVerifierSimple> getCertVerifier() const {
2135             return mCertVerifier;
2136         }
getConnectToServerFn()2137         ConnectToServer getConnectToServerFn() { return mConnectToServer; }
start()2138         void start() {
2139             LOG_ALWAYS_FATAL_IF(!mSetup, "Call Server::setup first!");
2140             mThread = std::make_unique<std::thread>(&Server::run, this);
2141         }
2142 
acceptServerConnection()2143         unique_fd acceptServerConnection() {
2144             return unique_fd(TEMP_FAILURE_RETRY(
2145                     accept4(mFd.fd.get(), nullptr, nullptr, SOCK_CLOEXEC | SOCK_NONBLOCK)));
2146         }
2147 
recvmsgServerConnection()2148         unique_fd recvmsgServerConnection() {
2149             std::vector<std::variant<unique_fd, borrowed_fd>> fds;
2150             int buf;
2151             iovec iov{&buf, sizeof(buf)};
2152 
2153             if (binder::os::receiveMessageFromSocket(mFd, &iov, 1, &fds) < 0) {
2154                 PLOGF("Failed receiveMessage");
2155             }
2156             LOG_ALWAYS_FATAL_IF(fds.size() != 1, "Expected one FD from receiveMessage(), got %zu",
2157                                 fds.size());
2158             return std::move(std::get<unique_fd>(fds[0]));
2159         }
2160 
run()2161         void run() {
2162             LOG_ALWAYS_FATAL_IF(!mSetup, "Call Server::setup first!");
2163 
2164             std::vector<std::thread> threads;
2165             while (OK == mFdTrigger->triggerablePoll(mFd, POLLIN)) {
2166                 unique_fd acceptedFd = mAcceptConnection(this);
2167                 threads.emplace_back(&Server::handleOne, this, std::move(acceptedFd));
2168             }
2169 
2170             for (auto& thread : threads) thread.join();
2171         }
handleOne(unique_fd acceptedFd)2172         void handleOne(unique_fd acceptedFd) {
2173             ASSERT_TRUE(acceptedFd.ok());
2174             RpcTransportFd transportFd(std::move(acceptedFd));
2175             auto serverTransport = mCtx->newTransport(std::move(transportFd), mFdTrigger.get());
2176             if (serverTransport == nullptr) return; // handshake failed
2177             ASSERT_TRUE(mPostConnect(serverTransport.get(), mFdTrigger.get()));
2178         }
shutdownAndWait()2179         void shutdownAndWait() {
2180             shutdown();
2181             join();
2182         }
shutdown()2183         void shutdown() { mFdTrigger->trigger(); }
2184 
setPostConnect(std::function<AssertionResult (RpcTransport *,FdTrigger * fdTrigger)> fn)2185         void setPostConnect(
2186                 std::function<AssertionResult(RpcTransport*, FdTrigger* fdTrigger)> fn) {
2187             mPostConnect = std::move(fn);
2188         }
2189 
2190     private:
2191         std::unique_ptr<std::thread> mThread;
2192         ConnectToServer mConnectToServer;
2193         AcceptConnection mAcceptConnection = &Server::acceptServerConnection;
2194         std::unique_ptr<FdTrigger> mFdTrigger = FdTrigger::make();
2195         RpcTransportFd mFd, mBootstrapSocket;
2196         std::unique_ptr<RpcTransportCtx> mCtx;
2197         std::shared_ptr<RpcCertificateVerifierSimple> mCertVerifier =
2198                 std::make_shared<RpcCertificateVerifierSimple>();
2199         bool mSetup = false;
2200         // The function invoked after connection and handshake. By default, it is
2201         // |defaultPostConnect| that sends |kMessage| to the client.
2202         std::function<AssertionResult(RpcTransport*, FdTrigger* fdTrigger)> mPostConnect =
2203                 Server::defaultPostConnect;
2204 
join()2205         void join() {
2206             if (mThread != nullptr) {
2207                 mThread->join();
2208                 mThread = nullptr;
2209             }
2210         }
2211 
defaultPostConnect(RpcTransport * serverTransport,FdTrigger * fdTrigger)2212         static AssertionResult defaultPostConnect(RpcTransport* serverTransport,
2213                                                   FdTrigger* fdTrigger) {
2214             std::string message(kMessage);
2215             iovec messageIov{message.data(), message.size()};
2216             auto status = serverTransport->interruptableWriteFully(fdTrigger, &messageIov, 1,
2217                                                                    std::nullopt, nullptr);
2218             if (status != OK) return AssertionFailure() << statusToString(status);
2219             return AssertionSuccess();
2220         }
2221     };
2222 
2223     class Client {
2224     public:
Client(ConnectToServer connectToServer)2225         explicit Client(ConnectToServer connectToServer) : mConnectToServer(connectToServer) {}
2226         Client(Client&&) = default;
setUp(const Param & param)2227         [[nodiscard]] AssertionResult setUp(const Param& param) {
2228             auto [socketType, rpcSecurity, certificateFormat, serverVersion] = param;
2229             (void)serverVersion;
2230             mFdTrigger = FdTrigger::make();
2231             mCtx = newTlsFactory(rpcSecurity, mCertVerifier)->newClientCtx();
2232             if (mCtx == nullptr) return AssertionFailure() << "newClientCtx";
2233             return AssertionSuccess();
2234         }
getCtx() const2235         RpcTransportCtx* getCtx() const { return mCtx.get(); }
getCertVerifier() const2236         std::shared_ptr<RpcCertificateVerifierSimple> getCertVerifier() const {
2237             return mCertVerifier;
2238         }
2239         // connect() and do handshake
setUpTransport()2240         bool setUpTransport() {
2241             mFd = mConnectToServer();
2242             if (!mFd.fd.ok()) return AssertionFailure() << "Cannot connect to server";
2243             mClientTransport = mCtx->newTransport(std::move(mFd), mFdTrigger.get());
2244             return mClientTransport != nullptr;
2245         }
readMessage(const std::string & expectedMessage=kMessage)2246         AssertionResult readMessage(const std::string& expectedMessage = kMessage) {
2247             LOG_ALWAYS_FATAL_IF(mClientTransport == nullptr, "setUpTransport not called or failed");
2248             std::string readMessage(expectedMessage.size(), '\0');
2249             iovec readMessageIov{readMessage.data(), readMessage.size()};
2250             status_t readStatus =
2251                     mClientTransport->interruptableReadFully(mFdTrigger.get(), &readMessageIov, 1,
2252                                                              std::nullopt, nullptr);
2253             if (readStatus != OK) {
2254                 return AssertionFailure() << statusToString(readStatus);
2255             }
2256             if (readMessage != expectedMessage) {
2257                 return AssertionFailure()
2258                         << "Expected " << expectedMessage << ", actual " << readMessage;
2259             }
2260             return AssertionSuccess();
2261         }
run(bool handshakeOk=true,bool readOk=true)2262         void run(bool handshakeOk = true, bool readOk = true) {
2263             if (!setUpTransport()) {
2264                 ASSERT_FALSE(handshakeOk) << "newTransport returns nullptr, but it shouldn't";
2265                 return;
2266             }
2267             ASSERT_TRUE(handshakeOk) << "newTransport does not return nullptr, but it should";
2268             ASSERT_EQ(readOk, readMessage());
2269         }
2270 
isTransportWaiting()2271         bool isTransportWaiting() { return mClientTransport->isWaiting(); }
2272 
2273     private:
2274         ConnectToServer mConnectToServer;
2275         RpcTransportFd mFd;
2276         std::unique_ptr<FdTrigger> mFdTrigger = FdTrigger::make();
2277         std::unique_ptr<RpcTransportCtx> mCtx;
2278         std::shared_ptr<RpcCertificateVerifierSimple> mCertVerifier =
2279                 std::make_shared<RpcCertificateVerifierSimple>();
2280         std::unique_ptr<RpcTransport> mClientTransport;
2281     };
2282 
2283     // Make A trust B.
2284     template <typename A, typename B>
trust(RpcSecurity rpcSecurity,std::optional<RpcCertificateFormat> certificateFormat,const A & a,const B & b)2285     static status_t trust(RpcSecurity rpcSecurity,
2286                           std::optional<RpcCertificateFormat> certificateFormat, const A& a,
2287                           const B& b) {
2288         if (rpcSecurity != RpcSecurity::TLS) return OK;
2289         LOG_ALWAYS_FATAL_IF(!certificateFormat.has_value());
2290         auto bCert = b->getCtx()->getCertificate(*certificateFormat);
2291         return a->getCertVerifier()->addTrustedPeerCertificate(*certificateFormat, bCert);
2292     }
2293 
2294     static constexpr const char* kMessage = "hello";
2295 };
2296 
2297 class RpcTransportTest : public testing::TestWithParam<RpcTransportTestUtils::Param> {
2298 public:
2299     using Server = RpcTransportTestUtils::Server;
2300     using Client = RpcTransportTestUtils::Client;
PrintParamInfo(const testing::TestParamInfo<ParamType> & info)2301     static inline std::string PrintParamInfo(const testing::TestParamInfo<ParamType>& info) {
2302         auto [socketType, rpcSecurity, certificateFormat, serverVersion] = info.param;
2303         auto ret = PrintToString(socketType) + "_" + newTlsFactory(rpcSecurity)->toCString();
2304         if (certificateFormat.has_value()) ret += "_" + PrintToString(*certificateFormat);
2305         ret += "_serverV" + std::to_string(serverVersion);
2306         return ret;
2307     }
getRpcTranportTestParams()2308     static std::vector<ParamType> getRpcTranportTestParams() {
2309         std::vector<ParamType> ret;
2310         for (auto serverVersion : testVersions()) {
2311             for (auto socketType : testSocketTypes(false /* hasPreconnected */)) {
2312                 for (auto rpcSecurity : RpcSecurityValues()) {
2313                     switch (rpcSecurity) {
2314                         case RpcSecurity::RAW: {
2315                             ret.emplace_back(socketType, rpcSecurity, std::nullopt, serverVersion);
2316                         } break;
2317                         case RpcSecurity::TLS: {
2318                             ret.emplace_back(socketType, rpcSecurity, RpcCertificateFormat::PEM,
2319                                              serverVersion);
2320                             ret.emplace_back(socketType, rpcSecurity, RpcCertificateFormat::DER,
2321                                              serverVersion);
2322                         } break;
2323                     }
2324                 }
2325             }
2326         }
2327         return ret;
2328     }
2329     template <typename A, typename B>
trust(const A & a,const B & b)2330     status_t trust(const A& a, const B& b) {
2331         auto [socketType, rpcSecurity, certificateFormat, serverVersion] = GetParam();
2332         (void)serverVersion;
2333         return RpcTransportTestUtils::trust(rpcSecurity, certificateFormat, a, b);
2334     }
SetUp()2335     void SetUp() override {
2336         if constexpr (!kEnableRpcThreads) {
2337             GTEST_SKIP() << "Test skipped because threads were disabled at build time";
2338         }
2339     }
2340 };
2341 
TEST_P(RpcTransportTest,GoodCertificate)2342 TEST_P(RpcTransportTest, GoodCertificate) {
2343     auto server = std::make_unique<Server>();
2344     ASSERT_TRUE(server->setUp(GetParam()));
2345 
2346     Client client(server->getConnectToServerFn());
2347     ASSERT_TRUE(client.setUp(GetParam()));
2348 
2349     ASSERT_EQ(OK, trust(&client, server));
2350     ASSERT_EQ(OK, trust(server, &client));
2351 
2352     server->start();
2353     client.run();
2354 }
2355 
TEST_P(RpcTransportTest,MultipleClients)2356 TEST_P(RpcTransportTest, MultipleClients) {
2357     auto server = std::make_unique<Server>();
2358     ASSERT_TRUE(server->setUp(GetParam()));
2359 
2360     std::vector<Client> clients;
2361     for (int i = 0; i < 2; i++) {
2362         auto& client = clients.emplace_back(server->getConnectToServerFn());
2363         ASSERT_TRUE(client.setUp(GetParam()));
2364         ASSERT_EQ(OK, trust(&client, server));
2365         ASSERT_EQ(OK, trust(server, &client));
2366     }
2367 
2368     server->start();
2369     for (auto& client : clients) client.run();
2370 }
2371 
TEST_P(RpcTransportTest,UntrustedServer)2372 TEST_P(RpcTransportTest, UntrustedServer) {
2373     auto [socketType, rpcSecurity, certificateFormat, serverVersion] = GetParam();
2374     (void)serverVersion;
2375 
2376     auto untrustedServer = std::make_unique<Server>();
2377     ASSERT_TRUE(untrustedServer->setUp(GetParam()));
2378 
2379     Client client(untrustedServer->getConnectToServerFn());
2380     ASSERT_TRUE(client.setUp(GetParam()));
2381 
2382     ASSERT_EQ(OK, trust(untrustedServer, &client));
2383 
2384     untrustedServer->start();
2385 
2386     // For TLS, this should reject the certificate. For RAW sockets, it should pass because
2387     // the client can't verify the server's identity.
2388     bool handshakeOk = rpcSecurity != RpcSecurity::TLS;
2389     client.run(handshakeOk);
2390 }
TEST_P(RpcTransportTest,MaliciousServer)2391 TEST_P(RpcTransportTest, MaliciousServer) {
2392     auto [socketType, rpcSecurity, certificateFormat, serverVersion] = GetParam();
2393     (void)serverVersion;
2394 
2395     auto validServer = std::make_unique<Server>();
2396     ASSERT_TRUE(validServer->setUp(GetParam()));
2397 
2398     auto maliciousServer = std::make_unique<Server>();
2399     ASSERT_TRUE(maliciousServer->setUp(GetParam()));
2400 
2401     Client client(maliciousServer->getConnectToServerFn());
2402     ASSERT_TRUE(client.setUp(GetParam()));
2403 
2404     ASSERT_EQ(OK, trust(&client, validServer));
2405     ASSERT_EQ(OK, trust(validServer, &client));
2406     ASSERT_EQ(OK, trust(maliciousServer, &client));
2407 
2408     maliciousServer->start();
2409 
2410     // For TLS, this should reject the certificate. For RAW sockets, it should pass because
2411     // the client can't verify the server's identity.
2412     bool handshakeOk = rpcSecurity != RpcSecurity::TLS;
2413     client.run(handshakeOk);
2414 }
2415 
TEST_P(RpcTransportTest,UntrustedClient)2416 TEST_P(RpcTransportTest, UntrustedClient) {
2417     auto [socketType, rpcSecurity, certificateFormat, serverVersion] = GetParam();
2418     (void)serverVersion;
2419 
2420     auto server = std::make_unique<Server>();
2421     ASSERT_TRUE(server->setUp(GetParam()));
2422 
2423     Client client(server->getConnectToServerFn());
2424     ASSERT_TRUE(client.setUp(GetParam()));
2425 
2426     ASSERT_EQ(OK, trust(&client, server));
2427 
2428     server->start();
2429 
2430     // For TLS, Client should be able to verify server's identity, so client should see
2431     // do_handshake() successfully executed. However, server shouldn't be able to verify client's
2432     // identity and should drop the connection, so client shouldn't be able to read anything.
2433     bool readOk = rpcSecurity != RpcSecurity::TLS;
2434     client.run(true, readOk);
2435 }
2436 
TEST_P(RpcTransportTest,MaliciousClient)2437 TEST_P(RpcTransportTest, MaliciousClient) {
2438     auto [socketType, rpcSecurity, certificateFormat, serverVersion] = GetParam();
2439     (void)serverVersion;
2440 
2441     auto server = std::make_unique<Server>();
2442     ASSERT_TRUE(server->setUp(GetParam()));
2443 
2444     Client validClient(server->getConnectToServerFn());
2445     ASSERT_TRUE(validClient.setUp(GetParam()));
2446     Client maliciousClient(server->getConnectToServerFn());
2447     ASSERT_TRUE(maliciousClient.setUp(GetParam()));
2448 
2449     ASSERT_EQ(OK, trust(&validClient, server));
2450     ASSERT_EQ(OK, trust(&maliciousClient, server));
2451 
2452     server->start();
2453 
2454     // See UntrustedClient.
2455     bool readOk = rpcSecurity != RpcSecurity::TLS;
2456     maliciousClient.run(true, readOk);
2457 }
2458 
TEST_P(RpcTransportTest,Trigger)2459 TEST_P(RpcTransportTest, Trigger) {
2460     std::string msg2 = ", world!";
2461     std::mutex writeMutex;
2462     std::condition_variable writeCv;
2463     bool shouldContinueWriting = false;
2464     auto serverPostConnect = [&](RpcTransport* serverTransport, FdTrigger* fdTrigger) {
2465         std::string message(RpcTransportTestUtils::kMessage);
2466         iovec messageIov{message.data(), message.size()};
2467         auto status = serverTransport->interruptableWriteFully(fdTrigger, &messageIov, 1,
2468                                                                std::nullopt, nullptr);
2469         if (status != OK) return AssertionFailure() << statusToString(status);
2470 
2471         {
2472             std::unique_lock<std::mutex> lock(writeMutex);
2473             if (!writeCv.wait_for(lock, 3s, [&] { return shouldContinueWriting; })) {
2474                 return AssertionFailure() << "write barrier not cleared in time!";
2475             }
2476         }
2477 
2478         iovec msg2Iov{msg2.data(), msg2.size()};
2479         status = serverTransport->interruptableWriteFully(fdTrigger, &msg2Iov, 1, std::nullopt,
2480                                                           nullptr);
2481         if (status != DEAD_OBJECT)
2482             return AssertionFailure() << "When FdTrigger is shut down, interruptableWriteFully "
2483                                          "should return DEAD_OBJECT, but it is "
2484                                       << statusToString(status);
2485         return AssertionSuccess();
2486     };
2487 
2488     auto server = std::make_unique<Server>();
2489     ASSERT_TRUE(server->setUp(GetParam()));
2490 
2491     // Set up client
2492     Client client(server->getConnectToServerFn());
2493     ASSERT_TRUE(client.setUp(GetParam()));
2494 
2495     // Exchange keys
2496     ASSERT_EQ(OK, trust(&client, server));
2497     ASSERT_EQ(OK, trust(server, &client));
2498 
2499     server->setPostConnect(serverPostConnect);
2500 
2501     server->start();
2502     // connect() to server and do handshake
2503     ASSERT_TRUE(client.setUpTransport());
2504     // read the first message. This ensures that server has finished handshake and start handling
2505     // client fd. Server thread should pause at writeCv.wait_for().
2506     ASSERT_TRUE(client.readMessage(RpcTransportTestUtils::kMessage));
2507     // Trigger server shutdown after server starts handling client FD. This ensures that the second
2508     // write is on an FdTrigger that has been shut down.
2509     server->shutdown();
2510     // Continues server thread to write the second message.
2511     {
2512         std::lock_guard<std::mutex> lock(writeMutex);
2513         shouldContinueWriting = true;
2514     }
2515     writeCv.notify_all();
2516     // After this line, server thread unblocks and attempts to write the second message, but
2517     // shutdown is triggered, so write should failed with DEAD_OBJECT. See |serverPostConnect|.
2518     // On the client side, second read fails with DEAD_OBJECT
2519     ASSERT_FALSE(client.readMessage(msg2));
2520 }
2521 
TEST_P(RpcTransportTest,CheckWaitingForRead)2522 TEST_P(RpcTransportTest, CheckWaitingForRead) {
2523     std::mutex readMutex;
2524     std::condition_variable readCv;
2525     bool shouldContinueReading = false;
2526     // Server will write data on transport once its started
2527     auto serverPostConnect = [&](RpcTransport* serverTransport, FdTrigger* fdTrigger) {
2528         std::string message(RpcTransportTestUtils::kMessage);
2529         iovec messageIov{message.data(), message.size()};
2530         auto status = serverTransport->interruptableWriteFully(fdTrigger, &messageIov, 1,
2531                                                                std::nullopt, nullptr);
2532         if (status != OK) return AssertionFailure() << statusToString(status);
2533 
2534         {
2535             std::unique_lock<std::mutex> lock(readMutex);
2536             shouldContinueReading = true;
2537             lock.unlock();
2538             readCv.notify_all();
2539         }
2540         return AssertionSuccess();
2541     };
2542 
2543     // Setup Server and client
2544     auto server = std::make_unique<Server>();
2545     ASSERT_TRUE(server->setUp(GetParam()));
2546 
2547     Client client(server->getConnectToServerFn());
2548     ASSERT_TRUE(client.setUp(GetParam()));
2549 
2550     ASSERT_EQ(OK, trust(&client, server));
2551     ASSERT_EQ(OK, trust(server, &client));
2552     server->setPostConnect(serverPostConnect);
2553 
2554     server->start();
2555     ASSERT_TRUE(client.setUpTransport());
2556     {
2557         // Wait till server writes data
2558         std::unique_lock<std::mutex> lock(readMutex);
2559         ASSERT_TRUE(readCv.wait_for(lock, 3s, [&] { return shouldContinueReading; }));
2560     }
2561 
2562     // Since there is no read polling here, we will get polling count 0
2563     ASSERT_FALSE(client.isTransportWaiting());
2564     ASSERT_TRUE(client.readMessage(RpcTransportTestUtils::kMessage));
2565     // Thread should increment polling count, read and decrement polling count
2566     // Again, polling count should be zero here
2567     ASSERT_FALSE(client.isTransportWaiting());
2568 
2569     server->shutdown();
2570 }
2571 
2572 INSTANTIATE_TEST_SUITE_P(BinderRpc, RpcTransportTest,
2573                          ::testing::ValuesIn(RpcTransportTest::getRpcTranportTestParams()),
2574                          RpcTransportTest::PrintParamInfo);
2575 
2576 class RpcTransportTlsKeyTest
2577       : public testing::TestWithParam<
2578                 std::tuple<SocketType, RpcCertificateFormat, RpcKeyFormat, uint32_t>> {
2579 public:
2580     template <typename A, typename B>
trust(const A & a,const B & b)2581     status_t trust(const A& a, const B& b) {
2582         auto [socketType, certificateFormat, keyFormat, serverVersion] = GetParam();
2583         (void)serverVersion;
2584         return RpcTransportTestUtils::trust(RpcSecurity::TLS, certificateFormat, a, b);
2585     }
PrintParamInfo(const testing::TestParamInfo<ParamType> & info)2586     static std::string PrintParamInfo(const testing::TestParamInfo<ParamType>& info) {
2587         auto [socketType, certificateFormat, keyFormat, serverVersion] = info.param;
2588         return PrintToString(socketType) + "_certificate_" + PrintToString(certificateFormat) +
2589                 "_key_" + PrintToString(keyFormat) + "_serverV" + std::to_string(serverVersion);
2590     };
2591 };
2592 
TEST_P(RpcTransportTlsKeyTest,PreSignedCertificate)2593 TEST_P(RpcTransportTlsKeyTest, PreSignedCertificate) {
2594     if constexpr (!kEnableRpcThreads) {
2595         GTEST_SKIP() << "Test skipped because threads were disabled at build time";
2596     }
2597 
2598     auto [socketType, certificateFormat, keyFormat, serverVersion] = GetParam();
2599 
2600     std::vector<uint8_t> pkeyData, certData;
2601     {
2602         auto pkey = makeKeyPairForSelfSignedCert();
2603         ASSERT_NE(nullptr, pkey);
2604         auto cert = makeSelfSignedCert(pkey.get(), kCertValidSeconds);
2605         ASSERT_NE(nullptr, cert);
2606         pkeyData = serializeUnencryptedPrivatekey(pkey.get(), keyFormat);
2607         certData = serializeCertificate(cert.get(), certificateFormat);
2608     }
2609 
2610     auto desPkey = deserializeUnencryptedPrivatekey(pkeyData, keyFormat);
2611     auto desCert = deserializeCertificate(certData, certificateFormat);
2612     auto auth = std::make_unique<RpcAuthPreSigned>(std::move(desPkey), std::move(desCert));
2613     auto utilsParam = std::make_tuple(socketType, RpcSecurity::TLS,
2614                                       std::make_optional(certificateFormat), serverVersion);
2615 
2616     auto server = std::make_unique<RpcTransportTestUtils::Server>();
2617     ASSERT_TRUE(server->setUp(utilsParam, std::move(auth)));
2618 
2619     RpcTransportTestUtils::Client client(server->getConnectToServerFn());
2620     ASSERT_TRUE(client.setUp(utilsParam));
2621 
2622     ASSERT_EQ(OK, trust(&client, server));
2623     ASSERT_EQ(OK, trust(server, &client));
2624 
2625     server->start();
2626     client.run();
2627 }
2628 
2629 INSTANTIATE_TEST_SUITE_P(
2630         BinderRpc, RpcTransportTlsKeyTest,
2631         testing::Combine(testing::ValuesIn(testSocketTypes(false /* hasPreconnected*/)),
2632                          testing::Values(RpcCertificateFormat::PEM, RpcCertificateFormat::DER),
2633                          testing::Values(RpcKeyFormat::PEM, RpcKeyFormat::DER),
2634                          testing::ValuesIn(testVersions())),
2635         RpcTransportTlsKeyTest::PrintParamInfo);
2636 #endif // BINDER_RPC_TO_TRUSTY_TEST
2637 
2638 } // namespace android
2639 
main(int argc,char ** argv)2640 int main(int argc, char** argv) {
2641     ::testing::InitGoogleTest(&argc, argv);
2642     __android_log_set_logger(__android_log_stderr_logger);
2643 
2644     return RUN_ALL_TESTS();
2645 }
2646