1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/consts_exts.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "linker_util.h"
63 #include "builtin_functions.h"
64
65 using namespace ir_builder;
66
67 static void
68 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
69 exec_list *instructions);
70 static void
71 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
72
73 static void
74 remove_per_vertex_blocks(exec_list *instructions,
75 _mesa_glsl_parse_state *state, ir_variable_mode mode);
76
77 /**
78 * Visitor class that finds the first instance of any write-only variable that
79 * is ever read, if any
80 */
81 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
82 {
83 public:
read_from_write_only_variable_visitor()84 read_from_write_only_variable_visitor() : found(NULL)
85 {
86 }
87
visit(ir_dereference_variable * ir)88 virtual ir_visitor_status visit(ir_dereference_variable *ir)
89 {
90 if (this->in_assignee)
91 return visit_continue;
92
93 ir_variable *var = ir->variable_referenced();
94 /* We can have memory_write_only set on both images and buffer variables,
95 * but in the former there is a distinction between reads from
96 * the variable itself (write_only) and from the memory they point to
97 * (memory_write_only), while in the case of buffer variables there is
98 * no such distinction, that is why this check here is limited to
99 * buffer variables alone.
100 */
101 if (!var || var->data.mode != ir_var_shader_storage)
102 return visit_continue;
103
104 if (var->data.memory_write_only) {
105 found = var;
106 return visit_stop;
107 }
108
109 return visit_continue;
110 }
111
get_variable()112 ir_variable *get_variable() {
113 return found;
114 }
115
visit_enter(ir_expression * ir)116 virtual ir_visitor_status visit_enter(ir_expression *ir)
117 {
118 /* .length() doesn't actually read anything */
119 if (ir->operation == ir_unop_ssbo_unsized_array_length)
120 return visit_continue_with_parent;
121
122 return visit_continue;
123 }
124
125 private:
126 ir_variable *found;
127 };
128
129 void
_mesa_ast_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)130 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
131 {
132 _mesa_glsl_initialize_variables(instructions, state);
133
134 state->symbols->separate_function_namespace = state->language_version == 110;
135
136 state->current_function = NULL;
137
138 state->toplevel_ir = instructions;
139
140 state->gs_input_prim_type_specified = false;
141 state->tcs_output_vertices_specified = false;
142 state->cs_input_local_size_specified = false;
143
144 /* Section 4.2 of the GLSL 1.20 specification states:
145 * "The built-in functions are scoped in a scope outside the global scope
146 * users declare global variables in. That is, a shader's global scope,
147 * available for user-defined functions and global variables, is nested
148 * inside the scope containing the built-in functions."
149 *
150 * Since built-in functions like ftransform() access built-in variables,
151 * it follows that those must be in the outer scope as well.
152 *
153 * We push scope here to create this nesting effect...but don't pop.
154 * This way, a shader's globals are still in the symbol table for use
155 * by the linker.
156 */
157 state->symbols->push_scope();
158
159 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
160 ast->hir(instructions, state);
161
162 verify_subroutine_associated_funcs(state);
163 detect_recursion_unlinked(state, instructions);
164 detect_conflicting_assignments(state, instructions);
165
166 state->toplevel_ir = NULL;
167
168 /* Move all of the variable declarations to the front of the IR list, and
169 * reverse the order. This has the (intended!) side effect that vertex
170 * shader inputs and fragment shader outputs will appear in the IR in the
171 * same order that they appeared in the shader code. This results in the
172 * locations being assigned in the declared order. Many (arguably buggy)
173 * applications depend on this behavior, and it matches what nearly all
174 * other drivers do.
175 */
176 foreach_in_list_safe(ir_instruction, node, instructions) {
177 ir_variable *const var = node->as_variable();
178
179 if (var == NULL)
180 continue;
181
182 var->remove();
183 instructions->push_head(var);
184 }
185
186 /* Figure out if gl_FragCoord is actually used in fragment shader */
187 ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
188 if (var != NULL)
189 state->fs_uses_gl_fragcoord = var->data.used;
190
191 /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
192 *
193 * If multiple shaders using members of a built-in block belonging to
194 * the same interface are linked together in the same program, they
195 * must all redeclare the built-in block in the same way, as described
196 * in section 4.3.7 "Interface Blocks" for interface block matching, or
197 * a link error will result.
198 *
199 * The phrase "using members of a built-in block" implies that if two
200 * shaders are linked together and one of them *does not use* any members
201 * of the built-in block, then that shader does not need to have a matching
202 * redeclaration of the built-in block.
203 *
204 * This appears to be a clarification to the behaviour established for
205 * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
206 * version.
207 *
208 * The definition of "interface" in section 4.3.7 that applies here is as
209 * follows:
210 *
211 * The boundary between adjacent programmable pipeline stages: This
212 * spans all the outputs in all compilation units of the first stage
213 * and all the inputs in all compilation units of the second stage.
214 *
215 * Therefore this rule applies to both inter- and intra-stage linking.
216 *
217 * The easiest way to implement this is to check whether the shader uses
218 * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
219 * remove all the relevant variable declaration from the IR, so that the
220 * linker won't see them and complain about mismatches.
221 */
222 remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
223 remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
224
225 /* Check that we don't have reads from write-only variables */
226 read_from_write_only_variable_visitor v;
227 v.run(instructions);
228 ir_variable *error_var = v.get_variable();
229 if (error_var) {
230 /* It would be nice to have proper location information, but for that
231 * we would need to check this as we process each kind of AST node
232 */
233 YYLTYPE loc;
234 memset(&loc, 0, sizeof(loc));
235 _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
236 error_var->name);
237 }
238 }
239
240
241 static ir_expression_operation
get_implicit_conversion_operation(const glsl_type * to,const glsl_type * from,struct _mesa_glsl_parse_state * state)242 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
243 struct _mesa_glsl_parse_state *state)
244 {
245 switch (to->base_type) {
246 case GLSL_TYPE_FLOAT16:
247 switch (from->base_type) {
248 case GLSL_TYPE_INT: return ir_unop_i2f16;
249 case GLSL_TYPE_UINT: return ir_unop_u2f16;
250 default: return (ir_expression_operation)0;
251 }
252
253 case GLSL_TYPE_FLOAT:
254 switch (from->base_type) {
255 case GLSL_TYPE_INT: return ir_unop_i2f;
256 case GLSL_TYPE_UINT: return ir_unop_u2f;
257 case GLSL_TYPE_FLOAT16: return ir_unop_f162f;
258 default: return (ir_expression_operation)0;
259 }
260
261 case GLSL_TYPE_UINT:
262 if (!state->has_implicit_int_to_uint_conversion())
263 return (ir_expression_operation)0;
264 switch (from->base_type) {
265 case GLSL_TYPE_INT: return ir_unop_i2u;
266 default: return (ir_expression_operation)0;
267 }
268
269 case GLSL_TYPE_DOUBLE:
270 if (!state->has_double())
271 return (ir_expression_operation)0;
272 switch (from->base_type) {
273 case GLSL_TYPE_INT: return ir_unop_i2d;
274 case GLSL_TYPE_UINT: return ir_unop_u2d;
275 case GLSL_TYPE_FLOAT16: return ir_unop_f162d;
276 case GLSL_TYPE_FLOAT: return ir_unop_f2d;
277 case GLSL_TYPE_INT64: return ir_unop_i642d;
278 case GLSL_TYPE_UINT64: return ir_unop_u642d;
279 default: return (ir_expression_operation)0;
280 }
281
282 case GLSL_TYPE_UINT64:
283 if (!state->has_int64())
284 return (ir_expression_operation)0;
285 switch (from->base_type) {
286 case GLSL_TYPE_INT: return ir_unop_i2u64;
287 case GLSL_TYPE_UINT: return ir_unop_u2u64;
288 case GLSL_TYPE_INT64: return ir_unop_i642u64;
289 default: return (ir_expression_operation)0;
290 }
291
292 case GLSL_TYPE_INT64:
293 if (!state->has_int64())
294 return (ir_expression_operation)0;
295 switch (from->base_type) {
296 case GLSL_TYPE_INT: return ir_unop_i2i64;
297 default: return (ir_expression_operation)0;
298 }
299
300 default: return (ir_expression_operation)0;
301 }
302 }
303
304
305 /**
306 * If a conversion is available, convert one operand to a different type
307 *
308 * The \c from \c ir_rvalue is converted "in place".
309 *
310 * \param to Type that the operand it to be converted to
311 * \param from Operand that is being converted
312 * \param state GLSL compiler state
313 *
314 * \return
315 * If a conversion is possible (or unnecessary), \c true is returned.
316 * Otherwise \c false is returned.
317 */
318 static bool
apply_implicit_conversion(const glsl_type * to,ir_rvalue * & from,struct _mesa_glsl_parse_state * state)319 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
320 struct _mesa_glsl_parse_state *state)
321 {
322 void *ctx = state;
323 if (to->base_type == from->type->base_type)
324 return true;
325
326 /* Prior to GLSL 1.20, there are no implicit conversions */
327 if (!state->has_implicit_conversions())
328 return false;
329
330 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
331 *
332 * "There are no implicit array or structure conversions. For
333 * example, an array of int cannot be implicitly converted to an
334 * array of float.
335 */
336 if (!glsl_type_is_numeric(to) || !glsl_type_is_numeric(from->type))
337 return false;
338
339 /* We don't actually want the specific type `to`, we want a type
340 * with the same base type as `to`, but the same vector width as
341 * `from`.
342 */
343 to = glsl_simple_type(to->base_type, from->type->vector_elements,
344 from->type->matrix_columns);
345
346 ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
347 if (op) {
348 from = new(ctx) ir_expression(op, to, from, NULL);
349 return true;
350 } else {
351 return false;
352 }
353 }
354
355
356 static const struct glsl_type *
arithmetic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,bool multiply,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)357 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
358 bool multiply,
359 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
360 {
361 const glsl_type *type_a = value_a->type;
362 const glsl_type *type_b = value_b->type;
363
364 /* From GLSL 1.50 spec, page 56:
365 *
366 * "The arithmetic binary operators add (+), subtract (-),
367 * multiply (*), and divide (/) operate on integer and
368 * floating-point scalars, vectors, and matrices."
369 */
370 if (!glsl_type_is_numeric(type_a) || !glsl_type_is_numeric(type_b)) {
371 _mesa_glsl_error(loc, state,
372 "operands to arithmetic operators must be numeric");
373 return &glsl_type_builtin_error;
374 }
375
376
377 /* "If one operand is floating-point based and the other is
378 * not, then the conversions from Section 4.1.10 "Implicit
379 * Conversions" are applied to the non-floating-point-based operand."
380 */
381 if (!apply_implicit_conversion(type_a, value_b, state)
382 && !apply_implicit_conversion(type_b, value_a, state)) {
383 _mesa_glsl_error(loc, state,
384 "could not implicitly convert operands to "
385 "arithmetic operator");
386 return &glsl_type_builtin_error;
387 }
388 type_a = value_a->type;
389 type_b = value_b->type;
390
391 /* "If the operands are integer types, they must both be signed or
392 * both be unsigned."
393 *
394 * From this rule and the preceeding conversion it can be inferred that
395 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
396 * The is_numeric check above already filtered out the case where either
397 * type is not one of these, so now the base types need only be tested for
398 * equality.
399 */
400 if (type_a->base_type != type_b->base_type) {
401 _mesa_glsl_error(loc, state,
402 "base type mismatch for arithmetic operator");
403 return &glsl_type_builtin_error;
404 }
405
406 /* "All arithmetic binary operators result in the same fundamental type
407 * (signed integer, unsigned integer, or floating-point) as the
408 * operands they operate on, after operand type conversion. After
409 * conversion, the following cases are valid
410 *
411 * * The two operands are scalars. In this case the operation is
412 * applied, resulting in a scalar."
413 */
414 if (glsl_type_is_scalar(type_a) && glsl_type_is_scalar(type_b))
415 return type_a;
416
417 /* "* One operand is a scalar, and the other is a vector or matrix.
418 * In this case, the scalar operation is applied independently to each
419 * component of the vector or matrix, resulting in the same size
420 * vector or matrix."
421 */
422 if (glsl_type_is_scalar(type_a)) {
423 if (!glsl_type_is_scalar(type_b))
424 return type_b;
425 } else if (glsl_type_is_scalar(type_b)) {
426 return type_a;
427 }
428
429 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
430 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
431 * handled.
432 */
433 assert(!glsl_type_is_scalar(type_a));
434 assert(!glsl_type_is_scalar(type_b));
435
436 /* "* The two operands are vectors of the same size. In this case, the
437 * operation is done component-wise resulting in the same size
438 * vector."
439 */
440 if (glsl_type_is_vector(type_a) && glsl_type_is_vector(type_b)) {
441 if (type_a == type_b) {
442 return type_a;
443 } else {
444 _mesa_glsl_error(loc, state,
445 "vector size mismatch for arithmetic operator");
446 return &glsl_type_builtin_error;
447 }
448 }
449
450 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
451 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
452 * <vector, vector> have been handled. At least one of the operands must
453 * be matrix. Further, since there are no integer matrix types, the base
454 * type of both operands must be float.
455 */
456 assert(glsl_type_is_matrix(type_a) || glsl_type_is_matrix(type_b));
457 assert(glsl_type_is_float(type_a) || glsl_type_is_double(type_a));
458 assert(glsl_type_is_float(type_b) || glsl_type_is_double(type_b));
459
460 /* "* The operator is add (+), subtract (-), or divide (/), and the
461 * operands are matrices with the same number of rows and the same
462 * number of columns. In this case, the operation is done component-
463 * wise resulting in the same size matrix."
464 * * The operator is multiply (*), where both operands are matrices or
465 * one operand is a vector and the other a matrix. A right vector
466 * operand is treated as a column vector and a left vector operand as a
467 * row vector. In all these cases, it is required that the number of
468 * columns of the left operand is equal to the number of rows of the
469 * right operand. Then, the multiply (*) operation does a linear
470 * algebraic multiply, yielding an object that has the same number of
471 * rows as the left operand and the same number of columns as the right
472 * operand. Section 5.10 "Vector and Matrix Operations" explains in
473 * more detail how vectors and matrices are operated on."
474 */
475 if (! multiply) {
476 if (type_a == type_b)
477 return type_a;
478 } else {
479 const glsl_type *type = glsl_get_mul_type(type_a, type_b);
480
481 if (type == &glsl_type_builtin_error) {
482 _mesa_glsl_error(loc, state,
483 "size mismatch for matrix multiplication");
484 }
485
486 return type;
487 }
488
489
490 /* "All other cases are illegal."
491 */
492 _mesa_glsl_error(loc, state, "type mismatch");
493 return &glsl_type_builtin_error;
494 }
495
496
497 static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)498 unary_arithmetic_result_type(const struct glsl_type *type,
499 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
500 {
501 /* From GLSL 1.50 spec, page 57:
502 *
503 * "The arithmetic unary operators negate (-), post- and pre-increment
504 * and decrement (-- and ++) operate on integer or floating-point
505 * values (including vectors and matrices). All unary operators work
506 * component-wise on their operands. These result with the same type
507 * they operated on."
508 */
509 if (!glsl_type_is_numeric(type)) {
510 _mesa_glsl_error(loc, state,
511 "operands to arithmetic operators must be numeric");
512 return &glsl_type_builtin_error;
513 }
514
515 return type;
516 }
517
518 /**
519 * \brief Return the result type of a bit-logic operation.
520 *
521 * If the given types to the bit-logic operator are invalid, return
522 * &glsl_type_builtin_error.
523 *
524 * \param value_a LHS of bit-logic op
525 * \param value_b RHS of bit-logic op
526 */
527 static const struct glsl_type *
bit_logic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)528 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
529 ast_operators op,
530 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
531 {
532 const glsl_type *type_a = value_a->type;
533 const glsl_type *type_b = value_b->type;
534
535 if (!state->check_bitwise_operations_allowed(loc)) {
536 return &glsl_type_builtin_error;
537 }
538
539 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
540 *
541 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
542 * (|). The operands must be of type signed or unsigned integers or
543 * integer vectors."
544 */
545 if (!glsl_type_is_integer_32_64(type_a)) {
546 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
547 ast_expression::operator_string(op));
548 return &glsl_type_builtin_error;
549 }
550 if (!glsl_type_is_integer_32_64(type_b)) {
551 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
552 ast_expression::operator_string(op));
553 return &glsl_type_builtin_error;
554 }
555
556 /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
557 * make sense for bitwise operations, as they don't operate on floats.
558 *
559 * GLSL 4.0 added implicit int -> uint conversions, which are relevant
560 * here. It wasn't clear whether or not we should apply them to bitwise
561 * operations. However, Khronos has decided that they should in future
562 * language revisions. Applications also rely on this behavior. We opt
563 * to apply them in general, but issue a portability warning.
564 *
565 * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
566 */
567 if (type_a->base_type != type_b->base_type) {
568 if (!apply_implicit_conversion(type_a, value_b, state)
569 && !apply_implicit_conversion(type_b, value_a, state)) {
570 _mesa_glsl_error(loc, state,
571 "could not implicitly convert operands to "
572 "`%s` operator",
573 ast_expression::operator_string(op));
574 return &glsl_type_builtin_error;
575 } else {
576 _mesa_glsl_warning(loc, state,
577 "some implementations may not support implicit "
578 "int -> uint conversions for `%s' operators; "
579 "consider casting explicitly for portability",
580 ast_expression::operator_string(op));
581 }
582 type_a = value_a->type;
583 type_b = value_b->type;
584 }
585
586 /* "The fundamental types of the operands (signed or unsigned) must
587 * match,"
588 */
589 if (type_a->base_type != type_b->base_type) {
590 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
591 "base type", ast_expression::operator_string(op));
592 return &glsl_type_builtin_error;
593 }
594
595 /* "The operands cannot be vectors of differing size." */
596 if (glsl_type_is_vector(type_a) &&
597 glsl_type_is_vector(type_b) &&
598 type_a->vector_elements != type_b->vector_elements) {
599 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
600 "different sizes", ast_expression::operator_string(op));
601 return &glsl_type_builtin_error;
602 }
603
604 /* "If one operand is a scalar and the other a vector, the scalar is
605 * applied component-wise to the vector, resulting in the same type as
606 * the vector. The fundamental types of the operands [...] will be the
607 * resulting fundamental type."
608 */
609 if (glsl_type_is_scalar(type_a))
610 return type_b;
611 else
612 return type_a;
613 }
614
615 static const struct glsl_type *
modulus_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)616 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
617 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
618 {
619 const glsl_type *type_a = value_a->type;
620 const glsl_type *type_b = value_b->type;
621
622 if (!state->EXT_gpu_shader4_enable &&
623 !state->check_version(130, 300, loc, "operator '%%' is reserved")) {
624 return &glsl_type_builtin_error;
625 }
626
627 /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
628 *
629 * "The operator modulus (%) operates on signed or unsigned integers or
630 * integer vectors."
631 */
632 if (!glsl_type_is_integer_32_64(type_a)) {
633 _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
634 return &glsl_type_builtin_error;
635 }
636 if (!glsl_type_is_integer_32_64(type_b)) {
637 _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
638 return &glsl_type_builtin_error;
639 }
640
641 /* "If the fundamental types in the operands do not match, then the
642 * conversions from section 4.1.10 "Implicit Conversions" are applied
643 * to create matching types."
644 *
645 * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
646 * int -> uint conversion rules. Prior to that, there were no implicit
647 * conversions. So it's harmless to apply them universally - no implicit
648 * conversions will exist. If the types don't match, we'll receive false,
649 * and raise an error, satisfying the GLSL 1.50 spec, page 56:
650 *
651 * "The operand types must both be signed or unsigned."
652 */
653 if (!apply_implicit_conversion(type_a, value_b, state) &&
654 !apply_implicit_conversion(type_b, value_a, state)) {
655 _mesa_glsl_error(loc, state,
656 "could not implicitly convert operands to "
657 "modulus (%%) operator");
658 return &glsl_type_builtin_error;
659 }
660 type_a = value_a->type;
661 type_b = value_b->type;
662
663 /* "The operands cannot be vectors of differing size. If one operand is
664 * a scalar and the other vector, then the scalar is applied component-
665 * wise to the vector, resulting in the same type as the vector. If both
666 * are vectors of the same size, the result is computed component-wise."
667 */
668 if (glsl_type_is_vector(type_a)) {
669 if (!glsl_type_is_vector(type_b)
670 || (type_a->vector_elements == type_b->vector_elements))
671 return type_a;
672 } else
673 return type_b;
674
675 /* "The operator modulus (%) is not defined for any other data types
676 * (non-integer types)."
677 */
678 _mesa_glsl_error(loc, state, "type mismatch");
679 return &glsl_type_builtin_error;
680 }
681
682
683 static const struct glsl_type *
relational_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)684 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
685 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
686 {
687 const glsl_type *type_a = value_a->type;
688 const glsl_type *type_b = value_b->type;
689
690 /* From GLSL 1.50 spec, page 56:
691 * "The relational operators greater than (>), less than (<), greater
692 * than or equal (>=), and less than or equal (<=) operate only on
693 * scalar integer and scalar floating-point expressions."
694 */
695 if (!glsl_type_is_numeric(type_a)
696 || !glsl_type_is_numeric(type_b)
697 || !glsl_type_is_scalar(type_a)
698 || !glsl_type_is_scalar(type_b)) {
699 _mesa_glsl_error(loc, state,
700 "operands to relational operators must be scalar and "
701 "numeric");
702 return &glsl_type_builtin_error;
703 }
704
705 /* "Either the operands' types must match, or the conversions from
706 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
707 * operand, after which the types must match."
708 */
709 if (!apply_implicit_conversion(type_a, value_b, state)
710 && !apply_implicit_conversion(type_b, value_a, state)) {
711 _mesa_glsl_error(loc, state,
712 "could not implicitly convert operands to "
713 "relational operator");
714 return &glsl_type_builtin_error;
715 }
716 type_a = value_a->type;
717 type_b = value_b->type;
718
719 if (type_a->base_type != type_b->base_type) {
720 _mesa_glsl_error(loc, state, "base type mismatch");
721 return &glsl_type_builtin_error;
722 }
723
724 /* "The result is scalar Boolean."
725 */
726 return &glsl_type_builtin_bool;
727 }
728
729 /**
730 * \brief Return the result type of a bit-shift operation.
731 *
732 * If the given types to the bit-shift operator are invalid, return
733 * &glsl_type_builtin_error.
734 *
735 * \param type_a Type of LHS of bit-shift op
736 * \param type_b Type of RHS of bit-shift op
737 */
738 static const struct glsl_type *
shift_result_type(const struct glsl_type * type_a,const struct glsl_type * type_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)739 shift_result_type(const struct glsl_type *type_a,
740 const struct glsl_type *type_b,
741 ast_operators op,
742 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
743 {
744 if (!state->check_bitwise_operations_allowed(loc)) {
745 return &glsl_type_builtin_error;
746 }
747
748 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
749 *
750 * "The shift operators (<<) and (>>). For both operators, the operands
751 * must be signed or unsigned integers or integer vectors. One operand
752 * can be signed while the other is unsigned."
753 */
754 if (!glsl_type_is_integer_32_64(type_a)) {
755 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
756 "integer vector", ast_expression::operator_string(op));
757 return &glsl_type_builtin_error;
758
759 }
760 if (!glsl_type_is_integer_32_64(type_b)) {
761 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
762 "integer vector", ast_expression::operator_string(op));
763 return &glsl_type_builtin_error;
764 }
765
766 /* "If the first operand is a scalar, the second operand has to be
767 * a scalar as well."
768 */
769 if (glsl_type_is_scalar(type_a) && !glsl_type_is_scalar(type_b)) {
770 _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
771 "second must be scalar as well",
772 ast_expression::operator_string(op));
773 return &glsl_type_builtin_error;
774 }
775
776 /* If both operands are vectors, check that they have same number of
777 * elements.
778 */
779 if (glsl_type_is_vector(type_a) &&
780 glsl_type_is_vector(type_b) &&
781 type_a->vector_elements != type_b->vector_elements) {
782 _mesa_glsl_error(loc, state, "vector operands to operator %s must "
783 "have same number of elements",
784 ast_expression::operator_string(op));
785 return &glsl_type_builtin_error;
786 }
787
788 /* "In all cases, the resulting type will be the same type as the left
789 * operand."
790 */
791 return type_a;
792 }
793
794 /**
795 * Returns the innermost array index expression in an rvalue tree.
796 * This is the largest indexing level -- if an array of blocks, then
797 * it is the block index rather than an indexing expression for an
798 * array-typed member of an array of blocks.
799 */
800 static ir_rvalue *
find_innermost_array_index(ir_rvalue * rv)801 find_innermost_array_index(ir_rvalue *rv)
802 {
803 ir_dereference_array *last = NULL;
804 while (rv) {
805 if (rv->as_dereference_array()) {
806 last = rv->as_dereference_array();
807 rv = last->array;
808 } else if (rv->as_dereference_record())
809 rv = rv->as_dereference_record()->record;
810 else if (rv->as_swizzle())
811 rv = rv->as_swizzle()->val;
812 else
813 rv = NULL;
814 }
815
816 if (last)
817 return last->array_index;
818
819 return NULL;
820 }
821
822 /**
823 * Validates that a value can be assigned to a location with a specified type
824 *
825 * Validates that \c rhs can be assigned to some location. If the types are
826 * not an exact match but an automatic conversion is possible, \c rhs will be
827 * converted.
828 *
829 * \return
830 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
831 * Otherwise the actual RHS to be assigned will be returned. This may be
832 * \c rhs, or it may be \c rhs after some type conversion.
833 *
834 * \note
835 * In addition to being used for assignments, this function is used to
836 * type-check return values.
837 */
838 static ir_rvalue *
validate_assignment(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_rvalue * lhs,ir_rvalue * rhs,bool is_initializer)839 validate_assignment(struct _mesa_glsl_parse_state *state,
840 YYLTYPE loc, ir_rvalue *lhs,
841 ir_rvalue *rhs, bool is_initializer)
842 {
843 /* If there is already some error in the RHS, just return it. Anything
844 * else will lead to an avalanche of error message back to the user.
845 */
846 if (glsl_type_is_error(rhs->type))
847 return rhs;
848
849 /* In the Tessellation Control Shader:
850 * If a per-vertex output variable is used as an l-value, it is an error
851 * if the expression indicating the vertex number is not the identifier
852 * `gl_InvocationID`.
853 */
854 if (state->stage == MESA_SHADER_TESS_CTRL && !glsl_type_is_error(lhs->type)) {
855 ir_variable *var = lhs->variable_referenced();
856 if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
857 ir_rvalue *index = find_innermost_array_index(lhs);
858 ir_variable *index_var = index ? index->variable_referenced() : NULL;
859 if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
860 _mesa_glsl_error(&loc, state,
861 "Tessellation control shader outputs can only "
862 "be indexed by gl_InvocationID");
863 return NULL;
864 }
865 }
866 }
867
868 /* If the types are identical, the assignment can trivially proceed.
869 */
870 if (rhs->type == lhs->type)
871 return rhs;
872
873 /* If the array element types are the same and the LHS is unsized,
874 * the assignment is okay for initializers embedded in variable
875 * declarations.
876 *
877 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
878 * is handled by ir_dereference::is_lvalue.
879 */
880 const glsl_type *lhs_t = lhs->type;
881 const glsl_type *rhs_t = rhs->type;
882 bool unsized_array = false;
883 while(glsl_type_is_array(lhs_t)) {
884 if (rhs_t == lhs_t)
885 break; /* the rest of the inner arrays match so break out early */
886 if (!glsl_type_is_array(rhs_t)) {
887 unsized_array = false;
888 break; /* number of dimensions mismatch */
889 }
890 if (lhs_t->length == rhs_t->length) {
891 lhs_t = lhs_t->fields.array;
892 rhs_t = rhs_t->fields.array;
893 continue;
894 } else if (glsl_type_is_unsized_array(lhs_t)) {
895 unsized_array = true;
896 } else {
897 unsized_array = false;
898 break; /* sized array mismatch */
899 }
900 lhs_t = lhs_t->fields.array;
901 rhs_t = rhs_t->fields.array;
902 }
903 if (unsized_array) {
904 if (is_initializer) {
905 if (glsl_get_scalar_type(rhs->type) == glsl_get_scalar_type(lhs->type))
906 return rhs;
907 } else {
908 _mesa_glsl_error(&loc, state,
909 "implicitly sized arrays cannot be assigned");
910 return NULL;
911 }
912 }
913
914 /* Check for implicit conversion in GLSL 1.20 */
915 if (apply_implicit_conversion(lhs->type, rhs, state)) {
916 if (rhs->type == lhs->type)
917 return rhs;
918 }
919
920 _mesa_glsl_error(&loc, state,
921 "%s of type %s cannot be assigned to "
922 "variable of type %s",
923 is_initializer ? "initializer" : "value",
924 glsl_get_type_name(rhs->type), glsl_get_type_name(lhs->type));
925
926 return NULL;
927 }
928
929 static void
mark_whole_array_access(ir_rvalue * access)930 mark_whole_array_access(ir_rvalue *access)
931 {
932 ir_dereference_variable *deref = access->as_dereference_variable();
933
934 if (deref && deref->var) {
935 deref->var->data.max_array_access = deref->type->length - 1;
936 }
937 }
938
939 static bool
do_assignment(exec_list * instructions,struct _mesa_glsl_parse_state * state,const char * non_lvalue_description,ir_rvalue * lhs,ir_rvalue * rhs,ir_rvalue ** out_rvalue,bool needs_rvalue,bool is_initializer,YYLTYPE lhs_loc)940 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
941 const char *non_lvalue_description,
942 ir_rvalue *lhs, ir_rvalue *rhs,
943 ir_rvalue **out_rvalue, bool needs_rvalue,
944 bool is_initializer,
945 YYLTYPE lhs_loc)
946 {
947 void *ctx = state;
948 bool error_emitted = (glsl_type_is_error(lhs->type) || glsl_type_is_error(rhs->type));
949
950 ir_variable *lhs_var = lhs->variable_referenced();
951 if (lhs_var)
952 lhs_var->data.assigned = true;
953
954 bool omit_assignment = false;
955 if (!error_emitted) {
956 if (non_lvalue_description != NULL) {
957 _mesa_glsl_error(&lhs_loc, state,
958 "assignment to %s",
959 non_lvalue_description);
960 error_emitted = true;
961 } else if (lhs_var != NULL && (lhs_var->data.read_only ||
962 (lhs_var->data.mode == ir_var_shader_storage &&
963 lhs_var->data.memory_read_only))) {
964 /* We can have memory_read_only set on both images and buffer variables,
965 * but in the former there is a distinction between assignments to
966 * the variable itself (read_only) and to the memory they point to
967 * (memory_read_only), while in the case of buffer variables there is
968 * no such distinction, that is why this check here is limited to
969 * buffer variables alone.
970 */
971
972 if (state->ignore_write_to_readonly_var)
973 omit_assignment = true;
974 else {
975 _mesa_glsl_error(&lhs_loc, state,
976 "assignment to read-only variable '%s'",
977 lhs_var->name);
978 error_emitted = true;
979 }
980 } else if (glsl_type_is_array(lhs->type) &&
981 !state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
982 300, &lhs_loc,
983 "whole array assignment forbidden")) {
984 /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
985 *
986 * "Other binary or unary expressions, non-dereferenced
987 * arrays, function names, swizzles with repeated fields,
988 * and constants cannot be l-values."
989 *
990 * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
991 */
992 error_emitted = true;
993 } else if (!lhs->is_lvalue(state)) {
994 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
995 error_emitted = true;
996 }
997 }
998
999 ir_rvalue *new_rhs =
1000 validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
1001 if (new_rhs != NULL) {
1002 rhs = new_rhs;
1003
1004 /* If the LHS array was not declared with a size, it takes it size from
1005 * the RHS. If the LHS is an l-value and a whole array, it must be a
1006 * dereference of a variable. Any other case would require that the LHS
1007 * is either not an l-value or not a whole array.
1008 */
1009 if (glsl_type_is_unsized_array(lhs->type)) {
1010 ir_dereference *const d = lhs->as_dereference();
1011
1012 assert(d != NULL);
1013
1014 ir_variable *const var = d->variable_referenced();
1015
1016 assert(var != NULL);
1017
1018 if (var->data.max_array_access >= glsl_array_size(rhs->type)) {
1019 /* FINISHME: This should actually log the location of the RHS. */
1020 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1021 "previous access",
1022 var->data.max_array_access);
1023 }
1024
1025 var->type = glsl_array_type(lhs->type->fields.array,
1026 glsl_array_size(rhs->type), 0);
1027 d->type = var->type;
1028 }
1029 if (glsl_type_is_array(lhs->type)) {
1030 mark_whole_array_access(rhs);
1031 mark_whole_array_access(lhs);
1032 }
1033 } else {
1034 error_emitted = true;
1035 }
1036
1037 if (omit_assignment) {
1038 *out_rvalue = needs_rvalue ? ir_rvalue::error_value(ctx) : NULL;
1039 return error_emitted;
1040 }
1041
1042 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1043 * but not post_inc) need the converted assigned value as an rvalue
1044 * to handle things like:
1045 *
1046 * i = j += 1;
1047 */
1048 if (needs_rvalue) {
1049 ir_rvalue *rvalue;
1050 if (!error_emitted) {
1051 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1052 ir_var_temporary);
1053 instructions->push_tail(var);
1054 instructions->push_tail(assign(var, rhs));
1055
1056 ir_dereference_variable *deref_var =
1057 new(ctx) ir_dereference_variable(var);
1058 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1059 rvalue = new(ctx) ir_dereference_variable(var);
1060 } else {
1061 rvalue = ir_rvalue::error_value(ctx);
1062 }
1063 *out_rvalue = rvalue;
1064 } else {
1065 if (!error_emitted)
1066 instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1067 *out_rvalue = NULL;
1068 }
1069
1070 return error_emitted;
1071 }
1072
1073 static ir_rvalue *
get_lvalue_copy(exec_list * instructions,ir_rvalue * lvalue)1074 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1075 {
1076 void *ctx = ralloc_parent(lvalue);
1077 ir_variable *var;
1078
1079 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1080 ir_var_temporary);
1081 instructions->push_tail(var);
1082
1083 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1084 lvalue));
1085
1086 return new(ctx) ir_dereference_variable(var);
1087 }
1088
1089
1090 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1091 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1092 {
1093 (void) instructions;
1094 (void) state;
1095
1096 return NULL;
1097 }
1098
1099 bool
has_sequence_subexpression() const1100 ast_node::has_sequence_subexpression() const
1101 {
1102 return false;
1103 }
1104
1105 void
set_is_lhs(bool)1106 ast_node::set_is_lhs(bool /* new_value */)
1107 {
1108 }
1109
1110 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1111 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1112 struct _mesa_glsl_parse_state *state)
1113 {
1114 (void)hir(instructions, state);
1115 }
1116
1117 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1118 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1119 struct _mesa_glsl_parse_state *state)
1120 {
1121 (void)hir(instructions, state);
1122 }
1123
1124 static ir_rvalue *
do_comparison(void * mem_ctx,int operation,ir_rvalue * op0,ir_rvalue * op1)1125 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1126 {
1127 int join_op;
1128 ir_rvalue *cmp = NULL;
1129
1130 if (operation == ir_binop_all_equal)
1131 join_op = ir_binop_logic_and;
1132 else
1133 join_op = ir_binop_logic_or;
1134
1135 switch (op0->type->base_type) {
1136 case GLSL_TYPE_FLOAT:
1137 case GLSL_TYPE_FLOAT16:
1138 case GLSL_TYPE_UINT:
1139 case GLSL_TYPE_INT:
1140 case GLSL_TYPE_BOOL:
1141 case GLSL_TYPE_DOUBLE:
1142 case GLSL_TYPE_UINT64:
1143 case GLSL_TYPE_INT64:
1144 case GLSL_TYPE_UINT16:
1145 case GLSL_TYPE_INT16:
1146 case GLSL_TYPE_UINT8:
1147 case GLSL_TYPE_INT8:
1148 return new(mem_ctx) ir_expression(operation, op0, op1);
1149
1150 case GLSL_TYPE_ARRAY: {
1151 for (unsigned int i = 0; i < op0->type->length; i++) {
1152 ir_rvalue *e0, *e1, *result;
1153
1154 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1155 new(mem_ctx) ir_constant(i));
1156 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1157 new(mem_ctx) ir_constant(i));
1158 result = do_comparison(mem_ctx, operation, e0, e1);
1159
1160 if (cmp) {
1161 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1162 } else {
1163 cmp = result;
1164 }
1165 }
1166
1167 mark_whole_array_access(op0);
1168 mark_whole_array_access(op1);
1169 break;
1170 }
1171
1172 case GLSL_TYPE_STRUCT: {
1173 for (unsigned int i = 0; i < op0->type->length; i++) {
1174 ir_rvalue *e0, *e1, *result;
1175 const char *field_name = op0->type->fields.structure[i].name;
1176
1177 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1178 field_name);
1179 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1180 field_name);
1181 result = do_comparison(mem_ctx, operation, e0, e1);
1182
1183 if (cmp) {
1184 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1185 } else {
1186 cmp = result;
1187 }
1188 }
1189 break;
1190 }
1191
1192 case GLSL_TYPE_ERROR:
1193 case GLSL_TYPE_VOID:
1194 case GLSL_TYPE_SAMPLER:
1195 case GLSL_TYPE_TEXTURE:
1196 case GLSL_TYPE_IMAGE:
1197 case GLSL_TYPE_INTERFACE:
1198 case GLSL_TYPE_ATOMIC_UINT:
1199 case GLSL_TYPE_SUBROUTINE:
1200 /* I assume a comparison of a struct containing a sampler just
1201 * ignores the sampler present in the type.
1202 */
1203 break;
1204
1205 case GLSL_TYPE_COOPERATIVE_MATRIX:
1206 unreachable("unsupported base type cooperative matrix");
1207 }
1208
1209 if (cmp == NULL)
1210 cmp = new(mem_ctx) ir_constant(true);
1211
1212 return cmp;
1213 }
1214
1215 /* For logical operations, we want to ensure that the operands are
1216 * scalar booleans. If it isn't, emit an error and return a constant
1217 * boolean to avoid triggering cascading error messages.
1218 */
1219 static ir_rvalue *
get_scalar_boolean_operand(exec_list * instructions,struct _mesa_glsl_parse_state * state,ast_expression * parent_expr,int operand,const char * operand_name,bool * error_emitted)1220 get_scalar_boolean_operand(exec_list *instructions,
1221 struct _mesa_glsl_parse_state *state,
1222 ast_expression *parent_expr,
1223 int operand,
1224 const char *operand_name,
1225 bool *error_emitted)
1226 {
1227 ast_expression *expr = parent_expr->subexpressions[operand];
1228 void *ctx = state;
1229 ir_rvalue *val = expr->hir(instructions, state);
1230
1231 if (glsl_type_is_boolean(val->type) && glsl_type_is_scalar(val->type))
1232 return val;
1233
1234 if (!*error_emitted) {
1235 YYLTYPE loc = expr->get_location();
1236 _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1237 operand_name,
1238 parent_expr->operator_string(parent_expr->oper));
1239 *error_emitted = true;
1240 }
1241
1242 return new(ctx) ir_constant(true);
1243 }
1244
1245 /**
1246 * If name refers to a builtin array whose maximum allowed size is less than
1247 * size, report an error and return true. Otherwise return false.
1248 */
1249 void
check_builtin_array_max_size(const char * name,unsigned size,YYLTYPE loc,struct _mesa_glsl_parse_state * state)1250 check_builtin_array_max_size(const char *name, unsigned size,
1251 YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1252 {
1253 if ((strcmp("gl_TexCoord", name) == 0)
1254 && (size > state->Const.MaxTextureCoords)) {
1255 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1256 *
1257 * "The size [of gl_TexCoord] can be at most
1258 * gl_MaxTextureCoords."
1259 */
1260 _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1261 "be larger than gl_MaxTextureCoords (%u)",
1262 state->Const.MaxTextureCoords);
1263 } else if (strcmp("gl_ClipDistance", name) == 0) {
1264 state->clip_dist_size = size;
1265 if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1266 /* From section 7.1 (Vertex Shader Special Variables) of the
1267 * GLSL 1.30 spec:
1268 *
1269 * "The gl_ClipDistance array is predeclared as unsized and
1270 * must be sized by the shader either redeclaring it with a
1271 * size or indexing it only with integral constant
1272 * expressions. ... The size can be at most
1273 * gl_MaxClipDistances."
1274 */
1275 _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1276 "be larger than gl_MaxClipDistances (%u)",
1277 state->Const.MaxClipPlanes);
1278 }
1279 } else if (strcmp("gl_CullDistance", name) == 0) {
1280 state->cull_dist_size = size;
1281 if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1282 /* From the ARB_cull_distance spec:
1283 *
1284 * "The gl_CullDistance array is predeclared as unsized and
1285 * must be sized by the shader either redeclaring it with
1286 * a size or indexing it only with integral constant
1287 * expressions. The size determines the number and set of
1288 * enabled cull distances and can be at most
1289 * gl_MaxCullDistances."
1290 */
1291 _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1292 "be larger than gl_MaxCullDistances (%u)",
1293 state->Const.MaxClipPlanes);
1294 }
1295 }
1296 }
1297
1298 /**
1299 * Create the constant 1, of a which is appropriate for incrementing and
1300 * decrementing values of the given GLSL type. For example, if type is vec4,
1301 * this creates a constant value of 1.0 having type float.
1302 *
1303 * If the given type is invalid for increment and decrement operators, return
1304 * a floating point 1--the error will be detected later.
1305 */
1306 static ir_rvalue *
constant_one_for_inc_dec(void * ctx,const glsl_type * type)1307 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1308 {
1309 switch (type->base_type) {
1310 case GLSL_TYPE_UINT:
1311 return new(ctx) ir_constant((unsigned) 1);
1312 case GLSL_TYPE_INT:
1313 return new(ctx) ir_constant(1);
1314 case GLSL_TYPE_UINT64:
1315 return new(ctx) ir_constant((uint64_t) 1);
1316 case GLSL_TYPE_INT64:
1317 return new(ctx) ir_constant((int64_t) 1);
1318 default:
1319 case GLSL_TYPE_FLOAT:
1320 return new(ctx) ir_constant(1.0f);
1321 }
1322 }
1323
1324 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1325 ast_expression::hir(exec_list *instructions,
1326 struct _mesa_glsl_parse_state *state)
1327 {
1328 return do_hir(instructions, state, true);
1329 }
1330
1331 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1332 ast_expression::hir_no_rvalue(exec_list *instructions,
1333 struct _mesa_glsl_parse_state *state)
1334 {
1335 do_hir(instructions, state, false);
1336 }
1337
1338 void
set_is_lhs(bool new_value)1339 ast_expression::set_is_lhs(bool new_value)
1340 {
1341 /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1342 * if we lack an identifier we can just skip it.
1343 */
1344 if (this->primary_expression.identifier == NULL)
1345 return;
1346
1347 this->is_lhs = new_value;
1348
1349 /* We need to go through the subexpressions tree to cover cases like
1350 * ast_field_selection
1351 */
1352 if (this->subexpressions[0] != NULL)
1353 this->subexpressions[0]->set_is_lhs(new_value);
1354 }
1355
1356 ir_rvalue *
do_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state,bool needs_rvalue)1357 ast_expression::do_hir(exec_list *instructions,
1358 struct _mesa_glsl_parse_state *state,
1359 bool needs_rvalue)
1360 {
1361 void *ctx = state;
1362 static const int operations[AST_NUM_OPERATORS] = {
1363 -1, /* ast_assign doesn't convert to ir_expression. */
1364 -1, /* ast_plus doesn't convert to ir_expression. */
1365 ir_unop_neg,
1366 ir_binop_add,
1367 ir_binop_sub,
1368 ir_binop_mul,
1369 ir_binop_div,
1370 ir_binop_mod,
1371 ir_binop_lshift,
1372 ir_binop_rshift,
1373 ir_binop_less,
1374 ir_binop_less, /* This is correct. See the ast_greater case below. */
1375 ir_binop_gequal, /* This is correct. See the ast_lequal case below. */
1376 ir_binop_gequal,
1377 ir_binop_all_equal,
1378 ir_binop_any_nequal,
1379 ir_binop_bit_and,
1380 ir_binop_bit_xor,
1381 ir_binop_bit_or,
1382 ir_unop_bit_not,
1383 ir_binop_logic_and,
1384 ir_binop_logic_xor,
1385 ir_binop_logic_or,
1386 ir_unop_logic_not,
1387
1388 /* Note: The following block of expression types actually convert
1389 * to multiple IR instructions.
1390 */
1391 ir_binop_mul, /* ast_mul_assign */
1392 ir_binop_div, /* ast_div_assign */
1393 ir_binop_mod, /* ast_mod_assign */
1394 ir_binop_add, /* ast_add_assign */
1395 ir_binop_sub, /* ast_sub_assign */
1396 ir_binop_lshift, /* ast_ls_assign */
1397 ir_binop_rshift, /* ast_rs_assign */
1398 ir_binop_bit_and, /* ast_and_assign */
1399 ir_binop_bit_xor, /* ast_xor_assign */
1400 ir_binop_bit_or, /* ast_or_assign */
1401
1402 -1, /* ast_conditional doesn't convert to ir_expression. */
1403 ir_binop_add, /* ast_pre_inc. */
1404 ir_binop_sub, /* ast_pre_dec. */
1405 ir_binop_add, /* ast_post_inc. */
1406 ir_binop_sub, /* ast_post_dec. */
1407 -1, /* ast_field_selection doesn't conv to ir_expression. */
1408 -1, /* ast_array_index doesn't convert to ir_expression. */
1409 -1, /* ast_function_call doesn't conv to ir_expression. */
1410 -1, /* ast_identifier doesn't convert to ir_expression. */
1411 -1, /* ast_int_constant doesn't convert to ir_expression. */
1412 -1, /* ast_uint_constant doesn't conv to ir_expression. */
1413 -1, /* ast_float_constant doesn't conv to ir_expression. */
1414 -1, /* ast_bool_constant doesn't conv to ir_expression. */
1415 -1, /* ast_sequence doesn't convert to ir_expression. */
1416 -1, /* ast_aggregate shouldn't ever even get here. */
1417 };
1418 ir_rvalue *result = NULL;
1419 ir_rvalue *op[3];
1420 const struct glsl_type *type, *orig_type;
1421 bool error_emitted = false;
1422 YYLTYPE loc;
1423
1424 loc = this->get_location();
1425
1426 switch (this->oper) {
1427 case ast_aggregate:
1428 unreachable("ast_aggregate: Should never get here.");
1429
1430 case ast_assign: {
1431 this->subexpressions[0]->set_is_lhs(true);
1432 op[0] = this->subexpressions[0]->hir(instructions, state);
1433 op[1] = this->subexpressions[1]->hir(instructions, state);
1434
1435 error_emitted =
1436 do_assignment(instructions, state,
1437 this->subexpressions[0]->non_lvalue_description,
1438 op[0], op[1], &result, needs_rvalue, false,
1439 this->subexpressions[0]->get_location());
1440 break;
1441 }
1442
1443 case ast_plus:
1444 op[0] = this->subexpressions[0]->hir(instructions, state);
1445
1446 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1447
1448 error_emitted = glsl_type_is_error(type);
1449
1450 result = op[0];
1451 break;
1452
1453 case ast_neg:
1454 op[0] = this->subexpressions[0]->hir(instructions, state);
1455
1456 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1457
1458 error_emitted = glsl_type_is_error(type);
1459
1460 result = new(ctx) ir_expression(operations[this->oper], type,
1461 op[0], NULL);
1462 break;
1463
1464 case ast_add:
1465 case ast_sub:
1466 case ast_mul:
1467 case ast_div:
1468 op[0] = this->subexpressions[0]->hir(instructions, state);
1469 op[1] = this->subexpressions[1]->hir(instructions, state);
1470
1471 type = arithmetic_result_type(op[0], op[1],
1472 (this->oper == ast_mul),
1473 state, & loc);
1474 error_emitted = glsl_type_is_error(type);
1475
1476 result = new(ctx) ir_expression(operations[this->oper], type,
1477 op[0], op[1]);
1478 break;
1479
1480 case ast_mod:
1481 op[0] = this->subexpressions[0]->hir(instructions, state);
1482 op[1] = this->subexpressions[1]->hir(instructions, state);
1483
1484 type = modulus_result_type(op[0], op[1], state, &loc);
1485
1486 assert(operations[this->oper] == ir_binop_mod);
1487
1488 result = new(ctx) ir_expression(operations[this->oper], type,
1489 op[0], op[1]);
1490 error_emitted = glsl_type_is_error(type);
1491 break;
1492
1493 case ast_lshift:
1494 case ast_rshift:
1495 if (!state->check_bitwise_operations_allowed(&loc)) {
1496 error_emitted = true;
1497 }
1498
1499 op[0] = this->subexpressions[0]->hir(instructions, state);
1500 op[1] = this->subexpressions[1]->hir(instructions, state);
1501 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1502 &loc);
1503 result = new(ctx) ir_expression(operations[this->oper], type,
1504 op[0], op[1]);
1505 error_emitted = glsl_type_is_error(op[0]->type) || glsl_type_is_error(op[1]->type);
1506 break;
1507
1508 case ast_less:
1509 case ast_greater:
1510 case ast_lequal:
1511 case ast_gequal:
1512 op[0] = this->subexpressions[0]->hir(instructions, state);
1513 op[1] = this->subexpressions[1]->hir(instructions, state);
1514
1515 type = relational_result_type(op[0], op[1], state, & loc);
1516
1517 /* The relational operators must either generate an error or result
1518 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1519 */
1520 assert(glsl_type_is_error(type)
1521 || (glsl_type_is_boolean(type) && glsl_type_is_scalar(type)));
1522
1523 /* Like NIR, GLSL IR does not have opcodes for > or <=. Instead, swap
1524 * the arguments and use < or >=.
1525 */
1526 if (this->oper == ast_greater || this->oper == ast_lequal) {
1527 ir_rvalue *const tmp = op[0];
1528 op[0] = op[1];
1529 op[1] = tmp;
1530 }
1531
1532 result = new(ctx) ir_expression(operations[this->oper], type,
1533 op[0], op[1]);
1534 error_emitted = glsl_type_is_error(type);
1535 break;
1536
1537 case ast_nequal:
1538 case ast_equal:
1539 op[0] = this->subexpressions[0]->hir(instructions, state);
1540 op[1] = this->subexpressions[1]->hir(instructions, state);
1541
1542 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1543 *
1544 * "The equality operators equal (==), and not equal (!=)
1545 * operate on all types. They result in a scalar Boolean. If
1546 * the operand types do not match, then there must be a
1547 * conversion from Section 4.1.10 "Implicit Conversions"
1548 * applied to one operand that can make them match, in which
1549 * case this conversion is done."
1550 */
1551
1552 if (op[0]->type == &glsl_type_builtin_void || op[1]->type == &glsl_type_builtin_void) {
1553 _mesa_glsl_error(& loc, state, "wrong operand types: "
1554 "no operation `%s' exists that takes a left-hand "
1555 "operand of type 'void' or a right operand of type "
1556 "'void'", (this->oper == ast_equal) ? "==" : "!=");
1557 error_emitted = true;
1558 } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1559 && !apply_implicit_conversion(op[1]->type, op[0], state))
1560 || (op[0]->type != op[1]->type)) {
1561 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1562 "type", (this->oper == ast_equal) ? "==" : "!=");
1563 error_emitted = true;
1564 } else if ((glsl_type_is_array(op[0]->type) || glsl_type_is_array(op[1]->type)) &&
1565 !state->check_version(120, 300, &loc,
1566 "array comparisons forbidden")) {
1567 error_emitted = true;
1568 } else if ((glsl_contains_subroutine(op[0]->type) ||
1569 glsl_contains_subroutine(op[1]->type))) {
1570 _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1571 error_emitted = true;
1572 } else if ((glsl_contains_opaque(op[0]->type) ||
1573 glsl_contains_opaque(op[1]->type))) {
1574 _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1575 error_emitted = true;
1576 }
1577
1578 if (error_emitted) {
1579 result = new(ctx) ir_constant(false);
1580 } else {
1581 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1582 assert(result->type == &glsl_type_builtin_bool);
1583 }
1584 break;
1585
1586 case ast_bit_and:
1587 case ast_bit_xor:
1588 case ast_bit_or:
1589 op[0] = this->subexpressions[0]->hir(instructions, state);
1590 op[1] = this->subexpressions[1]->hir(instructions, state);
1591 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1592 result = new(ctx) ir_expression(operations[this->oper], type,
1593 op[0], op[1]);
1594 error_emitted = glsl_type_is_error(op[0]->type) || glsl_type_is_error(op[1]->type);
1595 break;
1596
1597 case ast_bit_not:
1598 op[0] = this->subexpressions[0]->hir(instructions, state);
1599
1600 if (!state->check_bitwise_operations_allowed(&loc)) {
1601 error_emitted = true;
1602 }
1603
1604 if (!glsl_type_is_integer_32_64(op[0]->type)) {
1605 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1606 error_emitted = true;
1607 }
1608
1609 type = error_emitted ? &glsl_type_builtin_error : op[0]->type;
1610 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1611 break;
1612
1613 case ast_logic_and: {
1614 exec_list rhs_instructions;
1615 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1616 "LHS", &error_emitted);
1617 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1618 "RHS", &error_emitted);
1619
1620 if (rhs_instructions.is_empty()) {
1621 result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1622 } else {
1623 ir_variable *const tmp = new(ctx) ir_variable(&glsl_type_builtin_bool,
1624 "and_tmp",
1625 ir_var_temporary);
1626 instructions->push_tail(tmp);
1627
1628 ir_if *const stmt = new(ctx) ir_if(op[0]);
1629 instructions->push_tail(stmt);
1630
1631 stmt->then_instructions.append_list(&rhs_instructions);
1632 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1633 ir_assignment *const then_assign =
1634 new(ctx) ir_assignment(then_deref, op[1]);
1635 stmt->then_instructions.push_tail(then_assign);
1636
1637 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1638 ir_assignment *const else_assign =
1639 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1640 stmt->else_instructions.push_tail(else_assign);
1641
1642 result = new(ctx) ir_dereference_variable(tmp);
1643 }
1644 break;
1645 }
1646
1647 case ast_logic_or: {
1648 exec_list rhs_instructions;
1649 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1650 "LHS", &error_emitted);
1651 op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1652 "RHS", &error_emitted);
1653
1654 if (rhs_instructions.is_empty()) {
1655 result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1656 } else {
1657 ir_variable *const tmp = new(ctx) ir_variable(&glsl_type_builtin_bool,
1658 "or_tmp",
1659 ir_var_temporary);
1660 instructions->push_tail(tmp);
1661
1662 ir_if *const stmt = new(ctx) ir_if(op[0]);
1663 instructions->push_tail(stmt);
1664
1665 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1666 ir_assignment *const then_assign =
1667 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1668 stmt->then_instructions.push_tail(then_assign);
1669
1670 stmt->else_instructions.append_list(&rhs_instructions);
1671 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1672 ir_assignment *const else_assign =
1673 new(ctx) ir_assignment(else_deref, op[1]);
1674 stmt->else_instructions.push_tail(else_assign);
1675
1676 result = new(ctx) ir_dereference_variable(tmp);
1677 }
1678 break;
1679 }
1680
1681 case ast_logic_xor:
1682 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1683 *
1684 * "The logical binary operators and (&&), or ( | | ), and
1685 * exclusive or (^^). They operate only on two Boolean
1686 * expressions and result in a Boolean expression."
1687 */
1688 op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1689 &error_emitted);
1690 op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1691 &error_emitted);
1692
1693 result = new(ctx) ir_expression(operations[this->oper], &glsl_type_builtin_bool,
1694 op[0], op[1]);
1695 break;
1696
1697 case ast_logic_not:
1698 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1699 "operand", &error_emitted);
1700
1701 result = new(ctx) ir_expression(operations[this->oper], &glsl_type_builtin_bool,
1702 op[0], NULL);
1703 break;
1704
1705 case ast_mul_assign:
1706 case ast_div_assign:
1707 case ast_add_assign:
1708 case ast_sub_assign: {
1709 this->subexpressions[0]->set_is_lhs(true);
1710 op[0] = this->subexpressions[0]->hir(instructions, state);
1711 op[1] = this->subexpressions[1]->hir(instructions, state);
1712
1713 orig_type = op[0]->type;
1714
1715 /* Break out if operand types were not parsed successfully. */
1716 if ((op[0]->type == &glsl_type_builtin_error ||
1717 op[1]->type == &glsl_type_builtin_error)) {
1718 error_emitted = true;
1719 result = ir_rvalue::error_value(ctx);
1720 break;
1721 }
1722
1723 type = arithmetic_result_type(op[0], op[1],
1724 (this->oper == ast_mul_assign),
1725 state, & loc);
1726
1727 if (type != orig_type) {
1728 _mesa_glsl_error(& loc, state,
1729 "could not implicitly convert "
1730 "%s to %s", glsl_get_type_name(type), glsl_get_type_name(orig_type));
1731 type = &glsl_type_builtin_error;
1732 }
1733
1734 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1735 op[0], op[1]);
1736
1737 error_emitted =
1738 do_assignment(instructions, state,
1739 this->subexpressions[0]->non_lvalue_description,
1740 op[0]->clone(ctx, NULL), temp_rhs,
1741 &result, needs_rvalue, false,
1742 this->subexpressions[0]->get_location());
1743
1744 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1745 * explicitly test for this because none of the binary expression
1746 * operators allow array operands either.
1747 */
1748
1749 break;
1750 }
1751
1752 case ast_mod_assign: {
1753 this->subexpressions[0]->set_is_lhs(true);
1754 op[0] = this->subexpressions[0]->hir(instructions, state);
1755 op[1] = this->subexpressions[1]->hir(instructions, state);
1756
1757 /* Break out if operand types were not parsed successfully. */
1758 if ((op[0]->type == &glsl_type_builtin_error ||
1759 op[1]->type == &glsl_type_builtin_error)) {
1760 error_emitted = true;
1761 result = ir_rvalue::error_value(ctx);
1762 break;
1763 }
1764
1765 orig_type = op[0]->type;
1766 type = modulus_result_type(op[0], op[1], state, &loc);
1767
1768 if (type != orig_type) {
1769 _mesa_glsl_error(& loc, state,
1770 "could not implicitly convert "
1771 "%s to %s", glsl_get_type_name(type), glsl_get_type_name(orig_type));
1772 type = &glsl_type_builtin_error;
1773 }
1774
1775 assert(operations[this->oper] == ir_binop_mod);
1776
1777 ir_rvalue *temp_rhs;
1778 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1779 op[0], op[1]);
1780
1781 error_emitted =
1782 do_assignment(instructions, state,
1783 this->subexpressions[0]->non_lvalue_description,
1784 op[0]->clone(ctx, NULL), temp_rhs,
1785 &result, needs_rvalue, false,
1786 this->subexpressions[0]->get_location());
1787 break;
1788 }
1789
1790 case ast_ls_assign:
1791 case ast_rs_assign: {
1792 this->subexpressions[0]->set_is_lhs(true);
1793 op[0] = this->subexpressions[0]->hir(instructions, state);
1794 op[1] = this->subexpressions[1]->hir(instructions, state);
1795
1796 /* Break out if operand types were not parsed successfully. */
1797 if ((op[0]->type == &glsl_type_builtin_error ||
1798 op[1]->type == &glsl_type_builtin_error)) {
1799 error_emitted = true;
1800 result = ir_rvalue::error_value(ctx);
1801 break;
1802 }
1803
1804 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1805 &loc);
1806 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1807 type, op[0], op[1]);
1808 error_emitted =
1809 do_assignment(instructions, state,
1810 this->subexpressions[0]->non_lvalue_description,
1811 op[0]->clone(ctx, NULL), temp_rhs,
1812 &result, needs_rvalue, false,
1813 this->subexpressions[0]->get_location());
1814 break;
1815 }
1816
1817 case ast_and_assign:
1818 case ast_xor_assign:
1819 case ast_or_assign: {
1820 this->subexpressions[0]->set_is_lhs(true);
1821 op[0] = this->subexpressions[0]->hir(instructions, state);
1822 op[1] = this->subexpressions[1]->hir(instructions, state);
1823
1824 /* Break out if operand types were not parsed successfully. */
1825 if ((op[0]->type == &glsl_type_builtin_error ||
1826 op[1]->type == &glsl_type_builtin_error)) {
1827 error_emitted = true;
1828 result = ir_rvalue::error_value(ctx);
1829 break;
1830 }
1831
1832 orig_type = op[0]->type;
1833 type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1834
1835 if (type != orig_type) {
1836 _mesa_glsl_error(& loc, state,
1837 "could not implicitly convert "
1838 "%s to %s", glsl_get_type_name(type), glsl_get_type_name(orig_type));
1839 type = &glsl_type_builtin_error;
1840 }
1841
1842 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1843 type, op[0], op[1]);
1844 error_emitted =
1845 do_assignment(instructions, state,
1846 this->subexpressions[0]->non_lvalue_description,
1847 op[0]->clone(ctx, NULL), temp_rhs,
1848 &result, needs_rvalue, false,
1849 this->subexpressions[0]->get_location());
1850 break;
1851 }
1852
1853 case ast_conditional: {
1854 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1855 *
1856 * "The ternary selection operator (?:). It operates on three
1857 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1858 * first expression, which must result in a scalar Boolean."
1859 */
1860 op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1861 "condition", &error_emitted);
1862
1863 /* The :? operator is implemented by generating an anonymous temporary
1864 * followed by an if-statement. The last instruction in each branch of
1865 * the if-statement assigns a value to the anonymous temporary. This
1866 * temporary is the r-value of the expression.
1867 */
1868 exec_list then_instructions;
1869 exec_list else_instructions;
1870
1871 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1872 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1873
1874 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1875 *
1876 * "The second and third expressions can be any type, as
1877 * long their types match, or there is a conversion in
1878 * Section 4.1.10 "Implicit Conversions" that can be applied
1879 * to one of the expressions to make their types match. This
1880 * resulting matching type is the type of the entire
1881 * expression."
1882 */
1883 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1884 && !apply_implicit_conversion(op[2]->type, op[1], state))
1885 || (op[1]->type != op[2]->type)) {
1886 YYLTYPE loc = this->subexpressions[1]->get_location();
1887
1888 _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1889 "operator must have matching types");
1890 error_emitted = true;
1891 type = &glsl_type_builtin_error;
1892 } else {
1893 type = op[1]->type;
1894 }
1895
1896 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1897 *
1898 * "The second and third expressions must be the same type, but can
1899 * be of any type other than an array."
1900 */
1901 if (glsl_type_is_array(type) &&
1902 !state->check_version(120, 300, &loc,
1903 "second and third operands of ?: operator "
1904 "cannot be arrays")) {
1905 error_emitted = true;
1906 }
1907
1908 /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1909 *
1910 * "Except for array indexing, structure member selection, and
1911 * parentheses, opaque variables are not allowed to be operands in
1912 * expressions; such use results in a compile-time error."
1913 */
1914 if (glsl_contains_opaque(type)) {
1915 if (!(state->has_bindless() && (glsl_type_is_image(type) || glsl_type_is_sampler(type)))) {
1916 _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1917 "operands of the ?: operator", glsl_get_type_name(type));
1918 error_emitted = true;
1919 }
1920 }
1921
1922 ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1923
1924 if (then_instructions.is_empty()
1925 && else_instructions.is_empty()
1926 && cond_val != NULL) {
1927 result = cond_val->value.b[0] ? op[1] : op[2];
1928 } else {
1929 /* The copy to conditional_tmp reads the whole array. */
1930 if (glsl_type_is_array(type)) {
1931 mark_whole_array_access(op[1]);
1932 mark_whole_array_access(op[2]);
1933 }
1934
1935 ir_variable *const tmp =
1936 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1937 instructions->push_tail(tmp);
1938
1939 ir_if *const stmt = new(ctx) ir_if(op[0]);
1940 instructions->push_tail(stmt);
1941
1942 then_instructions.move_nodes_to(& stmt->then_instructions);
1943 ir_dereference *const then_deref =
1944 new(ctx) ir_dereference_variable(tmp);
1945 ir_assignment *const then_assign =
1946 new(ctx) ir_assignment(then_deref, op[1]);
1947 stmt->then_instructions.push_tail(then_assign);
1948
1949 else_instructions.move_nodes_to(& stmt->else_instructions);
1950 ir_dereference *const else_deref =
1951 new(ctx) ir_dereference_variable(tmp);
1952 ir_assignment *const else_assign =
1953 new(ctx) ir_assignment(else_deref, op[2]);
1954 stmt->else_instructions.push_tail(else_assign);
1955
1956 result = new(ctx) ir_dereference_variable(tmp);
1957 }
1958 break;
1959 }
1960
1961 case ast_pre_inc:
1962 case ast_pre_dec: {
1963 this->non_lvalue_description = (this->oper == ast_pre_inc)
1964 ? "pre-increment operation" : "pre-decrement operation";
1965
1966 op[0] = this->subexpressions[0]->hir(instructions, state);
1967 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1968
1969 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1970
1971 ir_rvalue *temp_rhs;
1972 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1973 op[0], op[1]);
1974
1975 error_emitted =
1976 do_assignment(instructions, state,
1977 this->subexpressions[0]->non_lvalue_description,
1978 op[0]->clone(ctx, NULL), temp_rhs,
1979 &result, needs_rvalue, false,
1980 this->subexpressions[0]->get_location());
1981 break;
1982 }
1983
1984 case ast_post_inc:
1985 case ast_post_dec: {
1986 this->non_lvalue_description = (this->oper == ast_post_inc)
1987 ? "post-increment operation" : "post-decrement operation";
1988 op[0] = this->subexpressions[0]->hir(instructions, state);
1989 op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1990
1991 error_emitted = glsl_type_is_error(op[0]->type) || glsl_type_is_error(op[1]->type);
1992
1993 if (error_emitted) {
1994 result = ir_rvalue::error_value(ctx);
1995 break;
1996 }
1997
1998 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1999
2000 ir_rvalue *temp_rhs;
2001 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
2002 op[0], op[1]);
2003
2004 /* Get a temporary of a copy of the lvalue before it's modified.
2005 * This may get thrown away later.
2006 */
2007 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
2008
2009 ir_rvalue *junk_rvalue;
2010 error_emitted =
2011 do_assignment(instructions, state,
2012 this->subexpressions[0]->non_lvalue_description,
2013 op[0]->clone(ctx, NULL), temp_rhs,
2014 &junk_rvalue, false, false,
2015 this->subexpressions[0]->get_location());
2016
2017 break;
2018 }
2019
2020 case ast_field_selection:
2021 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
2022 break;
2023
2024 case ast_array_index: {
2025 YYLTYPE index_loc = subexpressions[1]->get_location();
2026
2027 /* Getting if an array is being used uninitialized is beyond what we get
2028 * from ir_value.data.assigned. Setting is_lhs as true would force to
2029 * not raise a uninitialized warning when using an array
2030 */
2031 subexpressions[0]->set_is_lhs(true);
2032 op[0] = subexpressions[0]->hir(instructions, state);
2033 op[1] = subexpressions[1]->hir(instructions, state);
2034
2035 result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
2036 loc, index_loc);
2037
2038 if (glsl_type_is_error(result->type))
2039 error_emitted = true;
2040
2041 break;
2042 }
2043
2044 case ast_unsized_array_dim:
2045 unreachable("ast_unsized_array_dim: Should never get here.");
2046
2047 case ast_function_call:
2048 /* Should *NEVER* get here. ast_function_call should always be handled
2049 * by ast_function_expression::hir.
2050 */
2051 unreachable("ast_function_call: handled elsewhere ");
2052
2053 case ast_identifier: {
2054 /* ast_identifier can appear several places in a full abstract syntax
2055 * tree. This particular use must be at location specified in the grammar
2056 * as 'variable_identifier'.
2057 */
2058 ir_variable *var =
2059 state->symbols->get_variable(this->primary_expression.identifier);
2060
2061 if (var == NULL) {
2062 /* the identifier might be a subroutine name */
2063 char *sub_name;
2064 sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2065 var = state->symbols->get_variable(sub_name);
2066 ralloc_free(sub_name);
2067 }
2068
2069 if (var != NULL) {
2070 var->data.used = true;
2071 result = new(ctx) ir_dereference_variable(var);
2072
2073 if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2074 && !this->is_lhs
2075 && result->variable_referenced()->data.assigned != true
2076 && !is_gl_identifier(var->name)) {
2077 _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2078 this->primary_expression.identifier);
2079 }
2080
2081 if (var->is_fb_fetch_color_output()) {
2082 /* From the EXT_shader_framebuffer_fetch spec:
2083 *
2084 * "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2085 * enabled in addition, it's an error to use gl_LastFragData if it
2086 * hasn't been explicitly redeclared with layout(noncoherent)."
2087 */
2088 if (var->data.memory_coherent && !state->EXT_shader_framebuffer_fetch_enable) {
2089 _mesa_glsl_error(&loc, state,
2090 "invalid use of framebuffer fetch output not "
2091 "qualified with layout(noncoherent)");
2092 }
2093 } else if (var->data.fb_fetch_output) {
2094 /* From the ARM_shader_framebuffer_fetch_depth_stencil spec:
2095 *
2096 * "It is not legal for a fragment shader to read from gl_LastFragDepthARM
2097 * and gl_LastFragStencilARM if the early_fragment_tests layout qualifier
2098 * is specified. This will result in a compile-time error."
2099 */
2100 if (state->fs_early_fragment_tests) {
2101 _mesa_glsl_error(&loc, state,
2102 "invalid use of depth or stencil fetch "
2103 "with early fragment tests enabled");
2104 }
2105 }
2106
2107 } else {
2108 _mesa_glsl_error(& loc, state, "`%s' undeclared",
2109 this->primary_expression.identifier);
2110
2111 result = ir_rvalue::error_value(ctx);
2112 error_emitted = true;
2113 }
2114 break;
2115 }
2116
2117 case ast_int_constant:
2118 result = new(ctx) ir_constant(this->primary_expression.int_constant);
2119 break;
2120
2121 case ast_uint_constant:
2122 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2123 break;
2124
2125 case ast_float16_constant:
2126 result = new(ctx) ir_constant(float16_t(this->primary_expression.float16_constant));
2127 break;
2128
2129 case ast_float_constant:
2130 result = new(ctx) ir_constant(this->primary_expression.float_constant);
2131 break;
2132
2133 case ast_bool_constant:
2134 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2135 break;
2136
2137 case ast_double_constant:
2138 result = new(ctx) ir_constant(this->primary_expression.double_constant);
2139 break;
2140
2141 case ast_uint64_constant:
2142 result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2143 break;
2144
2145 case ast_int64_constant:
2146 result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2147 break;
2148
2149 case ast_sequence: {
2150 /* It should not be possible to generate a sequence in the AST without
2151 * any expressions in it.
2152 */
2153 assert(!this->expressions.is_empty());
2154
2155 /* The r-value of a sequence is the last expression in the sequence. If
2156 * the other expressions in the sequence do not have side-effects (and
2157 * therefore add instructions to the instruction list), they get dropped
2158 * on the floor.
2159 */
2160 exec_node *previous_tail = NULL;
2161 YYLTYPE previous_operand_loc = loc;
2162
2163 foreach_list_typed (ast_node, ast, link, &this->expressions) {
2164 /* If one of the operands of comma operator does not generate any
2165 * code, we want to emit a warning. At each pass through the loop
2166 * previous_tail will point to the last instruction in the stream
2167 * *before* processing the previous operand. Naturally,
2168 * instructions->get_tail_raw() will point to the last instruction in
2169 * the stream *after* processing the previous operand. If the two
2170 * pointers match, then the previous operand had no effect.
2171 *
2172 * The warning behavior here differs slightly from GCC. GCC will
2173 * only emit a warning if none of the left-hand operands have an
2174 * effect. However, it will emit a warning for each. I believe that
2175 * there are some cases in C (especially with GCC extensions) where
2176 * it is useful to have an intermediate step in a sequence have no
2177 * effect, but I don't think these cases exist in GLSL. Either way,
2178 * it would be a giant hassle to replicate that behavior.
2179 */
2180 if (previous_tail == instructions->get_tail_raw()) {
2181 _mesa_glsl_warning(&previous_operand_loc, state,
2182 "left-hand operand of comma expression has "
2183 "no effect");
2184 }
2185
2186 /* The tail is directly accessed instead of using the get_tail()
2187 * method for performance reasons. get_tail() has extra code to
2188 * return NULL when the list is empty. We don't care about that
2189 * here, so using get_tail_raw() is fine.
2190 */
2191 previous_tail = instructions->get_tail_raw();
2192 previous_operand_loc = ast->get_location();
2193
2194 result = ast->hir(instructions, state);
2195 }
2196
2197 /* Any errors should have already been emitted in the loop above.
2198 */
2199 error_emitted = true;
2200 break;
2201 }
2202 }
2203 type = NULL; /* use result->type, not type. */
2204 assert(error_emitted || (result != NULL || !needs_rvalue));
2205
2206 if (result && glsl_type_is_error(result->type) && !error_emitted)
2207 _mesa_glsl_error(& loc, state, "type mismatch");
2208
2209 return result;
2210 }
2211
2212 bool
has_sequence_subexpression() const2213 ast_expression::has_sequence_subexpression() const
2214 {
2215 switch (this->oper) {
2216 case ast_plus:
2217 case ast_neg:
2218 case ast_bit_not:
2219 case ast_logic_not:
2220 case ast_pre_inc:
2221 case ast_pre_dec:
2222 case ast_post_inc:
2223 case ast_post_dec:
2224 return this->subexpressions[0]->has_sequence_subexpression();
2225
2226 case ast_assign:
2227 case ast_add:
2228 case ast_sub:
2229 case ast_mul:
2230 case ast_div:
2231 case ast_mod:
2232 case ast_lshift:
2233 case ast_rshift:
2234 case ast_less:
2235 case ast_greater:
2236 case ast_lequal:
2237 case ast_gequal:
2238 case ast_nequal:
2239 case ast_equal:
2240 case ast_bit_and:
2241 case ast_bit_xor:
2242 case ast_bit_or:
2243 case ast_logic_and:
2244 case ast_logic_or:
2245 case ast_logic_xor:
2246 case ast_array_index:
2247 case ast_mul_assign:
2248 case ast_div_assign:
2249 case ast_add_assign:
2250 case ast_sub_assign:
2251 case ast_mod_assign:
2252 case ast_ls_assign:
2253 case ast_rs_assign:
2254 case ast_and_assign:
2255 case ast_xor_assign:
2256 case ast_or_assign:
2257 return this->subexpressions[0]->has_sequence_subexpression() ||
2258 this->subexpressions[1]->has_sequence_subexpression();
2259
2260 case ast_conditional:
2261 return this->subexpressions[0]->has_sequence_subexpression() ||
2262 this->subexpressions[1]->has_sequence_subexpression() ||
2263 this->subexpressions[2]->has_sequence_subexpression();
2264
2265 case ast_sequence:
2266 return true;
2267
2268 case ast_field_selection:
2269 case ast_identifier:
2270 case ast_int_constant:
2271 case ast_uint_constant:
2272 case ast_float16_constant:
2273 case ast_float_constant:
2274 case ast_bool_constant:
2275 case ast_double_constant:
2276 case ast_int64_constant:
2277 case ast_uint64_constant:
2278 return false;
2279
2280 case ast_aggregate:
2281 return false;
2282
2283 case ast_function_call:
2284 unreachable("should be handled by ast_function_expression::hir");
2285
2286 case ast_unsized_array_dim:
2287 unreachable("ast_unsized_array_dim: Should never get here.");
2288 }
2289
2290 return false;
2291 }
2292
2293 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2294 ast_expression_statement::hir(exec_list *instructions,
2295 struct _mesa_glsl_parse_state *state)
2296 {
2297 /* It is possible to have expression statements that don't have an
2298 * expression. This is the solitary semicolon:
2299 *
2300 * for (i = 0; i < 5; i++)
2301 * ;
2302 *
2303 * In this case the expression will be NULL. Test for NULL and don't do
2304 * anything in that case.
2305 */
2306 if (expression != NULL)
2307 expression->hir_no_rvalue(instructions, state);
2308
2309 /* Statements do not have r-values.
2310 */
2311 return NULL;
2312 }
2313
2314
2315 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2316 ast_compound_statement::hir(exec_list *instructions,
2317 struct _mesa_glsl_parse_state *state)
2318 {
2319 if (new_scope)
2320 state->symbols->push_scope();
2321
2322 foreach_list_typed (ast_node, ast, link, &this->statements)
2323 ast->hir(instructions, state);
2324
2325 if (new_scope)
2326 state->symbols->pop_scope();
2327
2328 /* Compound statements do not have r-values.
2329 */
2330 return NULL;
2331 }
2332
2333 /**
2334 * Evaluate the given exec_node (which should be an ast_node representing
2335 * a single array dimension) and return its integer value.
2336 */
2337 static unsigned
process_array_size(exec_node * node,struct _mesa_glsl_parse_state * state)2338 process_array_size(exec_node *node,
2339 struct _mesa_glsl_parse_state *state)
2340 {
2341 void *mem_ctx = state;
2342
2343 exec_list dummy_instructions;
2344
2345 ast_node *array_size = exec_node_data(ast_node, node, link);
2346
2347 /**
2348 * Dimensions other than the outermost dimension can by unsized if they
2349 * are immediately sized by a constructor or initializer.
2350 */
2351 if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2352 return 0;
2353
2354 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2355 YYLTYPE loc = array_size->get_location();
2356
2357 if (ir == NULL) {
2358 _mesa_glsl_error(& loc, state,
2359 "array size could not be resolved");
2360 return 0;
2361 }
2362
2363 if (!glsl_type_is_integer_32(ir->type)) {
2364 _mesa_glsl_error(& loc, state,
2365 "array size must be integer type");
2366 return 0;
2367 }
2368
2369 if (!glsl_type_is_scalar(ir->type)) {
2370 _mesa_glsl_error(& loc, state,
2371 "array size must be scalar type");
2372 return 0;
2373 }
2374
2375 ir_constant *const size = ir->constant_expression_value(mem_ctx);
2376 if (size == NULL ||
2377 (state->is_version(120, 300) &&
2378 array_size->has_sequence_subexpression())) {
2379 _mesa_glsl_error(& loc, state, "array size must be a "
2380 "constant valued expression");
2381 return 0;
2382 }
2383
2384 if (size->value.i[0] <= 0) {
2385 _mesa_glsl_error(& loc, state, "array size must be > 0");
2386 return 0;
2387 }
2388
2389 assert(size->type == ir->type);
2390
2391 /* If the array size is const (and we've verified that
2392 * it is) then no instructions should have been emitted
2393 * when we converted it to HIR. If they were emitted,
2394 * then either the array size isn't const after all, or
2395 * we are emitting unnecessary instructions.
2396 */
2397 assert(dummy_instructions.is_empty());
2398
2399 return size->value.u[0];
2400 }
2401
2402 static const glsl_type *
process_array_type(YYLTYPE * loc,const glsl_type * base,ast_array_specifier * array_specifier,struct _mesa_glsl_parse_state * state)2403 process_array_type(YYLTYPE *loc, const glsl_type *base,
2404 ast_array_specifier *array_specifier,
2405 struct _mesa_glsl_parse_state *state)
2406 {
2407 const glsl_type *array_type = base;
2408
2409 if (array_specifier != NULL) {
2410 if (glsl_type_is_array(base)) {
2411
2412 /* From page 19 (page 25) of the GLSL 1.20 spec:
2413 *
2414 * "Only one-dimensional arrays may be declared."
2415 */
2416 if (!state->check_arrays_of_arrays_allowed(loc)) {
2417 return &glsl_type_builtin_error;
2418 }
2419 }
2420
2421 for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2422 !node->is_head_sentinel(); node = node->prev) {
2423 unsigned array_size = process_array_size(node, state);
2424 array_type = glsl_array_type(array_type, array_size, 0);
2425 }
2426 }
2427
2428 return array_type;
2429 }
2430
2431 static bool
precision_qualifier_allowed(const glsl_type * type)2432 precision_qualifier_allowed(const glsl_type *type)
2433 {
2434 /* Precision qualifiers apply to floating point, integer and opaque
2435 * types.
2436 *
2437 * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2438 * "Any floating point or any integer declaration can have the type
2439 * preceded by one of these precision qualifiers [...] Literal
2440 * constants do not have precision qualifiers. Neither do Boolean
2441 * variables.
2442 *
2443 * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2444 * spec also says:
2445 *
2446 * "Precision qualifiers are added for code portability with OpenGL
2447 * ES, not for functionality. They have the same syntax as in OpenGL
2448 * ES."
2449 *
2450 * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2451 *
2452 * "uniform lowp sampler2D sampler;
2453 * highp vec2 coord;
2454 * ...
2455 * lowp vec4 col = texture2D (sampler, coord);
2456 * // texture2D returns lowp"
2457 *
2458 * From this, we infer that GLSL 1.30 (and later) should allow precision
2459 * qualifiers on sampler types just like float and integer types.
2460 */
2461 const glsl_type *const t = glsl_without_array(type);
2462
2463 return (glsl_type_is_float(t) || glsl_type_is_integer_32(t) || glsl_contains_opaque(t)) &&
2464 !glsl_type_is_struct(t);
2465 }
2466
2467 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2468 ast_type_specifier::glsl_type(const char **name,
2469 struct _mesa_glsl_parse_state *state) const
2470 {
2471 const struct glsl_type *type;
2472
2473 if (this->type != NULL)
2474 type = this->type;
2475 else if (structure)
2476 type = structure->type;
2477 else
2478 type = state->symbols->get_type(this->type_name);
2479 *name = this->type_name;
2480
2481 YYLTYPE loc = this->get_location();
2482 type = process_array_type(&loc, type, this->array_specifier, state);
2483
2484 return type;
2485 }
2486
2487 /**
2488 * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2489 *
2490 * "The precision statement
2491 *
2492 * precision precision-qualifier type;
2493 *
2494 * can be used to establish a default precision qualifier. The type field can
2495 * be either int or float or any of the sampler types, (...) If type is float,
2496 * the directive applies to non-precision-qualified floating point type
2497 * (scalar, vector, and matrix) declarations. If type is int, the directive
2498 * applies to all non-precision-qualified integer type (scalar, vector, signed,
2499 * and unsigned) declarations."
2500 *
2501 * We use the symbol table to keep the values of the default precisions for
2502 * each 'type' in each scope and we use the 'type' string from the precision
2503 * statement as key in the symbol table. When we want to retrieve the default
2504 * precision associated with a given glsl_type we need to know the type string
2505 * associated with it. This is what this function returns.
2506 */
2507 static const char *
get_type_name_for_precision_qualifier(const glsl_type * type)2508 get_type_name_for_precision_qualifier(const glsl_type *type)
2509 {
2510 switch (type->base_type) {
2511 case GLSL_TYPE_FLOAT:
2512 return "float";
2513 case GLSL_TYPE_UINT:
2514 case GLSL_TYPE_INT:
2515 return "int";
2516 case GLSL_TYPE_ATOMIC_UINT:
2517 return "atomic_uint";
2518 case GLSL_TYPE_IMAGE:
2519 FALLTHROUGH;
2520 case GLSL_TYPE_SAMPLER: {
2521 const unsigned type_idx =
2522 type->sampler_array + 2 * type->sampler_shadow;
2523 const unsigned offset = glsl_type_is_sampler(type) ? 0 : 4;
2524 assert(type_idx < 4);
2525 switch (type->sampled_type) {
2526 case GLSL_TYPE_FLOAT:
2527 switch (type->sampler_dimensionality) {
2528 case GLSL_SAMPLER_DIM_1D: {
2529 assert(glsl_type_is_sampler(type));
2530 static const char *const names[4] = {
2531 "sampler1D", "sampler1DArray",
2532 "sampler1DShadow", "sampler1DArrayShadow"
2533 };
2534 return names[type_idx];
2535 }
2536 case GLSL_SAMPLER_DIM_2D: {
2537 static const char *const names[8] = {
2538 "sampler2D", "sampler2DArray",
2539 "sampler2DShadow", "sampler2DArrayShadow",
2540 "image2D", "image2DArray", NULL, NULL
2541 };
2542 return names[offset + type_idx];
2543 }
2544 case GLSL_SAMPLER_DIM_3D: {
2545 static const char *const names[8] = {
2546 "sampler3D", NULL, NULL, NULL,
2547 "image3D", NULL, NULL, NULL
2548 };
2549 return names[offset + type_idx];
2550 }
2551 case GLSL_SAMPLER_DIM_CUBE: {
2552 static const char *const names[8] = {
2553 "samplerCube", "samplerCubeArray",
2554 "samplerCubeShadow", "samplerCubeArrayShadow",
2555 "imageCube", NULL, NULL, NULL
2556 };
2557 return names[offset + type_idx];
2558 }
2559 case GLSL_SAMPLER_DIM_MS: {
2560 assert(glsl_type_is_sampler(type));
2561 static const char *const names[4] = {
2562 "sampler2DMS", "sampler2DMSArray", NULL, NULL
2563 };
2564 return names[type_idx];
2565 }
2566 case GLSL_SAMPLER_DIM_RECT: {
2567 assert(glsl_type_is_sampler(type));
2568 static const char *const names[4] = {
2569 "samplerRect", NULL, "samplerRectShadow", NULL
2570 };
2571 return names[type_idx];
2572 }
2573 case GLSL_SAMPLER_DIM_BUF: {
2574 static const char *const names[8] = {
2575 "samplerBuffer", NULL, NULL, NULL,
2576 "imageBuffer", NULL, NULL, NULL
2577 };
2578 return names[offset + type_idx];
2579 }
2580 case GLSL_SAMPLER_DIM_EXTERNAL: {
2581 assert(glsl_type_is_sampler(type));
2582 static const char *const names[4] = {
2583 "samplerExternalOES", NULL, NULL, NULL
2584 };
2585 return names[type_idx];
2586 }
2587 default:
2588 unreachable("Unsupported sampler/image dimensionality");
2589 } /* sampler/image float dimensionality */
2590 break;
2591 case GLSL_TYPE_INT:
2592 switch (type->sampler_dimensionality) {
2593 case GLSL_SAMPLER_DIM_1D: {
2594 assert(glsl_type_is_sampler(type));
2595 static const char *const names[4] = {
2596 "isampler1D", "isampler1DArray", NULL, NULL
2597 };
2598 return names[type_idx];
2599 }
2600 case GLSL_SAMPLER_DIM_2D: {
2601 static const char *const names[8] = {
2602 "isampler2D", "isampler2DArray", NULL, NULL,
2603 "iimage2D", "iimage2DArray", NULL, NULL
2604 };
2605 return names[offset + type_idx];
2606 }
2607 case GLSL_SAMPLER_DIM_3D: {
2608 static const char *const names[8] = {
2609 "isampler3D", NULL, NULL, NULL,
2610 "iimage3D", NULL, NULL, NULL
2611 };
2612 return names[offset + type_idx];
2613 }
2614 case GLSL_SAMPLER_DIM_CUBE: {
2615 static const char *const names[8] = {
2616 "isamplerCube", "isamplerCubeArray", NULL, NULL,
2617 "iimageCube", NULL, NULL, NULL
2618 };
2619 return names[offset + type_idx];
2620 }
2621 case GLSL_SAMPLER_DIM_MS: {
2622 assert(glsl_type_is_sampler(type));
2623 static const char *const names[4] = {
2624 "isampler2DMS", "isampler2DMSArray", NULL, NULL
2625 };
2626 return names[type_idx];
2627 }
2628 case GLSL_SAMPLER_DIM_RECT: {
2629 assert(glsl_type_is_sampler(type));
2630 static const char *const names[4] = {
2631 "isamplerRect", NULL, "isamplerRectShadow", NULL
2632 };
2633 return names[type_idx];
2634 }
2635 case GLSL_SAMPLER_DIM_BUF: {
2636 static const char *const names[8] = {
2637 "isamplerBuffer", NULL, NULL, NULL,
2638 "iimageBuffer", NULL, NULL, NULL
2639 };
2640 return names[offset + type_idx];
2641 }
2642 default:
2643 unreachable("Unsupported isampler/iimage dimensionality");
2644 } /* sampler/image int dimensionality */
2645 break;
2646 case GLSL_TYPE_UINT:
2647 switch (type->sampler_dimensionality) {
2648 case GLSL_SAMPLER_DIM_1D: {
2649 assert(glsl_type_is_sampler(type));
2650 static const char *const names[4] = {
2651 "usampler1D", "usampler1DArray", NULL, NULL
2652 };
2653 return names[type_idx];
2654 }
2655 case GLSL_SAMPLER_DIM_2D: {
2656 static const char *const names[8] = {
2657 "usampler2D", "usampler2DArray", NULL, NULL,
2658 "uimage2D", "uimage2DArray", NULL, NULL
2659 };
2660 return names[offset + type_idx];
2661 }
2662 case GLSL_SAMPLER_DIM_3D: {
2663 static const char *const names[8] = {
2664 "usampler3D", NULL, NULL, NULL,
2665 "uimage3D", NULL, NULL, NULL
2666 };
2667 return names[offset + type_idx];
2668 }
2669 case GLSL_SAMPLER_DIM_CUBE: {
2670 static const char *const names[8] = {
2671 "usamplerCube", "usamplerCubeArray", NULL, NULL,
2672 "uimageCube", NULL, NULL, NULL
2673 };
2674 return names[offset + type_idx];
2675 }
2676 case GLSL_SAMPLER_DIM_MS: {
2677 assert(glsl_type_is_sampler(type));
2678 static const char *const names[4] = {
2679 "usampler2DMS", "usampler2DMSArray", NULL, NULL
2680 };
2681 return names[type_idx];
2682 }
2683 case GLSL_SAMPLER_DIM_RECT: {
2684 assert(glsl_type_is_sampler(type));
2685 static const char *const names[4] = {
2686 "usamplerRect", NULL, "usamplerRectShadow", NULL
2687 };
2688 return names[type_idx];
2689 }
2690 case GLSL_SAMPLER_DIM_BUF: {
2691 static const char *const names[8] = {
2692 "usamplerBuffer", NULL, NULL, NULL,
2693 "uimageBuffer", NULL, NULL, NULL
2694 };
2695 return names[offset + type_idx];
2696 }
2697 default:
2698 unreachable("Unsupported usampler/uimage dimensionality");
2699 } /* sampler/image uint dimensionality */
2700 break;
2701 default:
2702 unreachable("Unsupported sampler/image type");
2703 } /* sampler/image type */
2704 break;
2705 } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2706 break;
2707 default:
2708 unreachable("Unsupported type");
2709 } /* base type */
2710
2711 return NULL;
2712 }
2713
2714 static unsigned
select_gles_precision(unsigned qual_precision,const glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)2715 select_gles_precision(unsigned qual_precision,
2716 const glsl_type *type,
2717 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2718 {
2719 /* Precision qualifiers do not have any meaning in Desktop GLSL.
2720 * In GLES we take the precision from the type qualifier if present,
2721 * otherwise, if the type of the variable allows precision qualifiers at
2722 * all, we look for the default precision qualifier for that type in the
2723 * current scope.
2724 */
2725 assert(state->es_shader);
2726
2727 unsigned precision = GLSL_PRECISION_NONE;
2728 if (qual_precision) {
2729 precision = qual_precision;
2730 } else if (precision_qualifier_allowed(type)) {
2731 const char *type_name =
2732 get_type_name_for_precision_qualifier(glsl_without_array(type));
2733 assert(type_name != NULL);
2734
2735 precision =
2736 state->symbols->get_default_precision_qualifier(type_name);
2737 if (precision == ast_precision_none) {
2738 _mesa_glsl_error(loc, state,
2739 "No precision specified in this scope for type `%s'",
2740 glsl_get_type_name(type));
2741 }
2742 }
2743
2744
2745 /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2746 *
2747 * "The default precision of all atomic types is highp. It is an error to
2748 * declare an atomic type with a different precision or to specify the
2749 * default precision for an atomic type to be lowp or mediump."
2750 */
2751 if (glsl_type_is_atomic_uint(type) && precision != ast_precision_high) {
2752 _mesa_glsl_error(loc, state,
2753 "atomic_uint can only have highp precision qualifier");
2754 }
2755
2756 return precision;
2757 }
2758
2759 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2760 ast_fully_specified_type::glsl_type(const char **name,
2761 struct _mesa_glsl_parse_state *state) const
2762 {
2763 return this->specifier->glsl_type(name, state);
2764 }
2765
2766 /**
2767 * Determine whether a toplevel variable declaration declares a varying. This
2768 * function operates by examining the variable's mode and the shader target,
2769 * so it correctly identifies linkage variables regardless of whether they are
2770 * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2771 *
2772 * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2773 * this function will produce undefined results.
2774 */
2775 static bool
is_varying_var(ir_variable * var,gl_shader_stage target)2776 is_varying_var(ir_variable *var, gl_shader_stage target)
2777 {
2778 switch (target) {
2779 case MESA_SHADER_VERTEX:
2780 return var->data.mode == ir_var_shader_out;
2781 case MESA_SHADER_FRAGMENT:
2782 return var->data.mode == ir_var_shader_in ||
2783 (var->data.mode == ir_var_system_value &&
2784 var->data.location == SYSTEM_VALUE_FRAG_COORD);
2785 default:
2786 return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2787 }
2788 }
2789
2790 static bool
is_allowed_invariant(ir_variable * var,struct _mesa_glsl_parse_state * state)2791 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2792 {
2793 if (is_varying_var(var, state->stage))
2794 return true;
2795
2796 /* ES2 says:
2797 *
2798 * "For the built-in special variables, gl_FragCoord can only be declared
2799 * invariant if and only if gl_Position is declared invariant. Similarly
2800 * gl_PointCoord can only be declared invariant if and only if gl_PointSize
2801 * is declared invariant. It is an error to declare gl_FrontFacing as
2802 * invariant. The invariance of gl_FrontFacing is the same as the invariance
2803 * of gl_Position."
2804 *
2805 * ES3.1 says about invariance:
2806 *
2807 * "How does this rule apply to the built-in special variables?
2808 *
2809 * Option 1: It should be the same as for varyings. But gl_Position is used
2810 * internally by the rasterizer as well as for gl_FragCoord so there may be
2811 * cases where rasterization is required to be invariant but gl_FragCoord is
2812 * not.
2813 *
2814 * RESOLUTION: Option 1."
2815 *
2816 * and the ES3 spec has similar text but the "RESOLUTION" is missing.
2817 *
2818 * Any system values should be from built-in special variables.
2819 */
2820 if (var->data.mode == ir_var_system_value) {
2821 if (state->is_version(0, 300)) {
2822 return true;
2823 } else {
2824 /* Note: We don't actually have a check that the VS's PointSize is
2825 * invariant, even when it's treated as a varying.
2826 */
2827 if (var->data.location == SYSTEM_VALUE_POINT_COORD)
2828 return true;
2829 }
2830 }
2831
2832 /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2833 * "Only variables output from a vertex shader can be candidates
2834 * for invariance".
2835 */
2836 if (!state->is_version(130, 100))
2837 return false;
2838
2839 /*
2840 * Later specs remove this language - so allowed invariant
2841 * on fragment shader outputs as well.
2842 */
2843 if (state->stage == MESA_SHADER_FRAGMENT &&
2844 var->data.mode == ir_var_shader_out)
2845 return true;
2846 return false;
2847 }
2848
2849 static void
validate_component_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,unsigned qual_component)2850 validate_component_layout_for_type(struct _mesa_glsl_parse_state *state,
2851 YYLTYPE *loc, const glsl_type *type,
2852 unsigned qual_component)
2853 {
2854 type = glsl_without_array(type);
2855 unsigned components = glsl_get_component_slots(type);
2856
2857 if (glsl_type_is_matrix(type) || glsl_type_is_struct(type)) {
2858 _mesa_glsl_error(loc, state, "component layout qualifier "
2859 "cannot be applied to a matrix, a structure, "
2860 "a block, or an array containing any of these.");
2861 } else if (components > 4 && glsl_type_is_64bit(type)) {
2862 _mesa_glsl_error(loc, state, "component layout qualifier "
2863 "cannot be applied to dvec%u.",
2864 components / 2);
2865 } else if (qual_component != 0 && (qual_component + components - 1) > 3) {
2866 _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
2867 (qual_component + components - 1));
2868 } else if (qual_component == 1 && glsl_type_is_64bit(type)) {
2869 /* We don't bother checking for 3 as it should be caught by the
2870 * overflow check above.
2871 */
2872 _mesa_glsl_error(loc, state, "doubles cannot begin at component 1 or 3");
2873 }
2874 }
2875
2876 /**
2877 * Matrix layout qualifiers are only allowed on certain types
2878 */
2879 static void
validate_matrix_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,ir_variable * var)2880 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2881 YYLTYPE *loc,
2882 const glsl_type *type,
2883 ir_variable *var)
2884 {
2885 if (var && !var->is_in_buffer_block()) {
2886 /* Layout qualifiers may only apply to interface blocks and fields in
2887 * them.
2888 */
2889 _mesa_glsl_error(loc, state,
2890 "uniform block layout qualifiers row_major and "
2891 "column_major may not be applied to variables "
2892 "outside of uniform blocks");
2893 } else if (!glsl_type_is_matrix(glsl_without_array(type))) {
2894 /* The OpenGL ES 3.0 conformance tests did not originally allow
2895 * matrix layout qualifiers on non-matrices. However, the OpenGL
2896 * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2897 * amended to specifically allow these layouts on all types. Emit
2898 * a warning so that people know their code may not be portable.
2899 */
2900 _mesa_glsl_warning(loc, state,
2901 "uniform block layout qualifiers row_major and "
2902 "column_major applied to non-matrix types may "
2903 "be rejected by older compilers");
2904 }
2905 }
2906
2907 static bool
validate_xfb_buffer_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned xfb_buffer)2908 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2909 struct _mesa_glsl_parse_state *state,
2910 unsigned xfb_buffer) {
2911 if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2912 _mesa_glsl_error(loc, state,
2913 "invalid xfb_buffer specified %d is larger than "
2914 "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2915 xfb_buffer,
2916 state->Const.MaxTransformFeedbackBuffers - 1);
2917 return false;
2918 }
2919
2920 return true;
2921 }
2922
2923 /* From the ARB_enhanced_layouts spec:
2924 *
2925 * "Variables and block members qualified with *xfb_offset* can be
2926 * scalars, vectors, matrices, structures, and (sized) arrays of these.
2927 * The offset must be a multiple of the size of the first component of
2928 * the first qualified variable or block member, or a compile-time error
2929 * results. Further, if applied to an aggregate containing a double,
2930 * the offset must also be a multiple of 8, and the space taken in the
2931 * buffer will be a multiple of 8.
2932 */
2933 static bool
validate_xfb_offset_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,int xfb_offset,const glsl_type * type,unsigned component_size)2934 validate_xfb_offset_qualifier(YYLTYPE *loc,
2935 struct _mesa_glsl_parse_state *state,
2936 int xfb_offset, const glsl_type *type,
2937 unsigned component_size) {
2938 const glsl_type *t_without_array = glsl_without_array(type);
2939
2940 if (xfb_offset != -1 && glsl_type_is_unsized_array(type)) {
2941 _mesa_glsl_error(loc, state,
2942 "xfb_offset can't be used with unsized arrays.");
2943 return false;
2944 }
2945
2946 /* Make sure nested structs don't contain unsized arrays, and validate
2947 * any xfb_offsets on interface members.
2948 */
2949 if (glsl_type_is_struct(t_without_array) || glsl_type_is_interface(t_without_array))
2950 for (unsigned int i = 0; i < t_without_array->length; i++) {
2951 const glsl_type *member_t = t_without_array->fields.structure[i].type;
2952
2953 /* When the interface block doesn't have an xfb_offset qualifier then
2954 * we apply the component size rules at the member level.
2955 */
2956 if (xfb_offset == -1)
2957 component_size = glsl_contains_double(member_t) ? 8 : 4;
2958
2959 int xfb_offset = t_without_array->fields.structure[i].offset;
2960 validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2961 component_size);
2962 }
2963
2964 /* Nested structs or interface block without offset may not have had an
2965 * offset applied yet so return.
2966 */
2967 if (xfb_offset == -1) {
2968 return true;
2969 }
2970
2971 if (xfb_offset % component_size) {
2972 _mesa_glsl_error(loc, state,
2973 "invalid qualifier xfb_offset=%d must be a multiple "
2974 "of the first component size of the first qualified "
2975 "variable or block member. Or double if an aggregate "
2976 "that contains a double (%d).",
2977 xfb_offset, component_size);
2978 return false;
2979 }
2980
2981 return true;
2982 }
2983
2984 static bool
validate_stream_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned stream)2985 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2986 unsigned stream)
2987 {
2988 if (stream >= state->consts->MaxVertexStreams) {
2989 _mesa_glsl_error(loc, state,
2990 "invalid stream specified %d is larger than "
2991 "MAX_VERTEX_STREAMS - 1 (%d).",
2992 stream, state->consts->MaxVertexStreams - 1);
2993 return false;
2994 }
2995
2996 return true;
2997 }
2998
2999 static void
apply_explicit_binding(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,ir_variable * var,const glsl_type * type,const ast_type_qualifier * qual)3000 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
3001 YYLTYPE *loc,
3002 ir_variable *var,
3003 const glsl_type *type,
3004 const ast_type_qualifier *qual)
3005 {
3006 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
3007 _mesa_glsl_error(loc, state,
3008 "the \"binding\" qualifier only applies to uniforms and "
3009 "shader storage buffer objects");
3010 return;
3011 }
3012
3013 unsigned qual_binding;
3014 if (!process_qualifier_constant(state, loc, "binding", qual->binding,
3015 &qual_binding)) {
3016 return;
3017 }
3018
3019 const struct gl_constants *consts = state->consts;
3020 unsigned elements = glsl_type_is_array(type) ? glsl_get_aoa_size(type) : 1;
3021 unsigned max_index = qual_binding + elements - 1;
3022 const glsl_type *base_type = glsl_without_array(type);
3023
3024 if (glsl_type_is_interface(base_type)) {
3025 /* UBOs. From page 60 of the GLSL 4.20 specification:
3026 * "If the binding point for any uniform block instance is less than zero,
3027 * or greater than or equal to the implementation-dependent maximum
3028 * number of uniform buffer bindings, a compilation error will occur.
3029 * When the binding identifier is used with a uniform block instanced as
3030 * an array of size N, all elements of the array from binding through
3031 * binding + N – 1 must be within this range."
3032 *
3033 * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
3034 */
3035 if (qual->flags.q.uniform &&
3036 max_index >= consts->MaxUniformBufferBindings) {
3037 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
3038 "the maximum number of UBO binding points (%d)",
3039 qual_binding, elements,
3040 consts->MaxUniformBufferBindings);
3041 return;
3042 }
3043
3044 /* SSBOs. From page 67 of the GLSL 4.30 specification:
3045 * "If the binding point for any uniform or shader storage block instance
3046 * is less than zero, or greater than or equal to the
3047 * implementation-dependent maximum number of uniform buffer bindings, a
3048 * compile-time error will occur. When the binding identifier is used
3049 * with a uniform or shader storage block instanced as an array of size
3050 * N, all elements of the array from binding through binding + N – 1 must
3051 * be within this range."
3052 */
3053 if (qual->flags.q.buffer &&
3054 max_index >= consts->MaxShaderStorageBufferBindings) {
3055 _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
3056 "the maximum number of SSBO binding points (%d)",
3057 qual_binding, elements,
3058 consts->MaxShaderStorageBufferBindings);
3059 return;
3060 }
3061 } else if (glsl_type_is_sampler(base_type)) {
3062 /* Samplers. From page 63 of the GLSL 4.20 specification:
3063 * "If the binding is less than zero, or greater than or equal to the
3064 * implementation-dependent maximum supported number of units, a
3065 * compilation error will occur. When the binding identifier is used
3066 * with an array of size N, all elements of the array from binding
3067 * through binding + N - 1 must be within this range."
3068 */
3069 unsigned limit = consts->MaxCombinedTextureImageUnits;
3070
3071 if (max_index >= limit) {
3072 _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
3073 "exceeds the maximum number of texture image units "
3074 "(%u)", qual_binding, elements, limit);
3075
3076 return;
3077 }
3078 } else if (glsl_contains_atomic(base_type)) {
3079 assert(consts->MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
3080 if (qual_binding >= consts->MaxAtomicBufferBindings) {
3081 _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
3082 "maximum number of atomic counter buffer bindings "
3083 "(%u)", qual_binding,
3084 consts->MaxAtomicBufferBindings);
3085
3086 return;
3087 }
3088 } else if ((state->is_version(420, 310) ||
3089 state->ARB_shading_language_420pack_enable) &&
3090 glsl_type_is_image(base_type)) {
3091 assert(consts->MaxImageUnits <= MAX_IMAGE_UNITS);
3092 if (max_index >= consts->MaxImageUnits) {
3093 _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
3094 "maximum number of image units (%d)", max_index,
3095 consts->MaxImageUnits);
3096 return;
3097 }
3098
3099 } else {
3100 _mesa_glsl_error(loc, state,
3101 "the \"binding\" qualifier only applies to uniform "
3102 "blocks, storage blocks, opaque variables, or arrays "
3103 "thereof");
3104 return;
3105 }
3106
3107 var->data.explicit_binding = true;
3108 var->data.binding = qual_binding;
3109
3110 return;
3111 }
3112
3113 static void
validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct glsl_type * var_type,ir_variable_mode mode)3114 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
3115 YYLTYPE *loc,
3116 const glsl_interp_mode interpolation,
3117 const struct glsl_type *var_type,
3118 ir_variable_mode mode)
3119 {
3120 if (state->stage != MESA_SHADER_FRAGMENT ||
3121 interpolation == INTERP_MODE_FLAT ||
3122 mode != ir_var_shader_in)
3123 return;
3124
3125 /* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
3126 * so must integer vertex outputs.
3127 *
3128 * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3129 * "Fragment shader inputs that are signed or unsigned integers or
3130 * integer vectors must be qualified with the interpolation qualifier
3131 * flat."
3132 *
3133 * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3134 * "Fragment shader inputs that are, or contain, signed or unsigned
3135 * integers or integer vectors must be qualified with the
3136 * interpolation qualifier flat."
3137 *
3138 * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3139 * "Vertex shader outputs that are, or contain, signed or unsigned
3140 * integers or integer vectors must be qualified with the
3141 * interpolation qualifier flat."
3142 *
3143 * Note that prior to GLSL 1.50, this requirement applied to vertex
3144 * outputs rather than fragment inputs. That creates problems in the
3145 * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3146 * desktop GL shaders. For GLSL ES shaders, we follow the spec and
3147 * apply the restriction to both vertex outputs and fragment inputs.
3148 *
3149 * Note also that the desktop GLSL specs are missing the text "or
3150 * contain"; this is presumably an oversight, since there is no
3151 * reasonable way to interpolate a fragment shader input that contains
3152 * an integer. See Khronos bug #15671.
3153 */
3154 if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3155 && glsl_contains_integer(var_type)) {
3156 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3157 "an integer, then it must be qualified with 'flat'");
3158 }
3159
3160 /* Double fragment inputs must be qualified with 'flat'.
3161 *
3162 * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3163 * "This extension does not support interpolation of double-precision
3164 * values; doubles used as fragment shader inputs must be qualified as
3165 * "flat"."
3166 *
3167 * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3168 * "Fragment shader inputs that are signed or unsigned integers, integer
3169 * vectors, or any double-precision floating-point type must be
3170 * qualified with the interpolation qualifier flat."
3171 *
3172 * Note that the GLSL specs are missing the text "or contain"; this is
3173 * presumably an oversight. See Khronos bug #15671.
3174 *
3175 * The 'double' type does not exist in GLSL ES so far.
3176 */
3177 if (state->has_double()
3178 && glsl_contains_double(var_type)) {
3179 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3180 "a double, then it must be qualified with 'flat'");
3181 }
3182
3183 /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3184 *
3185 * From section 4.3.4 of the ARB_bindless_texture spec:
3186 *
3187 * "(modify last paragraph, p. 35, allowing samplers and images as
3188 * fragment shader inputs) ... Fragment inputs can only be signed and
3189 * unsigned integers and integer vectors, floating point scalars,
3190 * floating-point vectors, matrices, sampler and image types, or arrays
3191 * or structures of these. Fragment shader inputs that are signed or
3192 * unsigned integers, integer vectors, or any double-precision floating-
3193 * point type, or any sampler or image type must be qualified with the
3194 * interpolation qualifier "flat"."
3195 */
3196 if (state->has_bindless()
3197 && (glsl_contains_sampler(var_type) || glsl_type_contains_image(var_type))) {
3198 _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3199 "a bindless sampler (or image), then it must be "
3200 "qualified with 'flat'");
3201 }
3202 }
3203
3204 static void
validate_interpolation_qualifier(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode)3205 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3206 YYLTYPE *loc,
3207 const glsl_interp_mode interpolation,
3208 const struct ast_type_qualifier *qual,
3209 const struct glsl_type *var_type,
3210 ir_variable_mode mode)
3211 {
3212 /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3213 * not to vertex shader inputs nor fragment shader outputs.
3214 *
3215 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3216 * "Outputs from a vertex shader (out) and inputs to a fragment
3217 * shader (in) can be further qualified with one or more of these
3218 * interpolation qualifiers"
3219 * ...
3220 * "These interpolation qualifiers may only precede the qualifiers in,
3221 * centroid in, out, or centroid out in a declaration. They do not apply
3222 * to the deprecated storage qualifiers varying or centroid
3223 * varying. They also do not apply to inputs into a vertex shader or
3224 * outputs from a fragment shader."
3225 *
3226 * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3227 * "Outputs from a shader (out) and inputs to a shader (in) can be
3228 * further qualified with one of these interpolation qualifiers."
3229 * ...
3230 * "These interpolation qualifiers may only precede the qualifiers
3231 * in, centroid in, out, or centroid out in a declaration. They do
3232 * not apply to inputs into a vertex shader or outputs from a
3233 * fragment shader."
3234 */
3235 if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3236 && interpolation != INTERP_MODE_NONE) {
3237 const char *i = interpolation_string(interpolation);
3238 if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3239 _mesa_glsl_error(loc, state,
3240 "interpolation qualifier `%s' can only be applied to "
3241 "shader inputs or outputs.", i);
3242
3243 switch (state->stage) {
3244 case MESA_SHADER_VERTEX:
3245 if (mode == ir_var_shader_in) {
3246 _mesa_glsl_error(loc, state,
3247 "interpolation qualifier '%s' cannot be applied to "
3248 "vertex shader inputs", i);
3249 }
3250 break;
3251 case MESA_SHADER_FRAGMENT:
3252 if (mode == ir_var_shader_out) {
3253 _mesa_glsl_error(loc, state,
3254 "interpolation qualifier '%s' cannot be applied to "
3255 "fragment shader outputs", i);
3256 }
3257 break;
3258 default:
3259 break;
3260 }
3261 }
3262
3263 /* Interpolation qualifiers cannot be applied to 'centroid' and
3264 * 'centroid varying'.
3265 *
3266 * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3267 * "interpolation qualifiers may only precede the qualifiers in,
3268 * centroid in, out, or centroid out in a declaration. They do not apply
3269 * to the deprecated storage qualifiers varying or centroid varying."
3270 *
3271 * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3272 *
3273 * GL_EXT_gpu_shader4 allows this.
3274 */
3275 if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable
3276 && interpolation != INTERP_MODE_NONE
3277 && qual->flags.q.varying) {
3278
3279 const char *i = interpolation_string(interpolation);
3280 const char *s;
3281 if (qual->flags.q.centroid)
3282 s = "centroid varying";
3283 else
3284 s = "varying";
3285
3286 _mesa_glsl_error(loc, state,
3287 "qualifier '%s' cannot be applied to the "
3288 "deprecated storage qualifier '%s'", i, s);
3289 }
3290
3291 validate_fragment_flat_interpolation_input(state, loc, interpolation,
3292 var_type, mode);
3293 }
3294
3295 static glsl_interp_mode
interpret_interpolation_qualifier(const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3296 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3297 const struct glsl_type *var_type,
3298 ir_variable_mode mode,
3299 struct _mesa_glsl_parse_state *state,
3300 YYLTYPE *loc)
3301 {
3302 glsl_interp_mode interpolation;
3303 if (qual->flags.q.flat)
3304 interpolation = INTERP_MODE_FLAT;
3305 else if (qual->flags.q.noperspective)
3306 interpolation = INTERP_MODE_NOPERSPECTIVE;
3307 else if (qual->flags.q.smooth)
3308 interpolation = INTERP_MODE_SMOOTH;
3309 else
3310 interpolation = INTERP_MODE_NONE;
3311
3312 validate_interpolation_qualifier(state, loc,
3313 interpolation,
3314 qual, var_type, mode);
3315
3316 return interpolation;
3317 }
3318
3319
3320 static void
apply_explicit_location(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3321 apply_explicit_location(const struct ast_type_qualifier *qual,
3322 ir_variable *var,
3323 struct _mesa_glsl_parse_state *state,
3324 YYLTYPE *loc)
3325 {
3326 bool fail = false;
3327
3328 unsigned qual_location;
3329 if (!process_qualifier_constant(state, loc, "location", qual->location,
3330 &qual_location)) {
3331 return;
3332 }
3333
3334 /* Checks for GL_ARB_explicit_uniform_location. */
3335 if (qual->flags.q.uniform) {
3336 if (!state->check_explicit_uniform_location_allowed(loc, var))
3337 return;
3338
3339 const struct gl_constants *consts = state->consts;
3340 unsigned max_loc = qual_location + glsl_type_uniform_locations(var->type) - 1;
3341
3342 if (max_loc >= consts->MaxUserAssignableUniformLocations) {
3343 _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3344 ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3345 consts->MaxUserAssignableUniformLocations);
3346 return;
3347 }
3348
3349 var->data.explicit_location = true;
3350 var->data.location = qual_location;
3351 return;
3352 }
3353
3354 /* Between GL_ARB_explicit_attrib_location an
3355 * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3356 * stage can be assigned explicit locations. The checking here associates
3357 * the correct extension with the correct stage's input / output:
3358 *
3359 * input output
3360 * ----- ------
3361 * vertex explicit_loc sso
3362 * tess control sso sso
3363 * tess eval sso sso
3364 * geometry sso sso
3365 * fragment sso explicit_loc
3366 */
3367 switch (state->stage) {
3368 case MESA_SHADER_VERTEX:
3369 if (var->data.mode == ir_var_shader_in) {
3370 if (!state->check_explicit_attrib_location_allowed(loc, var))
3371 return;
3372
3373 break;
3374 }
3375
3376 if (var->data.mode == ir_var_shader_out) {
3377 if (!state->check_separate_shader_objects_allowed(loc, var))
3378 return;
3379
3380 break;
3381 }
3382
3383 fail = true;
3384 break;
3385
3386 case MESA_SHADER_TESS_CTRL:
3387 case MESA_SHADER_TESS_EVAL:
3388 case MESA_SHADER_GEOMETRY:
3389 if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3390 if (!state->check_separate_shader_objects_allowed(loc, var))
3391 return;
3392
3393 break;
3394 }
3395
3396 fail = true;
3397 break;
3398
3399 case MESA_SHADER_FRAGMENT:
3400 if (var->data.mode == ir_var_shader_in) {
3401 if (!state->check_separate_shader_objects_allowed(loc, var))
3402 return;
3403
3404 break;
3405 }
3406
3407 if (var->data.mode == ir_var_shader_out) {
3408 if (!state->check_explicit_attrib_location_allowed(loc, var))
3409 return;
3410
3411 break;
3412 }
3413
3414 fail = true;
3415 break;
3416
3417 case MESA_SHADER_COMPUTE:
3418 _mesa_glsl_error(loc, state,
3419 "compute shader variables cannot be given "
3420 "explicit locations");
3421 return;
3422 default:
3423 fail = true;
3424 break;
3425 };
3426
3427 if (fail) {
3428 _mesa_glsl_error(loc, state,
3429 "%s cannot be given an explicit location in %s shader",
3430 mode_string(var),
3431 _mesa_shader_stage_to_string(state->stage));
3432 } else {
3433 var->data.explicit_location = true;
3434
3435 switch (state->stage) {
3436 case MESA_SHADER_VERTEX:
3437 var->data.location = (var->data.mode == ir_var_shader_in)
3438 ? (qual_location + VERT_ATTRIB_GENERIC0)
3439 : (qual_location + VARYING_SLOT_VAR0);
3440 break;
3441
3442 case MESA_SHADER_TESS_CTRL:
3443 case MESA_SHADER_TESS_EVAL:
3444 case MESA_SHADER_GEOMETRY:
3445 if (var->data.patch)
3446 var->data.location = qual_location + VARYING_SLOT_PATCH0;
3447 else
3448 var->data.location = qual_location + VARYING_SLOT_VAR0;
3449 break;
3450
3451 case MESA_SHADER_FRAGMENT:
3452 var->data.location = (var->data.mode == ir_var_shader_out)
3453 ? (qual_location + FRAG_RESULT_DATA0)
3454 : (qual_location + VARYING_SLOT_VAR0);
3455 break;
3456 default:
3457 assert(!"Unexpected shader type");
3458 break;
3459 }
3460
3461 /* Check if index was set for the uniform instead of the function */
3462 if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3463 _mesa_glsl_error(loc, state, "an index qualifier can only be "
3464 "used with subroutine functions");
3465 return;
3466 }
3467
3468 unsigned qual_index;
3469 if (qual->flags.q.explicit_index &&
3470 process_qualifier_constant(state, loc, "index", qual->index,
3471 &qual_index)) {
3472 /* From the GLSL 4.30 specification, section 4.4.2 (Output
3473 * Layout Qualifiers):
3474 *
3475 * "It is also a compile-time error if a fragment shader
3476 * sets a layout index to less than 0 or greater than 1."
3477 *
3478 * Older specifications don't mandate a behavior; we take
3479 * this as a clarification and always generate the error.
3480 */
3481 if (qual_index > 1) {
3482 _mesa_glsl_error(loc, state,
3483 "explicit index may only be 0 or 1");
3484 } else {
3485 var->data.explicit_index = true;
3486 var->data.index = qual_index;
3487 }
3488 }
3489 }
3490 }
3491
3492 static bool
validate_storage_for_sampler_image_types(ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3493 validate_storage_for_sampler_image_types(ir_variable *var,
3494 struct _mesa_glsl_parse_state *state,
3495 YYLTYPE *loc)
3496 {
3497 /* From section 4.1.7 of the GLSL 4.40 spec:
3498 *
3499 * "[Opaque types] can only be declared as function
3500 * parameters or uniform-qualified variables."
3501 *
3502 * From section 4.1.7 of the ARB_bindless_texture spec:
3503 *
3504 * "Samplers may be declared as shader inputs and outputs, as uniform
3505 * variables, as temporary variables, and as function parameters."
3506 *
3507 * From section 4.1.X of the ARB_bindless_texture spec:
3508 *
3509 * "Images may be declared as shader inputs and outputs, as uniform
3510 * variables, as temporary variables, and as function parameters."
3511 */
3512 if (state->has_bindless()) {
3513 if (var->data.mode != ir_var_auto &&
3514 var->data.mode != ir_var_uniform &&
3515 var->data.mode != ir_var_shader_in &&
3516 var->data.mode != ir_var_shader_out &&
3517 var->data.mode != ir_var_function_in &&
3518 var->data.mode != ir_var_function_out &&
3519 var->data.mode != ir_var_function_inout) {
3520 _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3521 "only be declared as shader inputs and outputs, as "
3522 "uniform variables, as temporary variables and as "
3523 "function parameters");
3524 return false;
3525 }
3526 } else {
3527 if (var->data.mode != ir_var_uniform &&
3528 var->data.mode != ir_var_function_in) {
3529 _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3530 "declared as function parameters or "
3531 "uniform-qualified global variables");
3532 return false;
3533 }
3534 }
3535 return true;
3536 }
3537
3538 static bool
validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3539 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3540 YYLTYPE *loc,
3541 const struct ast_type_qualifier *qual,
3542 const glsl_type *type)
3543 {
3544 /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3545 *
3546 * "Memory qualifiers are only supported in the declarations of image
3547 * variables, buffer variables, and shader storage blocks; it is an error
3548 * to use such qualifiers in any other declarations.
3549 */
3550 if (!glsl_type_is_image(type) && !qual->flags.q.buffer) {
3551 if (qual->flags.q.read_only ||
3552 qual->flags.q.write_only ||
3553 qual->flags.q.coherent ||
3554 qual->flags.q._volatile ||
3555 qual->flags.q.restrict_flag) {
3556 _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3557 "in the declarations of image variables, buffer "
3558 "variables, and shader storage blocks");
3559 return false;
3560 }
3561 }
3562 return true;
3563 }
3564
3565 static bool
validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3566 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3567 YYLTYPE *loc,
3568 const struct ast_type_qualifier *qual,
3569 const glsl_type *type)
3570 {
3571 /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3572 *
3573 * "Format layout qualifiers can be used on image variable declarations
3574 * (those declared with a basic type having “image ” in its keyword)."
3575 */
3576 if (!glsl_type_is_image(type) && qual->flags.q.explicit_image_format) {
3577 _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3578 "applied to images");
3579 return false;
3580 }
3581 return true;
3582 }
3583
3584 static void
apply_image_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3585 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3586 ir_variable *var,
3587 struct _mesa_glsl_parse_state *state,
3588 YYLTYPE *loc)
3589 {
3590 const glsl_type *base_type = glsl_without_array(var->type);
3591
3592 if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3593 !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3594 return;
3595
3596 if (!glsl_type_is_image(base_type))
3597 return;
3598
3599 if (!validate_storage_for_sampler_image_types(var, state, loc))
3600 return;
3601
3602 var->data.memory_read_only |= qual->flags.q.read_only;
3603 var->data.memory_write_only |= qual->flags.q.write_only;
3604 var->data.memory_coherent |= qual->flags.q.coherent;
3605 var->data.memory_volatile |= qual->flags.q._volatile;
3606 var->data.memory_restrict |= qual->flags.q.restrict_flag;
3607
3608 if (qual->flags.q.explicit_image_format) {
3609 if (var->data.mode == ir_var_function_in) {
3610 _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3611 "image function parameters");
3612 }
3613
3614 if (qual->image_base_type != base_type->sampled_type) {
3615 _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3616 "data type of the image");
3617 }
3618
3619 var->data.image_format = qual->image_format;
3620 } else if (state->has_image_load_formatted()) {
3621 if (var->data.mode == ir_var_uniform &&
3622 state->EXT_shader_image_load_formatted_warn) {
3623 _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used");
3624 }
3625 } else {
3626 if (var->data.mode == ir_var_uniform) {
3627 if (state->es_shader ||
3628 !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) {
3629 _mesa_glsl_error(loc, state, "all image uniforms must have a "
3630 "format layout qualifier");
3631 } else if (!qual->flags.q.write_only) {
3632 _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3633 "`writeonly' must have a format layout qualifier");
3634 }
3635 }
3636 var->data.image_format = PIPE_FORMAT_NONE;
3637 }
3638
3639 /* From page 70 of the GLSL ES 3.1 specification:
3640 *
3641 * "Except for image variables qualified with the format qualifiers r32f,
3642 * r32i, and r32ui, image variables must specify either memory qualifier
3643 * readonly or the memory qualifier writeonly."
3644 */
3645 if (state->es_shader &&
3646 var->data.image_format != PIPE_FORMAT_R32_FLOAT &&
3647 var->data.image_format != PIPE_FORMAT_R32_SINT &&
3648 var->data.image_format != PIPE_FORMAT_R32_UINT &&
3649 !var->data.memory_read_only &&
3650 !var->data.memory_write_only) {
3651 _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3652 "r32i or r32ui must be qualified `readonly' or "
3653 "`writeonly'");
3654 }
3655 }
3656
3657 static inline const char*
get_layout_qualifier_string(bool origin_upper_left,bool pixel_center_integer)3658 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3659 {
3660 if (origin_upper_left && pixel_center_integer)
3661 return "origin_upper_left, pixel_center_integer";
3662 else if (origin_upper_left)
3663 return "origin_upper_left";
3664 else if (pixel_center_integer)
3665 return "pixel_center_integer";
3666 else
3667 return " ";
3668 }
3669
3670 static inline bool
is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3671 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3672 const struct ast_type_qualifier *qual)
3673 {
3674 /* If gl_FragCoord was previously declared, and the qualifiers were
3675 * different in any way, return true.
3676 */
3677 if (state->fs_redeclares_gl_fragcoord) {
3678 return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3679 || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3680 }
3681
3682 return false;
3683 }
3684
3685 static inline bool
is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3686 is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state,
3687 const struct ast_type_qualifier *qual)
3688 {
3689 if (state->redeclares_gl_layer) {
3690 return state->layer_viewport_relative != qual->flags.q.viewport_relative;
3691 }
3692 return false;
3693 }
3694
3695 static inline void
validate_array_dimensions(const glsl_type * t,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3696 validate_array_dimensions(const glsl_type *t,
3697 struct _mesa_glsl_parse_state *state,
3698 YYLTYPE *loc) {
3699 const glsl_type *top = t;
3700 if (glsl_type_is_array(t)) {
3701 t = t->fields.array;
3702 while (glsl_type_is_array(t)) {
3703 if (glsl_type_is_unsized_array(t)) {
3704 _mesa_glsl_error(loc, state,
3705 "only the outermost array dimension can "
3706 "be unsized, but got %s",
3707 glsl_get_type_name(top));
3708 break;
3709 }
3710 t = t->fields.array;
3711 }
3712 }
3713 }
3714
3715 static void
apply_bindless_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3716 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3717 ir_variable *var,
3718 struct _mesa_glsl_parse_state *state,
3719 YYLTYPE *loc)
3720 {
3721 bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3722 qual->flags.q.bindless_image ||
3723 qual->flags.q.bound_sampler ||
3724 qual->flags.q.bound_image;
3725
3726 /* The ARB_bindless_texture spec says:
3727 *
3728 * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3729 * spec"
3730 *
3731 * "If these layout qualifiers are applied to other types of default block
3732 * uniforms, or variables with non-uniform storage, a compile-time error
3733 * will be generated."
3734 */
3735 if (has_local_qualifiers && !qual->flags.q.uniform) {
3736 _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3737 "can only be applied to default block uniforms or "
3738 "variables with uniform storage");
3739 return;
3740 }
3741
3742 /* The ARB_bindless_texture spec doesn't state anything in this situation,
3743 * but it makes sense to only allow bindless_sampler/bound_sampler for
3744 * sampler types, and respectively bindless_image/bound_image for image
3745 * types.
3746 */
3747 if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3748 !glsl_contains_sampler(var->type)) {
3749 _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3750 "be applied to sampler types");
3751 return;
3752 }
3753
3754 if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3755 !glsl_type_contains_image(var->type)) {
3756 _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3757 "applied to image types");
3758 return;
3759 }
3760
3761 /* The bindless_sampler/bindless_image (and respectively
3762 * bound_sampler/bound_image) layout qualifiers can be set at global and at
3763 * local scope.
3764 */
3765 if (glsl_contains_sampler(var->type) || glsl_type_contains_image(var->type)) {
3766 var->data.bindless = qual->flags.q.bindless_sampler ||
3767 qual->flags.q.bindless_image ||
3768 state->bindless_sampler_specified ||
3769 state->bindless_image_specified;
3770
3771 var->data.bound = qual->flags.q.bound_sampler ||
3772 qual->flags.q.bound_image ||
3773 state->bound_sampler_specified ||
3774 state->bound_image_specified;
3775 }
3776
3777 /* ARB_bindless_texture spec says:
3778 *
3779 * "When used as shader inputs, outputs, uniform block members,
3780 * or temporaries, the value of the sampler is a 64-bit unsigned
3781 * integer handle and never refers to a texture image unit."
3782 *
3783 * The spec doesn't reference images defined inside structs but it was
3784 * clarified with the authors that bindless images are allowed in structs.
3785 * So we treat these images as implicitly bindless just like the types
3786 * in the spec quote above.
3787 */
3788 if (!var->data.bindless && glsl_type_is_struct(var->type) &&
3789 glsl_type_contains_image(var->type)) {
3790 var->data.bindless = true;
3791 }
3792 }
3793
3794 static void
apply_layout_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3795 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3796 ir_variable *var,
3797 struct _mesa_glsl_parse_state *state,
3798 YYLTYPE *loc)
3799 {
3800 if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3801
3802 /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3803 *
3804 * "Within any shader, the first redeclarations of gl_FragCoord
3805 * must appear before any use of gl_FragCoord."
3806 *
3807 * Generate a compiler error if above condition is not met by the
3808 * fragment shader.
3809 */
3810 ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3811 if (earlier != NULL &&
3812 earlier->data.used &&
3813 !state->fs_redeclares_gl_fragcoord) {
3814 _mesa_glsl_error(loc, state,
3815 "gl_FragCoord used before its first redeclaration "
3816 "in fragment shader");
3817 }
3818
3819 /* Make sure all gl_FragCoord redeclarations specify the same layout
3820 * qualifiers.
3821 */
3822 if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3823 const char *const qual_string =
3824 get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3825 qual->flags.q.pixel_center_integer);
3826
3827 const char *const state_string =
3828 get_layout_qualifier_string(state->fs_origin_upper_left,
3829 state->fs_pixel_center_integer);
3830
3831 _mesa_glsl_error(loc, state,
3832 "gl_FragCoord redeclared with different layout "
3833 "qualifiers (%s) and (%s) ",
3834 state_string,
3835 qual_string);
3836 }
3837 state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3838 state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3839 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3840 !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3841 state->fs_redeclares_gl_fragcoord =
3842 state->fs_origin_upper_left ||
3843 state->fs_pixel_center_integer ||
3844 state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3845 }
3846
3847 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3848 && (strcmp(var->name, "gl_FragCoord") != 0)) {
3849 const char *const qual_string = (qual->flags.q.origin_upper_left)
3850 ? "origin_upper_left" : "pixel_center_integer";
3851
3852 _mesa_glsl_error(loc, state,
3853 "layout qualifier `%s' can only be applied to "
3854 "fragment shader input `gl_FragCoord'",
3855 qual_string);
3856 }
3857
3858 if (qual->flags.q.explicit_location) {
3859 apply_explicit_location(qual, var, state, loc);
3860
3861 if (qual->flags.q.explicit_component) {
3862 unsigned qual_component;
3863 if (process_qualifier_constant(state, loc, "component",
3864 qual->component, &qual_component)) {
3865 validate_component_layout_for_type(state, loc, var->type,
3866 qual_component);
3867 var->data.explicit_component = true;
3868 var->data.location_frac = qual_component;
3869 }
3870 }
3871 } else if (qual->flags.q.explicit_index) {
3872 if (!qual->subroutine_list)
3873 _mesa_glsl_error(loc, state,
3874 "explicit index requires explicit location");
3875 } else if (qual->flags.q.explicit_component) {
3876 _mesa_glsl_error(loc, state,
3877 "explicit component requires explicit location");
3878 }
3879
3880 if (qual->flags.q.explicit_binding) {
3881 apply_explicit_binding(state, loc, var, var->type, qual);
3882 }
3883
3884 if (state->stage == MESA_SHADER_GEOMETRY &&
3885 qual->flags.q.out && qual->flags.q.stream) {
3886 unsigned qual_stream;
3887 if (process_qualifier_constant(state, loc, "stream", qual->stream,
3888 &qual_stream) &&
3889 validate_stream_qualifier(loc, state, qual_stream)) {
3890 var->data.stream = qual_stream;
3891 }
3892 }
3893
3894 if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3895 unsigned qual_xfb_buffer;
3896 if (process_qualifier_constant(state, loc, "xfb_buffer",
3897 qual->xfb_buffer, &qual_xfb_buffer) &&
3898 validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3899 var->data.xfb_buffer = qual_xfb_buffer;
3900 if (qual->flags.q.explicit_xfb_buffer)
3901 var->data.explicit_xfb_buffer = true;
3902 }
3903 }
3904
3905 if (qual->flags.q.explicit_xfb_offset) {
3906 unsigned qual_xfb_offset;
3907 unsigned component_size = glsl_contains_double(var->type) ? 8 : 4;
3908
3909 if (process_qualifier_constant(state, loc, "xfb_offset",
3910 qual->offset, &qual_xfb_offset) &&
3911 validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3912 var->type, component_size)) {
3913 var->data.offset = qual_xfb_offset;
3914 var->data.explicit_xfb_offset = true;
3915 }
3916 }
3917
3918 if (qual->flags.q.explicit_xfb_stride) {
3919 unsigned qual_xfb_stride;
3920 if (process_qualifier_constant(state, loc, "xfb_stride",
3921 qual->xfb_stride, &qual_xfb_stride)) {
3922 var->data.xfb_stride = qual_xfb_stride;
3923 var->data.explicit_xfb_stride = true;
3924 }
3925 }
3926
3927 if (glsl_contains_atomic(var->type)) {
3928 if (var->data.mode == ir_var_uniform) {
3929 if (var->data.explicit_binding) {
3930 unsigned *offset =
3931 &state->atomic_counter_offsets[var->data.binding];
3932
3933 if (*offset % ATOMIC_COUNTER_SIZE)
3934 _mesa_glsl_error(loc, state,
3935 "misaligned atomic counter offset");
3936
3937 if (*offset >= state->Const.MaxAtomicCounterBufferSize)
3938 _mesa_glsl_error(loc, state,
3939 "offset > max atomic counter buffer size");
3940
3941 var->data.offset = *offset;
3942 *offset += glsl_atomic_size(var->type);
3943
3944 } else {
3945 _mesa_glsl_error(loc, state,
3946 "atomic counters require explicit binding point");
3947 }
3948 } else if (var->data.mode != ir_var_function_in) {
3949 _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3950 "function parameters or uniform-qualified "
3951 "global variables");
3952 }
3953 }
3954
3955 if (glsl_contains_sampler(var->type) &&
3956 !validate_storage_for_sampler_image_types(var, state, loc))
3957 return;
3958
3959 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3960 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3961 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3962 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3963 * These extensions and all following extensions that add the 'layout'
3964 * keyword have been modified to require the use of 'in' or 'out'.
3965 *
3966 * The following extension do not allow the deprecated keywords:
3967 *
3968 * GL_AMD_conservative_depth
3969 * GL_ARB_conservative_depth
3970 * GL_ARB_gpu_shader5
3971 * GL_ARB_separate_shader_objects
3972 * GL_ARB_tessellation_shader
3973 * GL_ARB_transform_feedback3
3974 * GL_ARB_uniform_buffer_object
3975 *
3976 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3977 * allow layout with the deprecated keywords.
3978 */
3979 const bool relaxed_layout_qualifier_checking =
3980 state->ARB_fragment_coord_conventions_enable;
3981
3982 const bool uses_deprecated_qualifier = qual->flags.q.attribute
3983 || qual->flags.q.varying;
3984 if (qual->has_layout() && uses_deprecated_qualifier) {
3985 if (relaxed_layout_qualifier_checking) {
3986 _mesa_glsl_warning(loc, state,
3987 "`layout' qualifier may not be used with "
3988 "`attribute' or `varying'");
3989 } else {
3990 _mesa_glsl_error(loc, state,
3991 "`layout' qualifier may not be used with "
3992 "`attribute' or `varying'");
3993 }
3994 }
3995
3996 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3997 * AMD_conservative_depth.
3998 */
3999 if (qual->flags.q.depth_type
4000 && !state->is_version(420, 0)
4001 && !state->AMD_conservative_depth_enable
4002 && !state->ARB_conservative_depth_enable) {
4003 _mesa_glsl_error(loc, state,
4004 "extension GL_AMD_conservative_depth or "
4005 "GL_ARB_conservative_depth must be enabled "
4006 "to use depth layout qualifiers");
4007 } else if (qual->flags.q.depth_type
4008 && strcmp(var->name, "gl_FragDepth") != 0) {
4009 _mesa_glsl_error(loc, state,
4010 "depth layout qualifiers can be applied only to "
4011 "gl_FragDepth");
4012 }
4013
4014 switch (qual->depth_type) {
4015 case ast_depth_any:
4016 var->data.depth_layout = ir_depth_layout_any;
4017 break;
4018 case ast_depth_greater:
4019 var->data.depth_layout = ir_depth_layout_greater;
4020 break;
4021 case ast_depth_less:
4022 var->data.depth_layout = ir_depth_layout_less;
4023 break;
4024 case ast_depth_unchanged:
4025 var->data.depth_layout = ir_depth_layout_unchanged;
4026 break;
4027 default:
4028 var->data.depth_layout = ir_depth_layout_none;
4029 break;
4030 }
4031
4032 if (qual->flags.q.std140 ||
4033 qual->flags.q.std430 ||
4034 qual->flags.q.packed ||
4035 qual->flags.q.shared) {
4036 _mesa_glsl_error(loc, state,
4037 "uniform and shader storage block layout qualifiers "
4038 "std140, std430, packed, and shared can only be "
4039 "applied to uniform or shader storage blocks, not "
4040 "members");
4041 }
4042
4043 if (qual->flags.q.row_major || qual->flags.q.column_major) {
4044 validate_matrix_layout_for_type(state, loc, var->type, var);
4045 }
4046
4047 /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
4048 * Inputs):
4049 *
4050 * "Fragment shaders also allow the following layout qualifier on in only
4051 * (not with variable declarations)
4052 * layout-qualifier-id
4053 * early_fragment_tests
4054 * [...]"
4055 */
4056 if (qual->flags.q.early_fragment_tests) {
4057 _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
4058 "valid in fragment shader input layout declaration.");
4059 }
4060
4061 if (qual->flags.q.inner_coverage) {
4062 _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
4063 "valid in fragment shader input layout declaration.");
4064 }
4065
4066 if (qual->flags.q.post_depth_coverage) {
4067 _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
4068 "valid in fragment shader input layout declaration.");
4069 }
4070
4071 if (state->has_bindless())
4072 apply_bindless_qualifier_to_variable(qual, var, state, loc);
4073
4074 if (qual->flags.q.pixel_interlock_ordered ||
4075 qual->flags.q.pixel_interlock_unordered ||
4076 qual->flags.q.sample_interlock_ordered ||
4077 qual->flags.q.sample_interlock_unordered) {
4078 _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
4079 "pixel_interlock_ordered, pixel_interlock_unordered, "
4080 "sample_interlock_ordered and sample_interlock_unordered, "
4081 "only valid in fragment shader input layout declaration.");
4082 }
4083
4084 if (var->name != NULL && strcmp(var->name, "gl_Layer") == 0) {
4085 if (is_conflicting_layer_redeclaration(state, qual)) {
4086 _mesa_glsl_error(loc, state, "gl_Layer redeclaration with "
4087 "different viewport_relative setting than earlier");
4088 }
4089 state->redeclares_gl_layer = true;
4090 if (qual->flags.q.viewport_relative) {
4091 state->layer_viewport_relative = true;
4092 }
4093 } else if (qual->flags.q.viewport_relative) {
4094 _mesa_glsl_error(loc, state,
4095 "viewport_relative qualifier "
4096 "can only be applied to gl_Layer.");
4097 }
4098 }
4099
4100 static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc,bool is_parameter)4101 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
4102 ir_variable *var,
4103 struct _mesa_glsl_parse_state *state,
4104 YYLTYPE *loc,
4105 bool is_parameter)
4106 {
4107 STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
4108
4109 if (qual->flags.q.invariant) {
4110 if (var->data.used) {
4111 _mesa_glsl_error(loc, state,
4112 "variable `%s' may not be redeclared "
4113 "`invariant' after being used",
4114 var->name);
4115 } else {
4116 var->data.explicit_invariant = true;
4117 var->data.invariant = true;
4118 }
4119 }
4120
4121 if (qual->flags.q.precise) {
4122 if (var->data.used) {
4123 _mesa_glsl_error(loc, state,
4124 "variable `%s' may not be redeclared "
4125 "`precise' after being used",
4126 var->name);
4127 } else {
4128 var->data.precise = 1;
4129 }
4130 }
4131
4132 if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
4133 _mesa_glsl_error(loc, state,
4134 "`subroutine' may only be applied to uniforms, "
4135 "subroutine type declarations, or function definitions");
4136 }
4137
4138 if (qual->flags.q.constant || qual->flags.q.attribute
4139 || qual->flags.q.uniform
4140 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4141 var->data.read_only = 1;
4142
4143 if (qual->flags.q.centroid)
4144 var->data.centroid = 1;
4145
4146 if (qual->flags.q.sample)
4147 var->data.sample = 1;
4148
4149 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
4150 if (state->es_shader) {
4151 var->data.precision =
4152 select_gles_precision(qual->precision, var->type, state, loc);
4153 }
4154
4155 if (qual->flags.q.patch)
4156 var->data.patch = 1;
4157
4158 if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
4159 var->type = &glsl_type_builtin_error;
4160 _mesa_glsl_error(loc, state,
4161 "`attribute' variables may not be declared in the "
4162 "%s shader",
4163 _mesa_shader_stage_to_string(state->stage));
4164 }
4165
4166 /* Disallow layout qualifiers which may only appear on layout declarations. */
4167 if (qual->flags.q.prim_type) {
4168 _mesa_glsl_error(loc, state,
4169 "Primitive type may only be specified on GS input or output "
4170 "layout declaration, not on variables.");
4171 }
4172
4173 /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4174 *
4175 * "However, the const qualifier cannot be used with out or inout."
4176 *
4177 * The same section of the GLSL 4.40 spec further clarifies this saying:
4178 *
4179 * "The const qualifier cannot be used with out or inout, or a
4180 * compile-time error results."
4181 */
4182 if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4183 _mesa_glsl_error(loc, state,
4184 "`const' may not be applied to `out' or `inout' "
4185 "function parameters");
4186 }
4187
4188 /* If there is no qualifier that changes the mode of the variable, leave
4189 * the setting alone.
4190 */
4191 assert(var->data.mode != ir_var_temporary);
4192 if (qual->flags.q.in && qual->flags.q.out)
4193 var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4194 else if (qual->flags.q.in)
4195 var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4196 else if (qual->flags.q.attribute
4197 || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4198 var->data.mode = ir_var_shader_in;
4199 else if (qual->flags.q.out)
4200 var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4201 else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4202 var->data.mode = ir_var_shader_out;
4203 else if (qual->flags.q.uniform)
4204 var->data.mode = ir_var_uniform;
4205 else if (qual->flags.q.buffer)
4206 var->data.mode = ir_var_shader_storage;
4207 else if (qual->flags.q.shared_storage)
4208 var->data.mode = ir_var_shader_shared;
4209
4210 if (!is_parameter && state->stage == MESA_SHADER_FRAGMENT) {
4211 if (state->has_framebuffer_fetch()) {
4212 if (state->is_version(130, 300))
4213 var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4214 else
4215 var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4216 }
4217
4218 if (state->has_framebuffer_fetch_zs() &&
4219 (strcmp(var->name, "gl_LastFragDepthARM") == 0 ||
4220 strcmp(var->name, "gl_LastFragStencilARM") == 0)) {
4221 var->data.fb_fetch_output = 1;
4222 }
4223 }
4224
4225 if (var->data.fb_fetch_output)
4226 var->data.assigned = true;
4227
4228 if (var->is_fb_fetch_color_output()) {
4229 var->data.memory_coherent = !qual->flags.q.non_coherent;
4230
4231 /* From the EXT_shader_framebuffer_fetch spec:
4232 *
4233 * "It is an error to declare an inout fragment output not qualified
4234 * with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4235 * extension hasn't been enabled."
4236 */
4237 if (var->data.memory_coherent &&
4238 !state->EXT_shader_framebuffer_fetch_enable)
4239 _mesa_glsl_error(loc, state,
4240 "invalid declaration of framebuffer fetch output not "
4241 "qualified with layout(noncoherent)");
4242
4243 } else {
4244 /* From the EXT_shader_framebuffer_fetch spec:
4245 *
4246 * "Fragment outputs declared inout may specify the following layout
4247 * qualifier: [...] noncoherent"
4248 */
4249 if (qual->flags.q.non_coherent)
4250 _mesa_glsl_error(loc, state,
4251 "invalid layout(noncoherent) qualifier not part of "
4252 "framebuffer fetch output declaration");
4253 }
4254
4255 if (!is_parameter && is_varying_var(var, state->stage)) {
4256 /* User-defined ins/outs are not permitted in compute shaders. */
4257 if (state->stage == MESA_SHADER_COMPUTE) {
4258 _mesa_glsl_error(loc, state,
4259 "user-defined input and output variables are not "
4260 "permitted in compute shaders");
4261 }
4262
4263 /* This variable is being used to link data between shader stages (in
4264 * pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
4265 * that is allowed for such purposes.
4266 *
4267 * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4268 *
4269 * "The varying qualifier can be used only with the data types
4270 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4271 * these."
4272 *
4273 * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
4274 * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4275 *
4276 * "Fragment inputs can only be signed and unsigned integers and
4277 * integer vectors, float, floating-point vectors, matrices, or
4278 * arrays of these. Structures cannot be input.
4279 *
4280 * Similar text exists in the section on vertex shader outputs.
4281 *
4282 * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4283 * 3.00 spec allows structs as well. Varying structs are also allowed
4284 * in GLSL 1.50.
4285 *
4286 * From section 4.3.4 of the ARB_bindless_texture spec:
4287 *
4288 * "(modify third paragraph of the section to allow sampler and image
4289 * types) ... Vertex shader inputs can only be float,
4290 * single-precision floating-point scalars, single-precision
4291 * floating-point vectors, matrices, signed and unsigned integers
4292 * and integer vectors, sampler and image types."
4293 *
4294 * From section 4.3.6 of the ARB_bindless_texture spec:
4295 *
4296 * "Output variables can only be floating-point scalars,
4297 * floating-point vectors, matrices, signed or unsigned integers or
4298 * integer vectors, sampler or image types, or arrays or structures
4299 * of any these."
4300 */
4301 switch (glsl_without_array(var->type)->base_type) {
4302 case GLSL_TYPE_FLOAT:
4303 /* Ok in all GLSL versions */
4304 break;
4305 case GLSL_TYPE_FLOAT16:
4306 if (state->AMD_gpu_shader_half_float_enable)
4307 break;
4308 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4309 break;
4310 case GLSL_TYPE_UINT:
4311 case GLSL_TYPE_INT:
4312 if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
4313 break;
4314 _mesa_glsl_error(loc, state,
4315 "varying variables must be of base type float in %s",
4316 state->get_version_string());
4317 break;
4318 case GLSL_TYPE_STRUCT:
4319 if (state->is_version(150, 300))
4320 break;
4321 _mesa_glsl_error(loc, state,
4322 "varying variables may not be of type struct");
4323 break;
4324 case GLSL_TYPE_DOUBLE:
4325 case GLSL_TYPE_UINT64:
4326 case GLSL_TYPE_INT64:
4327 break;
4328 case GLSL_TYPE_SAMPLER:
4329 case GLSL_TYPE_TEXTURE:
4330 case GLSL_TYPE_IMAGE:
4331 if (state->has_bindless())
4332 break;
4333 FALLTHROUGH;
4334 default:
4335 _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4336 break;
4337 }
4338 }
4339
4340 if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4341 var->data.explicit_invariant = true;
4342 var->data.invariant = true;
4343 }
4344
4345 var->data.interpolation =
4346 interpret_interpolation_qualifier(qual, var->type,
4347 (ir_variable_mode) var->data.mode,
4348 state, loc);
4349
4350 /* Does the declaration use the deprecated 'attribute' or 'varying'
4351 * keywords?
4352 */
4353 const bool uses_deprecated_qualifier = qual->flags.q.attribute
4354 || qual->flags.q.varying;
4355
4356
4357 /* Validate auxiliary storage qualifiers */
4358
4359 /* From section 4.3.4 of the GLSL 1.30 spec:
4360 * "It is an error to use centroid in in a vertex shader."
4361 *
4362 * From section 4.3.4 of the GLSL ES 3.00 spec:
4363 * "It is an error to use centroid in or interpolation qualifiers in
4364 * a vertex shader input."
4365 */
4366
4367 /* Section 4.3.6 of the GLSL 1.30 specification states:
4368 * "It is an error to use centroid out in a fragment shader."
4369 *
4370 * The GL_ARB_shading_language_420pack extension specification states:
4371 * "It is an error to use auxiliary storage qualifiers or interpolation
4372 * qualifiers on an output in a fragment shader."
4373 */
4374 if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4375 _mesa_glsl_error(loc, state,
4376 "sample qualifier may only be used on `in` or `out` "
4377 "variables between shader stages");
4378 }
4379 if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4380 _mesa_glsl_error(loc, state,
4381 "centroid qualifier may only be used with `in', "
4382 "`out' or `varying' variables between shader stages");
4383 }
4384
4385 if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4386 _mesa_glsl_error(loc, state,
4387 "the shared storage qualifiers can only be used with "
4388 "compute shaders");
4389 }
4390
4391 apply_image_qualifier_to_variable(qual, var, state, loc);
4392 }
4393
4394 /**
4395 * Get the variable that is being redeclared by this declaration or if it
4396 * does not exist, the current declared variable.
4397 *
4398 * Semantic checks to verify the validity of the redeclaration are also
4399 * performed. If semantic checks fail, compilation error will be emitted via
4400 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4401 *
4402 * \returns
4403 * A pointer to an existing variable in the current scope if the declaration
4404 * is a redeclaration, current variable otherwise. \c is_declared boolean
4405 * will return \c true if the declaration is a redeclaration, \c false
4406 * otherwise.
4407 */
4408 static ir_variable *
get_variable_being_redeclared(ir_variable ** var_ptr,YYLTYPE loc,struct _mesa_glsl_parse_state * state,bool allow_all_redeclarations,bool * is_redeclaration)4409 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4410 struct _mesa_glsl_parse_state *state,
4411 bool allow_all_redeclarations,
4412 bool *is_redeclaration)
4413 {
4414 ir_variable *var = *var_ptr;
4415
4416 /* Check if this declaration is actually a re-declaration, either to
4417 * resize an array or add qualifiers to an existing variable.
4418 *
4419 * This is allowed for variables in the current scope, or when at
4420 * global scope (for built-ins in the implicit outer scope).
4421 */
4422 ir_variable *earlier = state->symbols->get_variable(var->name);
4423 if (earlier == NULL ||
4424 (state->current_function != NULL &&
4425 !state->symbols->name_declared_this_scope(var->name))) {
4426 *is_redeclaration = false;
4427 return var;
4428 }
4429
4430 *is_redeclaration = true;
4431
4432 if (earlier->data.how_declared == ir_var_declared_implicitly) {
4433 /* Verify that the redeclaration of a built-in does not change the
4434 * storage qualifier. There are a couple special cases.
4435 *
4436 * 1. Some built-in variables that are defined as 'in' in the
4437 * specification are implemented as system values. Allow
4438 * ir_var_system_value -> ir_var_shader_in.
4439 *
4440 * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4441 * specification requires that redeclarations omit any qualifier.
4442 * Allow ir_var_shader_out -> ir_var_auto for this one variable.
4443 */
4444 if (earlier->data.mode != var->data.mode &&
4445 !(earlier->data.mode == ir_var_system_value &&
4446 var->data.mode == ir_var_shader_in) &&
4447 !(strcmp(var->name, "gl_LastFragData") == 0 &&
4448 var->data.mode == ir_var_auto)) {
4449 _mesa_glsl_error(&loc, state,
4450 "redeclaration cannot change qualification of `%s'",
4451 var->name);
4452 }
4453 }
4454
4455 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4456 *
4457 * "It is legal to declare an array without a size and then
4458 * later re-declare the same name as an array of the same
4459 * type and specify a size."
4460 */
4461 if (glsl_type_is_unsized_array(earlier->type) && glsl_type_is_array(var->type)
4462 && (var->type->fields.array == earlier->type->fields.array)) {
4463 const int size = glsl_array_size(var->type);
4464 check_builtin_array_max_size(var->name, size, loc, state);
4465 if ((size > 0) && (size <= earlier->data.max_array_access)) {
4466 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4467 "previous access",
4468 earlier->data.max_array_access);
4469 }
4470
4471 earlier->type = var->type;
4472 delete var;
4473 var = NULL;
4474 *var_ptr = NULL;
4475 } else if (earlier->type != var->type) {
4476 _mesa_glsl_error(&loc, state,
4477 "redeclaration of `%s' has incorrect type",
4478 var->name);
4479 } else if ((state->ARB_fragment_coord_conventions_enable ||
4480 state->is_version(150, 0))
4481 && strcmp(var->name, "gl_FragCoord") == 0) {
4482 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4483 * qualifiers.
4484 *
4485 * We don't really need to do anything here, just allow the
4486 * redeclaration. Any error on the gl_FragCoord is handled on the ast
4487 * level at apply_layout_qualifier_to_variable using the
4488 * ast_type_qualifier and _mesa_glsl_parse_state, or later at
4489 * linker.cpp.
4490 */
4491 /* According to section 4.3.7 of the GLSL 1.30 spec,
4492 * the following built-in varaibles can be redeclared with an
4493 * interpolation qualifier:
4494 * * gl_FrontColor
4495 * * gl_BackColor
4496 * * gl_FrontSecondaryColor
4497 * * gl_BackSecondaryColor
4498 * * gl_Color
4499 * * gl_SecondaryColor
4500 */
4501 } else if (state->is_version(130, 0)
4502 && (strcmp(var->name, "gl_FrontColor") == 0
4503 || strcmp(var->name, "gl_BackColor") == 0
4504 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4505 || strcmp(var->name, "gl_BackSecondaryColor") == 0
4506 || strcmp(var->name, "gl_Color") == 0
4507 || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4508 earlier->data.interpolation = var->data.interpolation;
4509
4510 /* Layout qualifiers for gl_FragDepth. */
4511 } else if ((state->is_version(420, 0) ||
4512 state->AMD_conservative_depth_enable ||
4513 state->ARB_conservative_depth_enable)
4514 && strcmp(var->name, "gl_FragDepth") == 0) {
4515
4516 /** From the AMD_conservative_depth spec:
4517 * Within any shader, the first redeclarations of gl_FragDepth
4518 * must appear before any use of gl_FragDepth.
4519 */
4520 if (earlier->data.used) {
4521 _mesa_glsl_error(&loc, state,
4522 "the first redeclaration of gl_FragDepth "
4523 "must appear before any use of gl_FragDepth");
4524 }
4525
4526 /* Prevent inconsistent redeclaration of depth layout qualifier. */
4527 if (earlier->data.depth_layout != ir_depth_layout_none
4528 && earlier->data.depth_layout != var->data.depth_layout) {
4529 _mesa_glsl_error(&loc, state,
4530 "gl_FragDepth: depth layout is declared here "
4531 "as '%s, but it was previously declared as "
4532 "'%s'",
4533 depth_layout_string((ir_depth_layout)var->data.depth_layout),
4534 depth_layout_string((ir_depth_layout)earlier->data.depth_layout));
4535 }
4536
4537 earlier->data.depth_layout = var->data.depth_layout;
4538
4539 } else if (state->has_framebuffer_fetch() &&
4540 strcmp(var->name, "gl_LastFragData") == 0 &&
4541 var->data.mode == ir_var_auto) {
4542 /* According to the EXT_shader_framebuffer_fetch spec:
4543 *
4544 * "By default, gl_LastFragData is declared with the mediump precision
4545 * qualifier. This can be changed by redeclaring the corresponding
4546 * variables with the desired precision qualifier."
4547 *
4548 * "Fragment shaders may specify the following layout qualifier only for
4549 * redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4550 */
4551 earlier->data.precision = var->data.precision;
4552 earlier->data.memory_coherent = var->data.memory_coherent;
4553
4554 } else if (state->NV_viewport_array2_enable &&
4555 strcmp(var->name, "gl_Layer") == 0 &&
4556 earlier->data.how_declared == ir_var_declared_implicitly) {
4557 /* No need to do anything, just allow it. Qualifier is stored in state */
4558
4559 } else if (state->is_version(0, 300) &&
4560 state->has_separate_shader_objects() &&
4561 (strcmp(var->name, "gl_Position") == 0 ||
4562 strcmp(var->name, "gl_PointSize") == 0)) {
4563
4564 /* EXT_separate_shader_objects spec says:
4565 *
4566 * "The following vertex shader outputs may be redeclared
4567 * at global scope to specify a built-in output interface,
4568 * with or without special qualifiers:
4569 *
4570 * gl_Position
4571 * gl_PointSize
4572 *
4573 * When compiling shaders using either of the above variables,
4574 * both such variables must be redeclared prior to use."
4575 */
4576 if (earlier->data.used) {
4577 _mesa_glsl_error(&loc, state, "the first redeclaration of "
4578 "%s must appear before any use", var->name);
4579 }
4580 } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4581 state->allow_builtin_variable_redeclaration) ||
4582 allow_all_redeclarations) {
4583 /* Allow verbatim redeclarations of built-in variables. Not explicitly
4584 * valid, but some applications do it.
4585 */
4586 } else {
4587 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4588 }
4589
4590 return earlier;
4591 }
4592
4593 /**
4594 * Generate the IR for an initializer in a variable declaration
4595 */
4596 static ir_rvalue *
process_initializer(ir_variable * var,ast_declaration * decl,ast_fully_specified_type * type,exec_list * initializer_instructions,struct _mesa_glsl_parse_state * state)4597 process_initializer(ir_variable *var, ast_declaration *decl,
4598 ast_fully_specified_type *type,
4599 exec_list *initializer_instructions,
4600 struct _mesa_glsl_parse_state *state)
4601 {
4602 void *mem_ctx = state;
4603 ir_rvalue *result = NULL;
4604
4605 YYLTYPE initializer_loc = decl->initializer->get_location();
4606
4607 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4608 *
4609 * "All uniform variables are read-only and are initialized either
4610 * directly by an application via API commands, or indirectly by
4611 * OpenGL."
4612 */
4613 if (var->data.mode == ir_var_uniform) {
4614 state->check_version(120, 0, &initializer_loc,
4615 "cannot initialize uniform %s",
4616 var->name);
4617 }
4618
4619 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4620 *
4621 * "Buffer variables cannot have initializers."
4622 */
4623 if (var->data.mode == ir_var_shader_storage) {
4624 _mesa_glsl_error(&initializer_loc, state,
4625 "cannot initialize buffer variable %s",
4626 var->name);
4627 }
4628
4629 /* From section 4.1.7 of the GLSL 4.40 spec:
4630 *
4631 * "Opaque variables [...] are initialized only through the
4632 * OpenGL API; they cannot be declared with an initializer in a
4633 * shader."
4634 *
4635 * From section 4.1.7 of the ARB_bindless_texture spec:
4636 *
4637 * "Samplers may be declared as shader inputs and outputs, as uniform
4638 * variables, as temporary variables, and as function parameters."
4639 *
4640 * From section 4.1.X of the ARB_bindless_texture spec:
4641 *
4642 * "Images may be declared as shader inputs and outputs, as uniform
4643 * variables, as temporary variables, and as function parameters."
4644 */
4645 if (glsl_contains_atomic(var->type) ||
4646 (!state->has_bindless() && glsl_contains_opaque(var->type))) {
4647 _mesa_glsl_error(&initializer_loc, state,
4648 "cannot initialize %s variable %s",
4649 var->name, state->has_bindless() ? "atomic" : "opaque");
4650 }
4651
4652 if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4653 _mesa_glsl_error(&initializer_loc, state,
4654 "cannot initialize %s shader input / %s %s",
4655 _mesa_shader_stage_to_string(state->stage),
4656 (state->stage == MESA_SHADER_VERTEX)
4657 ? "attribute" : "varying",
4658 var->name);
4659 }
4660
4661 if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4662 _mesa_glsl_error(&initializer_loc, state,
4663 "cannot initialize %s shader output %s",
4664 _mesa_shader_stage_to_string(state->stage),
4665 var->name);
4666 }
4667
4668 /* If the initializer is an ast_aggregate_initializer, recursively store
4669 * type information from the LHS into it, so that its hir() function can do
4670 * type checking.
4671 */
4672 if (decl->initializer->oper == ast_aggregate)
4673 _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4674
4675 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4676 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4677
4678 /* Calculate the constant value if this is a const or uniform
4679 * declaration.
4680 *
4681 * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4682 *
4683 * "Declarations of globals without a storage qualifier, or with
4684 * just the const qualifier, may include initializers, in which case
4685 * they will be initialized before the first line of main() is
4686 * executed. Such initializers must be a constant expression."
4687 *
4688 * The same section of the GLSL ES 3.00.4 spec has similar language.
4689 */
4690 if (type->qualifier.flags.q.constant
4691 || type->qualifier.flags.q.uniform
4692 || (state->es_shader && state->current_function == NULL)) {
4693 ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4694 lhs, rhs, true);
4695 if (new_rhs != NULL) {
4696 rhs = new_rhs;
4697
4698 /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4699 * says:
4700 *
4701 * "A constant expression is one of
4702 *
4703 * ...
4704 *
4705 * - an expression formed by an operator on operands that are
4706 * all constant expressions, including getting an element of
4707 * a constant array, or a field of a constant structure, or
4708 * components of a constant vector. However, the sequence
4709 * operator ( , ) and the assignment operators ( =, +=, ...)
4710 * are not included in the operators that can create a
4711 * constant expression."
4712 *
4713 * Section 12.43 (Sequence operator and constant expressions) says:
4714 *
4715 * "Should the following construct be allowed?
4716 *
4717 * float a[2,3];
4718 *
4719 * The expression within the brackets uses the sequence operator
4720 * (',') and returns the integer 3 so the construct is declaring
4721 * a single-dimensional array of size 3. In some languages, the
4722 * construct declares a two-dimensional array. It would be
4723 * preferable to make this construct illegal to avoid confusion.
4724 *
4725 * One possibility is to change the definition of the sequence
4726 * operator so that it does not return a constant-expression and
4727 * hence cannot be used to declare an array size.
4728 *
4729 * RESOLUTION: The result of a sequence operator is not a
4730 * constant-expression."
4731 *
4732 * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4733 * contains language almost identical to the section 4.3.3 in the
4734 * GLSL ES 3.00.4 spec. This is a new limitation for these GLSL
4735 * versions.
4736 */
4737 ir_constant *constant_value =
4738 rhs->constant_expression_value(mem_ctx);
4739
4740 if (!constant_value ||
4741 (state->is_version(430, 300) &&
4742 decl->initializer->has_sequence_subexpression())) {
4743 const char *const variable_mode =
4744 (type->qualifier.flags.q.constant)
4745 ? "const"
4746 : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4747
4748 /* If ARB_shading_language_420pack is enabled, initializers of
4749 * const-qualified local variables do not have to be constant
4750 * expressions. Const-qualified global variables must still be
4751 * initialized with constant expressions.
4752 */
4753 if (!state->has_420pack()
4754 || state->current_function == NULL) {
4755 _mesa_glsl_error(& initializer_loc, state,
4756 "initializer of %s variable `%s' must be a "
4757 "constant expression",
4758 variable_mode,
4759 decl->identifier);
4760 if (glsl_type_is_numeric(var->type)) {
4761 /* Reduce cascading errors. */
4762 var->constant_value = type->qualifier.flags.q.constant
4763 ? ir_constant::zero(state, var->type) : NULL;
4764 }
4765 }
4766 } else {
4767 rhs = constant_value;
4768 var->constant_value = type->qualifier.flags.q.constant
4769 ? constant_value : NULL;
4770 }
4771 } else {
4772 if (glsl_type_is_numeric(var->type)) {
4773 /* Reduce cascading errors. */
4774 rhs = var->constant_value = type->qualifier.flags.q.constant
4775 ? ir_constant::zero(state, var->type) : NULL;
4776 }
4777 }
4778 }
4779
4780 if (rhs && !glsl_type_is_error(rhs->type)) {
4781 bool temp = var->data.read_only;
4782 if (type->qualifier.flags.q.constant)
4783 var->data.read_only = false;
4784
4785 /* Never emit code to initialize a uniform.
4786 */
4787 const glsl_type *initializer_type;
4788 bool error_emitted = false;
4789 if (!type->qualifier.flags.q.uniform) {
4790 error_emitted =
4791 do_assignment(initializer_instructions, state,
4792 NULL, lhs, rhs,
4793 &result, true, true,
4794 type->get_location());
4795 initializer_type = result->type;
4796 } else
4797 initializer_type = rhs->type;
4798
4799 if (!error_emitted) {
4800 var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4801 var->data.has_initializer = true;
4802 var->data.is_implicit_initializer = false;
4803
4804 /* If the declared variable is an unsized array, it must inherrit
4805 * its full type from the initializer. A declaration such as
4806 *
4807 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4808 *
4809 * becomes
4810 *
4811 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4812 *
4813 * The assignment generated in the if-statement (below) will also
4814 * automatically handle this case for non-uniforms.
4815 *
4816 * If the declared variable is not an array, the types must
4817 * already match exactly. As a result, the type assignment
4818 * here can be done unconditionally. For non-uniforms the call
4819 * to do_assignment can change the type of the initializer (via
4820 * the implicit conversion rules). For uniforms the initializer
4821 * must be a constant expression, and the type of that expression
4822 * was validated above.
4823 */
4824 var->type = initializer_type;
4825 }
4826
4827 var->data.read_only = temp;
4828 }
4829
4830 return result;
4831 }
4832
4833 static void
validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var,unsigned num_vertices,unsigned * size,const char * var_category)4834 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4835 YYLTYPE loc, ir_variable *var,
4836 unsigned num_vertices,
4837 unsigned *size,
4838 const char *var_category)
4839 {
4840 if (glsl_type_is_unsized_array(var->type)) {
4841 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4842 *
4843 * All geometry shader input unsized array declarations will be
4844 * sized by an earlier input layout qualifier, when present, as per
4845 * the following table.
4846 *
4847 * Followed by a table mapping each allowed input layout qualifier to
4848 * the corresponding input length.
4849 *
4850 * Similarly for tessellation control shader outputs.
4851 */
4852 if (num_vertices != 0)
4853 var->type = glsl_array_type(var->type->fields.array,
4854 num_vertices, 0);
4855 } else {
4856 /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4857 * includes the following examples of compile-time errors:
4858 *
4859 * // code sequence within one shader...
4860 * in vec4 Color1[]; // size unknown
4861 * ...Color1.length()...// illegal, length() unknown
4862 * in vec4 Color2[2]; // size is 2
4863 * ...Color1.length()...// illegal, Color1 still has no size
4864 * in vec4 Color3[3]; // illegal, input sizes are inconsistent
4865 * layout(lines) in; // legal, input size is 2, matching
4866 * in vec4 Color4[3]; // illegal, contradicts layout
4867 * ...
4868 *
4869 * To detect the case illustrated by Color3, we verify that the size of
4870 * an explicitly-sized array matches the size of any previously declared
4871 * explicitly-sized array. To detect the case illustrated by Color4, we
4872 * verify that the size of an explicitly-sized array is consistent with
4873 * any previously declared input layout.
4874 */
4875 if (num_vertices != 0 && var->type->length != num_vertices) {
4876 _mesa_glsl_error(&loc, state,
4877 "%s size contradicts previously declared layout "
4878 "(size is %u, but layout requires a size of %u)",
4879 var_category, var->type->length, num_vertices);
4880 } else if (*size != 0 && var->type->length != *size) {
4881 _mesa_glsl_error(&loc, state,
4882 "%s sizes are inconsistent (size is %u, but a "
4883 "previous declaration has size %u)",
4884 var_category, var->type->length, *size);
4885 } else {
4886 *size = var->type->length;
4887 }
4888 }
4889 }
4890
4891 static void
handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4892 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4893 YYLTYPE loc, ir_variable *var)
4894 {
4895 unsigned num_vertices = 0;
4896
4897 if (state->tcs_output_vertices_specified) {
4898 if (!state->out_qualifier->vertices->
4899 process_qualifier_constant(state, "vertices",
4900 &num_vertices, false)) {
4901 return;
4902 }
4903
4904 if (num_vertices > state->Const.MaxPatchVertices) {
4905 _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4906 "GL_MAX_PATCH_VERTICES", num_vertices);
4907 return;
4908 }
4909 }
4910
4911 if (!glsl_type_is_array(var->type) && !var->data.patch) {
4912 _mesa_glsl_error(&loc, state,
4913 "tessellation control shader outputs must be arrays");
4914
4915 /* To avoid cascading failures, short circuit the checks below. */
4916 return;
4917 }
4918
4919 if (var->data.patch)
4920 return;
4921
4922 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4923 &state->tcs_output_size,
4924 "tessellation control shader output");
4925 }
4926
4927 /**
4928 * Do additional processing necessary for tessellation control/evaluation shader
4929 * input declarations. This covers both interface block arrays and bare input
4930 * variables.
4931 */
4932 static void
handle_tess_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4933 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4934 YYLTYPE loc, ir_variable *var)
4935 {
4936 if (!glsl_type_is_array(var->type) && !var->data.patch) {
4937 _mesa_glsl_error(&loc, state,
4938 "per-vertex tessellation shader inputs must be arrays");
4939 /* Avoid cascading failures. */
4940 return;
4941 }
4942
4943 if (var->data.patch)
4944 return;
4945
4946 /* The ARB_tessellation_shader spec says:
4947 *
4948 * "Declaring an array size is optional. If no size is specified, it
4949 * will be taken from the implementation-dependent maximum patch size
4950 * (gl_MaxPatchVertices). If a size is specified, it must match the
4951 * maximum patch size; otherwise, a compile or link error will occur."
4952 *
4953 * This text appears twice, once for TCS inputs, and again for TES inputs.
4954 */
4955 if (glsl_type_is_unsized_array(var->type)) {
4956 var->type = glsl_array_type(var->type->fields.array,
4957 state->Const.MaxPatchVertices, 0);
4958 } else if (var->type->length != state->Const.MaxPatchVertices) {
4959 _mesa_glsl_error(&loc, state,
4960 "per-vertex tessellation shader input arrays must be "
4961 "sized to gl_MaxPatchVertices (%d).",
4962 state->Const.MaxPatchVertices);
4963 }
4964 }
4965
4966
4967 /**
4968 * Do additional processing necessary for geometry shader input declarations
4969 * (this covers both interface blocks arrays and bare input variables).
4970 */
4971 static void
handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4972 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4973 YYLTYPE loc, ir_variable *var)
4974 {
4975 unsigned num_vertices = 0;
4976
4977 if (state->gs_input_prim_type_specified) {
4978 GLenum in_prim_type = state->in_qualifier->prim_type;
4979 num_vertices = mesa_vertices_per_prim(gl_to_mesa_prim(in_prim_type));
4980 }
4981
4982 /* Geometry shader input variables must be arrays. Caller should have
4983 * reported an error for this.
4984 */
4985 if (!glsl_type_is_array(var->type)) {
4986 assert(state->error);
4987
4988 /* To avoid cascading failures, short circuit the checks below. */
4989 return;
4990 }
4991
4992 validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4993 &state->gs_input_size,
4994 "geometry shader input");
4995 }
4996
4997 static void
validate_identifier(const char * identifier,YYLTYPE loc,struct _mesa_glsl_parse_state * state)4998 validate_identifier(const char *identifier, YYLTYPE loc,
4999 struct _mesa_glsl_parse_state *state)
5000 {
5001 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
5002 *
5003 * "Identifiers starting with "gl_" are reserved for use by
5004 * OpenGL, and may not be declared in a shader as either a
5005 * variable or a function."
5006 */
5007 if (is_gl_identifier(identifier)) {
5008 _mesa_glsl_error(&loc, state,
5009 "identifier `%s' uses reserved `gl_' prefix",
5010 identifier);
5011 } else if (strstr(identifier, "__")) {
5012 /* From page 14 (page 20 of the PDF) of the GLSL 1.10
5013 * spec:
5014 *
5015 * "In addition, all identifiers containing two
5016 * consecutive underscores (__) are reserved as
5017 * possible future keywords."
5018 *
5019 * The intention is that names containing __ are reserved for internal
5020 * use by the implementation, and names prefixed with GL_ are reserved
5021 * for use by Khronos. Names simply containing __ are dangerous to use,
5022 * but should be allowed.
5023 *
5024 * A future version of the GLSL specification will clarify this.
5025 */
5026 _mesa_glsl_warning(&loc, state,
5027 "identifier `%s' uses reserved `__' string",
5028 identifier);
5029 }
5030 }
5031
5032 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5033 ast_declarator_list::hir(exec_list *instructions,
5034 struct _mesa_glsl_parse_state *state)
5035 {
5036 void *ctx = state;
5037 const struct glsl_type *decl_type;
5038 const char *type_name = NULL;
5039 ir_rvalue *result = NULL;
5040 YYLTYPE loc = this->get_location();
5041
5042 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
5043 *
5044 * "To ensure that a particular output variable is invariant, it is
5045 * necessary to use the invariant qualifier. It can either be used to
5046 * qualify a previously declared variable as being invariant
5047 *
5048 * invariant gl_Position; // make existing gl_Position be invariant"
5049 *
5050 * In these cases the parser will set the 'invariant' flag in the declarator
5051 * list, and the type will be NULL.
5052 */
5053 if (this->invariant) {
5054 assert(this->type == NULL);
5055
5056 if (state->current_function != NULL) {
5057 _mesa_glsl_error(& loc, state,
5058 "all uses of `invariant' keyword must be at global "
5059 "scope");
5060 }
5061
5062 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5063 assert(decl->array_specifier == NULL);
5064 assert(decl->initializer == NULL);
5065
5066 ir_variable *const earlier =
5067 state->symbols->get_variable(decl->identifier);
5068 if (earlier == NULL) {
5069 _mesa_glsl_error(& loc, state,
5070 "undeclared variable `%s' cannot be marked "
5071 "invariant", decl->identifier);
5072 } else if (!is_allowed_invariant(earlier, state)) {
5073 _mesa_glsl_error(&loc, state,
5074 "`%s' cannot be marked invariant; interfaces between "
5075 "shader stages only.", decl->identifier);
5076 } else if (earlier->data.used) {
5077 _mesa_glsl_error(& loc, state,
5078 "variable `%s' may not be redeclared "
5079 "`invariant' after being used",
5080 earlier->name);
5081 } else {
5082 earlier->data.explicit_invariant = true;
5083 earlier->data.invariant = true;
5084 }
5085 }
5086
5087 /* Invariant redeclarations do not have r-values.
5088 */
5089 return NULL;
5090 }
5091
5092 if (this->precise) {
5093 assert(this->type == NULL);
5094
5095 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5096 assert(decl->array_specifier == NULL);
5097 assert(decl->initializer == NULL);
5098
5099 ir_variable *const earlier =
5100 state->symbols->get_variable(decl->identifier);
5101 if (earlier == NULL) {
5102 _mesa_glsl_error(& loc, state,
5103 "undeclared variable `%s' cannot be marked "
5104 "precise", decl->identifier);
5105 } else if (state->current_function != NULL &&
5106 !state->symbols->name_declared_this_scope(decl->identifier)) {
5107 /* Note: we have to check if we're in a function, since
5108 * builtins are treated as having come from another scope.
5109 */
5110 _mesa_glsl_error(& loc, state,
5111 "variable `%s' from an outer scope may not be "
5112 "redeclared `precise' in this scope",
5113 earlier->name);
5114 } else if (earlier->data.used) {
5115 _mesa_glsl_error(& loc, state,
5116 "variable `%s' may not be redeclared "
5117 "`precise' after being used",
5118 earlier->name);
5119 } else {
5120 earlier->data.precise = true;
5121 }
5122 }
5123
5124 /* Precise redeclarations do not have r-values either. */
5125 return NULL;
5126 }
5127
5128 assert(this->type != NULL);
5129 assert(!this->invariant);
5130 assert(!this->precise);
5131
5132 /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to
5133 * indicate that it needs to be updated later (see glsl_parser.yy).
5134 * This is done here, based on the layout qualifier and the type of the image var
5135 */
5136 if (this->type->qualifier.flags.q.explicit_image_format &&
5137 glsl_type_is_image(this->type->specifier->type) &&
5138 this->type->qualifier.image_base_type == GLSL_TYPE_VOID) {
5139 /* "The ARB_shader_image_load_store says:
5140 * If both extensions are enabled in the shading language, the "size*" layout
5141 * qualifiers are treated as format qualifiers, and are mapped to equivalent
5142 * format qualifiers in the table below, according to the type of image
5143 * variable.
5144 * image* iimage* uimage*
5145 * -------- -------- --------
5146 * size1x8 n/a r8i r8ui
5147 * size1x16 r16f r16i r16ui
5148 * size1x32 r32f r32i r32ui
5149 * size2x32 rg32f rg32i rg32ui
5150 * size4x32 rgba32f rgba32i rgba32ui"
5151 */
5152 if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) {
5153 switch (this->type->qualifier.image_format) {
5154 case PIPE_FORMAT_R8_SINT:
5155 /* The GL_EXT_shader_image_load_store spec says:
5156 * A layout of "size1x8" is illegal for image variables associated
5157 * with floating-point data types.
5158 */
5159 _mesa_glsl_error(& loc, state,
5160 "size1x8 is illegal for image variables "
5161 "with floating-point data types.");
5162 return NULL;
5163 case PIPE_FORMAT_R16_SINT:
5164 this->type->qualifier.image_format = PIPE_FORMAT_R16_FLOAT;
5165 break;
5166 case PIPE_FORMAT_R32_SINT:
5167 this->type->qualifier.image_format = PIPE_FORMAT_R32_FLOAT;
5168 break;
5169 case PIPE_FORMAT_R32G32_SINT:
5170 this->type->qualifier.image_format = PIPE_FORMAT_R32G32_FLOAT;
5171 break;
5172 case PIPE_FORMAT_R32G32B32A32_SINT:
5173 this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
5174 break;
5175 default:
5176 unreachable("Unknown image format");
5177 }
5178 this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT;
5179 } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) {
5180 switch (this->type->qualifier.image_format) {
5181 case PIPE_FORMAT_R8_SINT:
5182 this->type->qualifier.image_format = PIPE_FORMAT_R8_UINT;
5183 break;
5184 case PIPE_FORMAT_R16_SINT:
5185 this->type->qualifier.image_format = PIPE_FORMAT_R16_UINT;
5186 break;
5187 case PIPE_FORMAT_R32_SINT:
5188 this->type->qualifier.image_format = PIPE_FORMAT_R32_UINT;
5189 break;
5190 case PIPE_FORMAT_R32G32_SINT:
5191 this->type->qualifier.image_format = PIPE_FORMAT_R32G32_UINT;
5192 break;
5193 case PIPE_FORMAT_R32G32B32A32_SINT:
5194 this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_UINT;
5195 break;
5196 default:
5197 unreachable("Unknown image format");
5198 }
5199 this->type->qualifier.image_base_type = GLSL_TYPE_UINT;
5200 } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) {
5201 this->type->qualifier.image_base_type = GLSL_TYPE_INT;
5202 } else {
5203 assert(false);
5204 }
5205 }
5206
5207 /* The type specifier may contain a structure definition. Process that
5208 * before any of the variable declarations.
5209 */
5210 (void) this->type->specifier->hir(instructions, state);
5211
5212 decl_type = this->type->glsl_type(& type_name, state);
5213
5214 /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
5215 * "Buffer variables may only be declared inside interface blocks
5216 * (section 4.3.9 “Interface Blocks”), which are then referred to as
5217 * shader storage blocks. It is a compile-time error to declare buffer
5218 * variables at global scope (outside a block)."
5219 */
5220 if (type->qualifier.flags.q.buffer && !glsl_type_is_interface(decl_type)) {
5221 _mesa_glsl_error(&loc, state,
5222 "buffer variables cannot be declared outside "
5223 "interface blocks");
5224 }
5225
5226 /* An offset-qualified atomic counter declaration sets the default
5227 * offset for the next declaration within the same atomic counter
5228 * buffer.
5229 */
5230 if (decl_type && glsl_contains_atomic(decl_type)) {
5231 if (type->qualifier.flags.q.explicit_binding &&
5232 type->qualifier.flags.q.explicit_offset) {
5233 unsigned qual_binding;
5234 unsigned qual_offset;
5235 if (process_qualifier_constant(state, &loc, "binding",
5236 type->qualifier.binding,
5237 &qual_binding)
5238 && process_qualifier_constant(state, &loc, "offset",
5239 type->qualifier.offset,
5240 &qual_offset)) {
5241 if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
5242 state->atomic_counter_offsets[qual_binding] = qual_offset;
5243 }
5244 }
5245
5246 ast_type_qualifier allowed_atomic_qual_mask;
5247 allowed_atomic_qual_mask.flags.i = 0;
5248 allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
5249 allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
5250 allowed_atomic_qual_mask.flags.q.uniform = 1;
5251
5252 type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
5253 "invalid layout qualifier for",
5254 "atomic_uint");
5255 }
5256
5257 if (this->declarations.is_empty()) {
5258 /* If there is no structure involved in the program text, there are two
5259 * possible scenarios:
5260 *
5261 * - The program text contained something like 'vec4;'. This is an
5262 * empty declaration. It is valid but weird. Emit a warning.
5263 *
5264 * - The program text contained something like 'S;' and 'S' is not the
5265 * name of a known structure type. This is both invalid and weird.
5266 * Emit an error.
5267 *
5268 * - The program text contained something like 'mediump float;'
5269 * when the programmer probably meant 'precision mediump
5270 * float;' Emit a warning with a description of what they
5271 * probably meant to do.
5272 *
5273 * Note that if decl_type is NULL and there is a structure involved,
5274 * there must have been some sort of error with the structure. In this
5275 * case we assume that an error was already generated on this line of
5276 * code for the structure. There is no need to generate an additional,
5277 * confusing error.
5278 */
5279 assert(this->type->specifier->structure == NULL || decl_type != NULL
5280 || state->error);
5281
5282 if (decl_type == NULL) {
5283 _mesa_glsl_error(&loc, state,
5284 "invalid type `%s' in empty declaration",
5285 type_name);
5286 } else {
5287 if (glsl_type_is_array(decl_type)) {
5288 /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5289 * spec:
5290 *
5291 * "... any declaration that leaves the size undefined is
5292 * disallowed as this would add complexity and there are no
5293 * use-cases."
5294 */
5295 if (state->es_shader && glsl_type_is_unsized_array(decl_type)) {
5296 _mesa_glsl_error(&loc, state, "array size must be explicitly "
5297 "or implicitly defined");
5298 }
5299
5300 /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5301 *
5302 * "The combinations of types and qualifiers that cause
5303 * compile-time or link-time errors are the same whether or not
5304 * the declaration is empty."
5305 */
5306 validate_array_dimensions(decl_type, state, &loc);
5307 }
5308
5309 if (glsl_type_is_atomic_uint(decl_type)) {
5310 /* Empty atomic counter declarations are allowed and useful
5311 * to set the default offset qualifier.
5312 */
5313 return NULL;
5314 } else if (this->type->qualifier.precision != ast_precision_none) {
5315 if (this->type->specifier->structure != NULL) {
5316 _mesa_glsl_error(&loc, state,
5317 "precision qualifiers can't be applied "
5318 "to structures");
5319 } else {
5320 static const char *const precision_names[] = {
5321 "highp",
5322 "highp",
5323 "mediump",
5324 "lowp"
5325 };
5326
5327 _mesa_glsl_warning(&loc, state,
5328 "empty declaration with precision "
5329 "qualifier, to set the default precision, "
5330 "use `precision %s %s;'",
5331 precision_names[this->type->
5332 qualifier.precision],
5333 type_name);
5334 }
5335 } else if (this->type->specifier->structure == NULL) {
5336 _mesa_glsl_warning(&loc, state, "empty declaration");
5337 }
5338 }
5339 }
5340
5341 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5342 const struct glsl_type *var_type;
5343 ir_variable *var;
5344 const char *identifier = decl->identifier;
5345 /* FINISHME: Emit a warning if a variable declaration shadows a
5346 * FINISHME: declaration at a higher scope.
5347 */
5348
5349 if ((decl_type == NULL) || glsl_type_is_void(decl_type)) {
5350 if (type_name != NULL) {
5351 _mesa_glsl_error(& loc, state,
5352 "invalid type `%s' in declaration of `%s'",
5353 type_name, decl->identifier);
5354 } else {
5355 _mesa_glsl_error(& loc, state,
5356 "invalid type in declaration of `%s'",
5357 decl->identifier);
5358 }
5359 continue;
5360 }
5361
5362 if (this->type->qualifier.is_subroutine_decl()) {
5363 const glsl_type *t;
5364 const char *name;
5365
5366 t = state->symbols->get_type(this->type->specifier->type_name);
5367 if (!t)
5368 _mesa_glsl_error(& loc, state,
5369 "invalid type in declaration of `%s'",
5370 decl->identifier);
5371 name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5372
5373 identifier = name;
5374
5375 }
5376 var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5377 state);
5378
5379 var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5380
5381 /* The 'varying in' and 'varying out' qualifiers can only be used with
5382 * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5383 * yet.
5384 */
5385 if (this->type->qualifier.flags.q.varying) {
5386 if (this->type->qualifier.flags.q.in) {
5387 _mesa_glsl_error(& loc, state,
5388 "`varying in' qualifier in declaration of "
5389 "`%s' only valid for geometry shaders using "
5390 "ARB_geometry_shader4 or EXT_geometry_shader4",
5391 decl->identifier);
5392 } else if (this->type->qualifier.flags.q.out) {
5393 _mesa_glsl_error(& loc, state,
5394 "`varying out' qualifier in declaration of "
5395 "`%s' only valid for geometry shaders using "
5396 "ARB_geometry_shader4 or EXT_geometry_shader4",
5397 decl->identifier);
5398 }
5399 }
5400
5401 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5402 *
5403 * "Global variables can only use the qualifiers const,
5404 * attribute, uniform, or varying. Only one may be
5405 * specified.
5406 *
5407 * Local variables can only use the qualifier const."
5408 *
5409 * This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
5410 * any extension that adds the 'layout' keyword.
5411 */
5412 if (!state->is_version(130, 300)
5413 && !state->has_explicit_attrib_location()
5414 && !state->has_separate_shader_objects()
5415 && !state->ARB_fragment_coord_conventions_enable) {
5416 /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader
5417 * outputs. (the varying flag is not set by the parser)
5418 */
5419 if (this->type->qualifier.flags.q.out &&
5420 (!state->EXT_gpu_shader4_enable ||
5421 state->stage != MESA_SHADER_FRAGMENT)) {
5422 _mesa_glsl_error(& loc, state,
5423 "`out' qualifier in declaration of `%s' "
5424 "only valid for function parameters in %s",
5425 decl->identifier, state->get_version_string());
5426 }
5427 if (this->type->qualifier.flags.q.in) {
5428 _mesa_glsl_error(& loc, state,
5429 "`in' qualifier in declaration of `%s' "
5430 "only valid for function parameters in %s",
5431 decl->identifier, state->get_version_string());
5432 }
5433 /* FINISHME: Test for other invalid qualifiers. */
5434 }
5435
5436 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5437 & loc, false);
5438 apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5439 &loc);
5440
5441 if ((state->zero_init & (1u << var->data.mode)) &&
5442 (glsl_type_is_numeric(var->type) || glsl_type_is_boolean(var->type))) {
5443 const ir_constant_data data = { { 0 } };
5444 var->data.has_initializer = true;
5445 var->data.is_implicit_initializer = true;
5446 var->constant_initializer = new(var) ir_constant(var->type, &data);
5447 }
5448
5449 if (this->type->qualifier.flags.q.invariant) {
5450 if (!is_allowed_invariant(var, state)) {
5451 _mesa_glsl_error(&loc, state,
5452 "`%s' cannot be marked invariant; interfaces between "
5453 "shader stages only", var->name);
5454 }
5455 }
5456
5457 if (state->current_function != NULL) {
5458 const char *mode = NULL;
5459 const char *extra = "";
5460
5461 /* There is no need to check for 'inout' here because the parser will
5462 * only allow that in function parameter lists.
5463 */
5464 if (this->type->qualifier.flags.q.attribute) {
5465 mode = "attribute";
5466 } else if (this->type->qualifier.is_subroutine_decl()) {
5467 mode = "subroutine uniform";
5468 } else if (this->type->qualifier.flags.q.uniform) {
5469 mode = "uniform";
5470 } else if (this->type->qualifier.flags.q.varying) {
5471 mode = "varying";
5472 } else if (this->type->qualifier.flags.q.in) {
5473 mode = "in";
5474 extra = " or in function parameter list";
5475 } else if (this->type->qualifier.flags.q.out) {
5476 mode = "out";
5477 extra = " or in function parameter list";
5478 }
5479
5480 if (mode) {
5481 _mesa_glsl_error(& loc, state,
5482 "%s variable `%s' must be declared at "
5483 "global scope%s",
5484 mode, var->name, extra);
5485 }
5486 } else if (var->data.mode == ir_var_shader_in) {
5487 var->data.read_only = true;
5488
5489 if (state->stage == MESA_SHADER_VERTEX) {
5490 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5491 *
5492 * "Vertex shader inputs can only be float, floating-point
5493 * vectors, matrices, signed and unsigned integers and integer
5494 * vectors. Vertex shader inputs can also form arrays of these
5495 * types, but not structures."
5496 *
5497 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5498 *
5499 * "Vertex shader inputs can only be float, floating-point
5500 * vectors, matrices, signed and unsigned integers and integer
5501 * vectors. They cannot be arrays or structures."
5502 *
5503 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5504 *
5505 * "The attribute qualifier can be used only with float,
5506 * floating-point vectors, and matrices. Attribute variables
5507 * cannot be declared as arrays or structures."
5508 *
5509 * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5510 *
5511 * "Vertex shader inputs can only be float, floating-point
5512 * vectors, matrices, signed and unsigned integers and integer
5513 * vectors. Vertex shader inputs cannot be arrays or
5514 * structures."
5515 *
5516 * From section 4.3.4 of the ARB_bindless_texture spec:
5517 *
5518 * "(modify third paragraph of the section to allow sampler and
5519 * image types) ... Vertex shader inputs can only be float,
5520 * single-precision floating-point scalars, single-precision
5521 * floating-point vectors, matrices, signed and unsigned
5522 * integers and integer vectors, sampler and image types."
5523 */
5524 const glsl_type *check_type = glsl_without_array(var->type);
5525
5526 bool error = false;
5527 switch (check_type->base_type) {
5528 case GLSL_TYPE_FLOAT:
5529 break;
5530 case GLSL_TYPE_UINT64:
5531 case GLSL_TYPE_INT64:
5532 break;
5533 case GLSL_TYPE_UINT:
5534 case GLSL_TYPE_INT:
5535 error = !state->is_version(120, 300) && !state->EXT_gpu_shader4_enable;
5536 break;
5537 case GLSL_TYPE_DOUBLE:
5538 error = !state->is_version(410, 0) && !state->ARB_vertex_attrib_64bit_enable;
5539 break;
5540 case GLSL_TYPE_SAMPLER:
5541 case GLSL_TYPE_TEXTURE:
5542 case GLSL_TYPE_IMAGE:
5543 error = !state->has_bindless();
5544 break;
5545 default:
5546 error = true;
5547 }
5548
5549 if (error) {
5550 _mesa_glsl_error(& loc, state,
5551 "vertex shader input / attribute cannot have "
5552 "type %s`%s'",
5553 glsl_type_is_array(var->type) ? "array of " : "",
5554 glsl_get_type_name(check_type));
5555 } else if (glsl_type_is_array(var->type) &&
5556 !state->check_version(150, 0, &loc,
5557 "vertex shader input / attribute "
5558 "cannot have array type")) {
5559 }
5560 } else if (state->stage == MESA_SHADER_GEOMETRY) {
5561 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5562 *
5563 * Geometry shader input variables get the per-vertex values
5564 * written out by vertex shader output variables of the same
5565 * names. Since a geometry shader operates on a set of
5566 * vertices, each input varying variable (or input block, see
5567 * interface blocks below) needs to be declared as an array.
5568 */
5569 if (!glsl_type_is_array(var->type)) {
5570 _mesa_glsl_error(&loc, state,
5571 "geometry shader inputs must be arrays");
5572 }
5573
5574 handle_geometry_shader_input_decl(state, loc, var);
5575 } else if (state->stage == MESA_SHADER_FRAGMENT) {
5576 /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5577 *
5578 * It is a compile-time error to declare a fragment shader
5579 * input with, or that contains, any of the following types:
5580 *
5581 * * A boolean type
5582 * * An opaque type
5583 * * An array of arrays
5584 * * An array of structures
5585 * * A structure containing an array
5586 * * A structure containing a structure
5587 */
5588 if (state->es_shader) {
5589 const glsl_type *check_type = glsl_without_array(var->type);
5590 if (glsl_type_is_boolean(check_type) ||
5591 glsl_contains_opaque(check_type)) {
5592 _mesa_glsl_error(&loc, state,
5593 "fragment shader input cannot have type %s",
5594 glsl_get_type_name(check_type));
5595 }
5596 if (glsl_type_is_array(var->type) &&
5597 glsl_type_is_array(var->type->fields.array)) {
5598 _mesa_glsl_error(&loc, state,
5599 "%s shader output "
5600 "cannot have an array of arrays",
5601 _mesa_shader_stage_to_string(state->stage));
5602 }
5603 if (glsl_type_is_array(var->type) &&
5604 glsl_type_is_struct(var->type->fields.array)) {
5605 _mesa_glsl_error(&loc, state,
5606 "fragment shader input "
5607 "cannot have an array of structs");
5608 }
5609 if (glsl_type_is_struct(var->type)) {
5610 for (unsigned i = 0; i < var->type->length; i++) {
5611 if (glsl_type_is_array(var->type->fields.structure[i].type) ||
5612 glsl_type_is_struct(var->type->fields.structure[i].type))
5613 _mesa_glsl_error(&loc, state,
5614 "fragment shader input cannot have "
5615 "a struct that contains an "
5616 "array or struct");
5617 }
5618 }
5619 }
5620 } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5621 state->stage == MESA_SHADER_TESS_EVAL) {
5622 handle_tess_shader_input_decl(state, loc, var);
5623 }
5624 } else if (var->data.mode == ir_var_shader_out) {
5625 const glsl_type *check_type = glsl_without_array(var->type);
5626
5627 /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5628 *
5629 * It is a compile-time error to declare a fragment shader output
5630 * that contains any of the following:
5631 *
5632 * * A Boolean type (bool, bvec2 ...)
5633 * * A double-precision scalar or vector (double, dvec2 ...)
5634 * * An opaque type
5635 * * Any matrix type
5636 * * A structure
5637 */
5638 if (state->stage == MESA_SHADER_FRAGMENT) {
5639 if (glsl_type_is_struct(check_type) || glsl_type_is_matrix(check_type))
5640 _mesa_glsl_error(&loc, state,
5641 "fragment shader output "
5642 "cannot have struct or matrix type");
5643 switch (check_type->base_type) {
5644 case GLSL_TYPE_UINT:
5645 case GLSL_TYPE_INT:
5646 case GLSL_TYPE_FLOAT:
5647 break;
5648 default:
5649 _mesa_glsl_error(&loc, state,
5650 "fragment shader output cannot have "
5651 "type %s", glsl_get_type_name(check_type));
5652 }
5653 }
5654
5655 /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5656 *
5657 * It is a compile-time error to declare a vertex shader output
5658 * with, or that contains, any of the following types:
5659 *
5660 * * A boolean type
5661 * * An opaque type
5662 * * An array of arrays
5663 * * An array of structures
5664 * * A structure containing an array
5665 * * A structure containing a structure
5666 *
5667 * It is a compile-time error to declare a fragment shader output
5668 * with, or that contains, any of the following types:
5669 *
5670 * * A boolean type
5671 * * An opaque type
5672 * * A matrix
5673 * * A structure
5674 * * An array of array
5675 *
5676 * ES 3.20 updates this to apply to tessellation and geometry shaders
5677 * as well. Because there are per-vertex arrays in the new stages,
5678 * it strikes the "array of..." rules and replaces them with these:
5679 *
5680 * * For per-vertex-arrayed variables (applies to tessellation
5681 * control, tessellation evaluation and geometry shaders):
5682 *
5683 * * Per-vertex-arrayed arrays of arrays
5684 * * Per-vertex-arrayed arrays of structures
5685 *
5686 * * For non-per-vertex-arrayed variables:
5687 *
5688 * * An array of arrays
5689 * * An array of structures
5690 *
5691 * which basically says to unwrap the per-vertex aspect and apply
5692 * the old rules.
5693 */
5694 if (state->es_shader) {
5695 if (glsl_type_is_array(var->type) &&
5696 glsl_type_is_array(var->type->fields.array)) {
5697 _mesa_glsl_error(&loc, state,
5698 "%s shader output "
5699 "cannot have an array of arrays",
5700 _mesa_shader_stage_to_string(state->stage));
5701 }
5702 if (state->stage <= MESA_SHADER_GEOMETRY) {
5703 const glsl_type *type = var->type;
5704
5705 if (state->stage == MESA_SHADER_TESS_CTRL &&
5706 !var->data.patch && glsl_type_is_array(var->type)) {
5707 type = var->type->fields.array;
5708 }
5709
5710 if (glsl_type_is_array(type) && glsl_type_is_struct(type->fields.array)) {
5711 _mesa_glsl_error(&loc, state,
5712 "%s shader output cannot have "
5713 "an array of structs",
5714 _mesa_shader_stage_to_string(state->stage));
5715 }
5716 if (glsl_type_is_struct(type)) {
5717 for (unsigned i = 0; i < type->length; i++) {
5718 if (glsl_type_is_array(type->fields.structure[i].type) ||
5719 glsl_type_is_struct(type->fields.structure[i].type))
5720 _mesa_glsl_error(&loc, state,
5721 "%s shader output cannot have a "
5722 "struct that contains an "
5723 "array or struct",
5724 _mesa_shader_stage_to_string(state->stage));
5725 }
5726 }
5727 }
5728 }
5729
5730 if (state->stage == MESA_SHADER_TESS_CTRL) {
5731 handle_tess_ctrl_shader_output_decl(state, loc, var);
5732 }
5733 } else if (glsl_contains_subroutine(var->type)) {
5734 /* declare subroutine uniforms as hidden */
5735 var->data.how_declared = ir_var_hidden;
5736 }
5737
5738 /* From section 4.3.4 of the GLSL 4.00 spec:
5739 * "Input variables may not be declared using the patch in qualifier
5740 * in tessellation control or geometry shaders."
5741 *
5742 * From section 4.3.6 of the GLSL 4.00 spec:
5743 * "It is an error to use patch out in a vertex, tessellation
5744 * evaluation, or geometry shader."
5745 *
5746 * This doesn't explicitly forbid using them in a fragment shader, but
5747 * that's probably just an oversight.
5748 */
5749 if (state->stage != MESA_SHADER_TESS_EVAL
5750 && this->type->qualifier.flags.q.patch
5751 && this->type->qualifier.flags.q.in) {
5752
5753 _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5754 "tessellation evaluation shader");
5755 }
5756
5757 if (state->stage != MESA_SHADER_TESS_CTRL
5758 && this->type->qualifier.flags.q.patch
5759 && this->type->qualifier.flags.q.out) {
5760
5761 _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5762 "tessellation control shader");
5763 }
5764
5765 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5766 */
5767 if (this->type->qualifier.precision != ast_precision_none) {
5768 state->check_precision_qualifiers_allowed(&loc);
5769 }
5770
5771 if (this->type->qualifier.precision != ast_precision_none &&
5772 !precision_qualifier_allowed(var->type)) {
5773 _mesa_glsl_error(&loc, state,
5774 "precision qualifiers apply only to floating point"
5775 ", integer and opaque types");
5776 }
5777
5778 /* From section 4.1.7 of the GLSL 4.40 spec:
5779 *
5780 * "[Opaque types] can only be declared as function
5781 * parameters or uniform-qualified variables."
5782 *
5783 * From section 4.1.7 of the ARB_bindless_texture spec:
5784 *
5785 * "Samplers may be declared as shader inputs and outputs, as uniform
5786 * variables, as temporary variables, and as function parameters."
5787 *
5788 * From section 4.1.X of the ARB_bindless_texture spec:
5789 *
5790 * "Images may be declared as shader inputs and outputs, as uniform
5791 * variables, as temporary variables, and as function parameters."
5792 */
5793 if (!this->type->qualifier.flags.q.uniform &&
5794 (glsl_contains_atomic(var_type) ||
5795 (!state->has_bindless() && glsl_contains_opaque(var_type)))) {
5796 _mesa_glsl_error(&loc, state,
5797 "%s variables must be declared uniform",
5798 state->has_bindless() ? "atomic" : "opaque");
5799 }
5800
5801 /* Process the initializer and add its instructions to a temporary
5802 * list. This list will be added to the instruction stream (below) after
5803 * the declaration is added. This is done because in some cases (such as
5804 * redeclarations) the declaration may not actually be added to the
5805 * instruction stream.
5806 */
5807 exec_list initializer_instructions;
5808
5809 /* Examine var name here since var may get deleted in the next call */
5810 bool var_is_gl_id = is_gl_identifier(var->name);
5811
5812 bool is_redeclaration;
5813 var = get_variable_being_redeclared(&var, decl->get_location(), state,
5814 false /* allow_all_redeclarations */,
5815 &is_redeclaration);
5816 if (is_redeclaration) {
5817 if (var_is_gl_id &&
5818 var->data.how_declared == ir_var_declared_in_block) {
5819 _mesa_glsl_error(&loc, state,
5820 "`%s' has already been redeclared using "
5821 "gl_PerVertex", var->name);
5822 }
5823 var->data.how_declared = ir_var_declared_normally;
5824 }
5825
5826 if (decl->initializer != NULL) {
5827 result = process_initializer(var,
5828 decl, this->type,
5829 &initializer_instructions, state);
5830 } else {
5831 validate_array_dimensions(var_type, state, &loc);
5832 }
5833
5834 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5835 *
5836 * "It is an error to write to a const variable outside of
5837 * its declaration, so they must be initialized when
5838 * declared."
5839 */
5840 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5841 _mesa_glsl_error(& loc, state,
5842 "const declaration of `%s' must be initialized",
5843 decl->identifier);
5844 }
5845
5846 if (state->es_shader) {
5847 const glsl_type *const t = var->type;
5848
5849 /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5850 *
5851 * The GL_OES_tessellation_shader spec says about inputs:
5852 *
5853 * "Declaring an array size is optional. If no size is specified,
5854 * it will be taken from the implementation-dependent maximum
5855 * patch size (gl_MaxPatchVertices)."
5856 *
5857 * and about TCS outputs:
5858 *
5859 * "If no size is specified, it will be taken from output patch
5860 * size declared in the shader."
5861 *
5862 * The GL_OES_geometry_shader spec says:
5863 *
5864 * "All geometry shader input unsized array declarations will be
5865 * sized by an earlier input primitive layout qualifier, when
5866 * present, as per the following table."
5867 */
5868 const bool implicitly_sized =
5869 (var->data.mode == ir_var_shader_in &&
5870 state->stage >= MESA_SHADER_TESS_CTRL &&
5871 state->stage <= MESA_SHADER_GEOMETRY) ||
5872 (var->data.mode == ir_var_shader_out &&
5873 state->stage == MESA_SHADER_TESS_CTRL);
5874
5875 if (glsl_type_is_unsized_array(t) && !implicitly_sized)
5876 /* Section 10.17 of the GLSL ES 1.00 specification states that
5877 * unsized array declarations have been removed from the language.
5878 * Arrays that are sized using an initializer are still explicitly
5879 * sized. However, GLSL ES 1.00 does not allow array
5880 * initializers. That is only allowed in GLSL ES 3.00.
5881 *
5882 * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5883 *
5884 * "An array type can also be formed without specifying a size
5885 * if the definition includes an initializer:
5886 *
5887 * float x[] = float[2] (1.0, 2.0); // declares an array of size 2
5888 * float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5889 *
5890 * float a[5];
5891 * float b[] = a;"
5892 */
5893 _mesa_glsl_error(& loc, state,
5894 "unsized array declarations are not allowed in "
5895 "GLSL ES");
5896 }
5897
5898 /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5899 *
5900 * "It is a compile-time error to declare an unsized array of
5901 * atomic_uint"
5902 */
5903 if (glsl_type_is_unsized_array(var->type) &&
5904 glsl_without_array(var->type)->base_type == GLSL_TYPE_ATOMIC_UINT) {
5905 _mesa_glsl_error(& loc, state,
5906 "Unsized array of atomic_uint is not allowed");
5907 }
5908
5909 /* If the declaration is not a redeclaration, there are a few additional
5910 * semantic checks that must be applied. In addition, variable that was
5911 * created for the declaration should be added to the IR stream.
5912 */
5913 if (!is_redeclaration) {
5914 validate_identifier(decl->identifier, loc, state);
5915
5916 /* Add the variable to the symbol table. Note that the initializer's
5917 * IR was already processed earlier (though it hasn't been emitted
5918 * yet), without the variable in scope.
5919 *
5920 * This differs from most C-like languages, but it follows the GLSL
5921 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
5922 * spec:
5923 *
5924 * "Within a declaration, the scope of a name starts immediately
5925 * after the initializer if present or immediately after the name
5926 * being declared if not."
5927 */
5928 if (!state->symbols->add_variable(var)) {
5929 YYLTYPE loc = this->get_location();
5930 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5931 "current scope", decl->identifier);
5932 continue;
5933 }
5934
5935 /* Push the variable declaration to the top. It means that all the
5936 * variable declarations will appear in a funny last-to-first order,
5937 * but otherwise we run into trouble if a function is prototyped, a
5938 * global var is decled, then the function is defined with usage of
5939 * the global var. See glslparsertest's CorrectModule.frag.
5940 */
5941 instructions->push_head(var);
5942 }
5943
5944 instructions->append_list(&initializer_instructions);
5945 }
5946
5947
5948 /* Generally, variable declarations do not have r-values. However,
5949 * one is used for the declaration in
5950 *
5951 * while (bool b = some_condition()) {
5952 * ...
5953 * }
5954 *
5955 * so we return the rvalue from the last seen declaration here.
5956 */
5957 return result;
5958 }
5959
5960
5961 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5962 ast_parameter_declarator::hir(exec_list *instructions,
5963 struct _mesa_glsl_parse_state *state)
5964 {
5965 void *ctx = state;
5966 const struct glsl_type *type;
5967 const char *name = NULL;
5968 YYLTYPE loc = this->get_location();
5969
5970 type = this->type->glsl_type(& name, state);
5971
5972 if (type == NULL) {
5973 if (name != NULL) {
5974 _mesa_glsl_error(& loc, state,
5975 "invalid type `%s' in declaration of `%s'",
5976 name, this->identifier);
5977 } else {
5978 _mesa_glsl_error(& loc, state,
5979 "invalid type in declaration of `%s'",
5980 this->identifier);
5981 }
5982
5983 type = &glsl_type_builtin_error;
5984 }
5985
5986 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5987 *
5988 * "Functions that accept no input arguments need not use void in the
5989 * argument list because prototypes (or definitions) are required and
5990 * therefore there is no ambiguity when an empty argument list "( )" is
5991 * declared. The idiom "(void)" as a parameter list is provided for
5992 * convenience."
5993 *
5994 * Placing this check here prevents a void parameter being set up
5995 * for a function, which avoids tripping up checks for main taking
5996 * parameters and lookups of an unnamed symbol.
5997 */
5998 if (glsl_type_is_void(type)) {
5999 if (this->identifier != NULL)
6000 _mesa_glsl_error(& loc, state,
6001 "named parameter cannot have type `void'");
6002
6003 is_void = true;
6004 return NULL;
6005 }
6006
6007 if (formal_parameter && (this->identifier == NULL)) {
6008 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
6009 return NULL;
6010 }
6011
6012 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
6013 * call already handled the "vec4[..] foo" case.
6014 */
6015 type = process_array_type(&loc, type, this->array_specifier, state);
6016
6017 if (!glsl_type_is_error(type) && glsl_type_is_unsized_array(type)) {
6018 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
6019 "a declared size");
6020 type = &glsl_type_builtin_error;
6021 }
6022
6023 is_void = false;
6024 ir_variable *var = new(ctx)
6025 ir_variable(type, this->identifier, ir_var_function_in);
6026
6027 /* Apply any specified qualifiers to the parameter declaration. Note that
6028 * for function parameters the default mode is 'in'.
6029 */
6030 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
6031 true);
6032
6033 if (((1u << var->data.mode) & state->zero_init) &&
6034 (glsl_type_is_numeric(var->type) || glsl_type_is_boolean(var->type))) {
6035 const ir_constant_data data = { { 0 } };
6036 var->data.has_initializer = true;
6037 var->data.is_implicit_initializer = true;
6038 var->constant_initializer = new(var) ir_constant(var->type, &data);
6039 }
6040
6041 /* From section 4.1.7 of the GLSL 4.40 spec:
6042 *
6043 * "Opaque variables cannot be treated as l-values; hence cannot
6044 * be used as out or inout function parameters, nor can they be
6045 * assigned into."
6046 *
6047 * From section 4.1.7 of the ARB_bindless_texture spec:
6048 *
6049 * "Samplers can be used as l-values, so can be assigned into and used
6050 * as "out" and "inout" function parameters."
6051 *
6052 * From section 4.1.X of the ARB_bindless_texture spec:
6053 *
6054 * "Images can be used as l-values, so can be assigned into and used as
6055 * "out" and "inout" function parameters."
6056 */
6057 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
6058 && (glsl_contains_atomic(type) ||
6059 (!state->has_bindless() && glsl_contains_opaque(type)))) {
6060 _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
6061 "contain %s variables",
6062 state->has_bindless() ? "atomic" : "opaque");
6063 type = &glsl_type_builtin_error;
6064 }
6065
6066 /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
6067 *
6068 * "When calling a function, expressions that do not evaluate to
6069 * l-values cannot be passed to parameters declared as out or inout."
6070 *
6071 * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
6072 *
6073 * "Other binary or unary expressions, non-dereferenced arrays,
6074 * function names, swizzles with repeated fields, and constants
6075 * cannot be l-values."
6076 *
6077 * So for GLSL 1.10, passing an array as an out or inout parameter is not
6078 * allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
6079 */
6080 if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
6081 && glsl_type_is_array(type)
6082 && !state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120, 100, &loc,
6083 "arrays cannot be out or inout parameters")) {
6084 type = &glsl_type_builtin_error;
6085 }
6086
6087 instructions->push_tail(var);
6088
6089 /* Parameter declarations do not have r-values.
6090 */
6091 return NULL;
6092 }
6093
6094
6095 void
parameters_to_hir(exec_list * ast_parameters,bool formal,exec_list * ir_parameters,_mesa_glsl_parse_state * state)6096 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
6097 bool formal,
6098 exec_list *ir_parameters,
6099 _mesa_glsl_parse_state *state)
6100 {
6101 ast_parameter_declarator *void_param = NULL;
6102 unsigned count = 0;
6103
6104 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
6105 param->formal_parameter = formal;
6106 param->hir(ir_parameters, state);
6107
6108 if (param->is_void)
6109 void_param = param;
6110
6111 count++;
6112 }
6113
6114 if ((void_param != NULL) && (count > 1)) {
6115 YYLTYPE loc = void_param->get_location();
6116
6117 _mesa_glsl_error(& loc, state,
6118 "`void' parameter must be only parameter");
6119 }
6120 }
6121
6122
6123 void
emit_function(_mesa_glsl_parse_state * state,ir_function * f)6124 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
6125 {
6126 /* IR invariants disallow function declarations or definitions
6127 * nested within other function definitions. But there is no
6128 * requirement about the relative order of function declarations
6129 * and definitions with respect to one another. So simply insert
6130 * the new ir_function block at the end of the toplevel instruction
6131 * list.
6132 */
6133 state->toplevel_ir->push_tail(f);
6134 }
6135
6136
6137 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6138 ast_function::hir(exec_list *instructions,
6139 struct _mesa_glsl_parse_state *state)
6140 {
6141 void *ctx = state;
6142 ir_function *f = NULL;
6143 ir_function_signature *sig = NULL;
6144 exec_list hir_parameters;
6145 YYLTYPE loc = this->get_location();
6146
6147 const char *const name = identifier;
6148
6149 /* New functions are always added to the top-level IR instruction stream,
6150 * so this instruction list pointer is ignored. See also emit_function
6151 * (called below).
6152 */
6153 (void) instructions;
6154
6155 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
6156 *
6157 * "Function declarations (prototypes) cannot occur inside of functions;
6158 * they must be at global scope, or for the built-in functions, outside
6159 * the global scope."
6160 *
6161 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
6162 *
6163 * "User defined functions may only be defined within the global scope."
6164 *
6165 * Note that this language does not appear in GLSL 1.10.
6166 */
6167 if ((state->current_function != NULL) &&
6168 state->is_version(120, 100)) {
6169 YYLTYPE loc = this->get_location();
6170 _mesa_glsl_error(&loc, state,
6171 "declaration of function `%s' not allowed within "
6172 "function body", name);
6173 }
6174
6175 validate_identifier(name, this->get_location(), state);
6176
6177 /* Convert the list of function parameters to HIR now so that they can be
6178 * used below to compare this function's signature with previously seen
6179 * signatures for functions with the same name.
6180 */
6181 ast_parameter_declarator::parameters_to_hir(& this->parameters,
6182 is_definition,
6183 & hir_parameters, state);
6184
6185 const char *return_type_name;
6186 const glsl_type *return_type =
6187 this->return_type->glsl_type(& return_type_name, state);
6188
6189 if (!return_type) {
6190 YYLTYPE loc = this->get_location();
6191 _mesa_glsl_error(&loc, state,
6192 "function `%s' has undeclared return type `%s'",
6193 name, return_type_name);
6194 return_type = &glsl_type_builtin_error;
6195 }
6196
6197 /* ARB_shader_subroutine states:
6198 * "Subroutine declarations cannot be prototyped. It is an error to prepend
6199 * subroutine(...) to a function declaration."
6200 */
6201 if (this->return_type->qualifier.subroutine_list && !is_definition) {
6202 YYLTYPE loc = this->get_location();
6203 _mesa_glsl_error(&loc, state,
6204 "function declaration `%s' cannot have subroutine prepended",
6205 name);
6206 }
6207
6208 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
6209 * "No qualifier is allowed on the return type of a function."
6210 */
6211 if (this->return_type->has_qualifiers(state)) {
6212 YYLTYPE loc = this->get_location();
6213 _mesa_glsl_error(& loc, state,
6214 "function `%s' return type has qualifiers", name);
6215 }
6216
6217 /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
6218 *
6219 * "Arrays are allowed as arguments and as the return type. In both
6220 * cases, the array must be explicitly sized."
6221 */
6222 if (glsl_type_is_unsized_array(return_type)) {
6223 YYLTYPE loc = this->get_location();
6224 _mesa_glsl_error(& loc, state,
6225 "function `%s' return type array must be explicitly "
6226 "sized", name);
6227 }
6228
6229 /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
6230 *
6231 * "Arrays are allowed as arguments, but not as the return type. [...]
6232 * The return type can also be a structure if the structure does not
6233 * contain an array."
6234 */
6235 if (state->language_version == 100 && glsl_contains_array(return_type)) {
6236 YYLTYPE loc = this->get_location();
6237 _mesa_glsl_error(& loc, state,
6238 "function `%s' return type contains an array", name);
6239 }
6240
6241 /* From section 4.1.7 of the GLSL 4.40 spec:
6242 *
6243 * "[Opaque types] can only be declared as function parameters
6244 * or uniform-qualified variables."
6245 *
6246 * The ARB_bindless_texture spec doesn't clearly state this, but as it says
6247 * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
6248 * (Images)", this should be allowed.
6249 */
6250 if (glsl_contains_atomic(return_type) ||
6251 (!state->has_bindless() && glsl_contains_opaque(return_type))) {
6252 YYLTYPE loc = this->get_location();
6253 _mesa_glsl_error(&loc, state,
6254 "function `%s' return type can't contain an %s type",
6255 name, state->has_bindless() ? "atomic" : "opaque");
6256 }
6257
6258 /**/
6259 if (glsl_type_is_subroutine(return_type)) {
6260 YYLTYPE loc = this->get_location();
6261 _mesa_glsl_error(&loc, state,
6262 "function `%s' return type can't be a subroutine type",
6263 name);
6264 }
6265
6266 /* Get the precision for the return type */
6267 unsigned return_precision;
6268
6269 if (state->es_shader) {
6270 YYLTYPE loc = this->get_location();
6271 return_precision =
6272 select_gles_precision(this->return_type->qualifier.precision,
6273 return_type,
6274 state,
6275 &loc);
6276 } else {
6277 return_precision = GLSL_PRECISION_NONE;
6278 }
6279
6280 /* Create an ir_function if one doesn't already exist. */
6281 f = state->symbols->get_function(name);
6282 if (f == NULL) {
6283 f = new(ctx) ir_function(name);
6284 if (!this->return_type->qualifier.is_subroutine_decl()) {
6285 if (!state->symbols->add_function(f)) {
6286 /* This function name shadows a non-function use of the same name. */
6287 YYLTYPE loc = this->get_location();
6288 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
6289 "non-function", name);
6290 return NULL;
6291 }
6292 }
6293 emit_function(state, f);
6294 }
6295
6296 /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
6297 *
6298 * "A shader cannot redefine or overload built-in functions."
6299 *
6300 * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
6301 *
6302 * "User code can overload the built-in functions but cannot redefine
6303 * them."
6304 */
6305 if (state->es_shader) {
6306 /* Local shader has no exact candidates; check the built-ins. */
6307 if (state->language_version >= 300 &&
6308 _mesa_glsl_has_builtin_function(state, name)) {
6309 YYLTYPE loc = this->get_location();
6310 _mesa_glsl_error(& loc, state,
6311 "A shader cannot redefine or overload built-in "
6312 "function `%s' in GLSL ES 3.00", name);
6313 return NULL;
6314 }
6315
6316 if (state->language_version == 100) {
6317 ir_function_signature *sig =
6318 _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6319 if (sig && sig->is_builtin()) {
6320 _mesa_glsl_error(& loc, state,
6321 "A shader cannot redefine built-in "
6322 "function `%s' in GLSL ES 1.00", name);
6323 }
6324 }
6325 }
6326
6327 /* Verify that this function's signature either doesn't match a previously
6328 * seen signature for a function with the same name, or, if a match is found,
6329 * that the previously seen signature does not have an associated definition.
6330 */
6331 if (state->es_shader || f->has_user_signature()) {
6332 sig = f->exact_matching_signature(state, &hir_parameters);
6333 if (sig != NULL) {
6334 const char *badvar = sig->qualifiers_match(&hir_parameters);
6335 if (badvar != NULL) {
6336 YYLTYPE loc = this->get_location();
6337
6338 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6339 "qualifiers don't match prototype", name, badvar);
6340 }
6341
6342 if (sig->return_type != return_type) {
6343 YYLTYPE loc = this->get_location();
6344
6345 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6346 "match prototype", name);
6347 }
6348
6349 if (sig->return_precision != return_precision) {
6350 YYLTYPE loc = this->get_location();
6351
6352 _mesa_glsl_error(&loc, state, "function `%s' return type precision "
6353 "doesn't match prototype", name);
6354 }
6355
6356 if (sig->is_defined) {
6357 if (is_definition) {
6358 YYLTYPE loc = this->get_location();
6359 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6360 } else {
6361 /* We just encountered a prototype that exactly matches a
6362 * function that's already been defined. This is redundant,
6363 * and we should ignore it.
6364 */
6365 return NULL;
6366 }
6367 } else if (state->language_version == 100 && !is_definition) {
6368 /* From the GLSL 1.00 spec, section 4.2.7:
6369 *
6370 * "A particular variable, structure or function declaration
6371 * may occur at most once within a scope with the exception
6372 * that a single function prototype plus the corresponding
6373 * function definition are allowed."
6374 */
6375 YYLTYPE loc = this->get_location();
6376 _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6377 }
6378 }
6379 }
6380
6381 /* Verify the return type of main() */
6382 if (strcmp(name, "main") == 0) {
6383 if (! glsl_type_is_void(return_type)) {
6384 YYLTYPE loc = this->get_location();
6385
6386 _mesa_glsl_error(& loc, state, "main() must return void");
6387 }
6388
6389 if (!hir_parameters.is_empty()) {
6390 YYLTYPE loc = this->get_location();
6391
6392 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6393 }
6394 }
6395
6396 /* Finish storing the information about this new function in its signature.
6397 */
6398 if (sig == NULL) {
6399 sig = new(ctx) ir_function_signature(return_type);
6400 sig->return_precision = return_precision;
6401 f->add_signature(sig);
6402 }
6403
6404 sig->replace_parameters(&hir_parameters);
6405 signature = sig;
6406
6407 if (this->return_type->qualifier.subroutine_list) {
6408 int idx;
6409
6410 if (this->return_type->qualifier.flags.q.explicit_index) {
6411 unsigned qual_index;
6412 if (process_qualifier_constant(state, &loc, "index",
6413 this->return_type->qualifier.index,
6414 &qual_index)) {
6415 if (!state->has_explicit_uniform_location()) {
6416 _mesa_glsl_error(&loc, state, "subroutine index requires "
6417 "GL_ARB_explicit_uniform_location or "
6418 "GLSL 4.30");
6419 } else if (qual_index >= MAX_SUBROUTINES) {
6420 _mesa_glsl_error(&loc, state,
6421 "invalid subroutine index (%d) index must "
6422 "be a number between 0 and "
6423 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6424 MAX_SUBROUTINES - 1);
6425 } else {
6426 f->subroutine_index = qual_index;
6427 }
6428 }
6429 }
6430
6431 f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6432 f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6433 f->num_subroutine_types);
6434 idx = 0;
6435 foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6436 const struct glsl_type *type;
6437 /* the subroutine type must be already declared */
6438 type = state->symbols->get_type(decl->identifier);
6439 if (!type) {
6440 _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6441 }
6442
6443 for (int i = 0; i < state->num_subroutine_types; i++) {
6444 ir_function *fn = state->subroutine_types[i];
6445 ir_function_signature *tsig = NULL;
6446
6447 if (strcmp(fn->name, decl->identifier))
6448 continue;
6449
6450 tsig = fn->matching_signature(state, &sig->parameters,
6451 state->has_implicit_conversions(),
6452 state->has_implicit_int_to_uint_conversion(),
6453 false);
6454 if (!tsig) {
6455 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6456 } else {
6457 if (tsig->return_type != sig->return_type) {
6458 _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6459 }
6460 }
6461 }
6462 f->subroutine_types[idx++] = type;
6463 }
6464 state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6465 ir_function *,
6466 state->num_subroutines + 1);
6467 state->subroutines[state->num_subroutines] = f;
6468 state->num_subroutines++;
6469
6470 }
6471
6472 if (this->return_type->qualifier.is_subroutine_decl()) {
6473 if (!state->symbols->add_type(this->identifier, glsl_subroutine_type(this->identifier))) {
6474 _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6475 return NULL;
6476 }
6477 state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6478 ir_function *,
6479 state->num_subroutine_types + 1);
6480 state->subroutine_types[state->num_subroutine_types] = f;
6481 state->num_subroutine_types++;
6482
6483 f->is_subroutine = true;
6484 }
6485
6486 /* Function declarations (prototypes) do not have r-values.
6487 */
6488 return NULL;
6489 }
6490
6491
6492 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6493 ast_function_definition::hir(exec_list *instructions,
6494 struct _mesa_glsl_parse_state *state)
6495 {
6496 prototype->is_definition = true;
6497 prototype->hir(instructions, state);
6498
6499 ir_function_signature *signature = prototype->signature;
6500 if (signature == NULL)
6501 return NULL;
6502
6503 assert(state->current_function == NULL);
6504 state->current_function = signature;
6505 state->found_return = false;
6506 state->found_begin_interlock = false;
6507 state->found_end_interlock = false;
6508
6509 /* Duplicate parameters declared in the prototype as concrete variables.
6510 * Add these to the symbol table.
6511 */
6512 state->symbols->push_scope();
6513 foreach_in_list(ir_variable, var, &signature->parameters) {
6514 assert(var->as_variable() != NULL);
6515
6516 /* The only way a parameter would "exist" is if two parameters have
6517 * the same name.
6518 */
6519 if (state->symbols->name_declared_this_scope(var->name)) {
6520 YYLTYPE loc = this->get_location();
6521
6522 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6523 } else {
6524 state->symbols->add_variable(var);
6525 }
6526 }
6527
6528 /* Convert the body of the function to HIR. */
6529 this->body->hir(&signature->body, state);
6530 signature->is_defined = true;
6531
6532 state->symbols->pop_scope();
6533
6534 assert(state->current_function == signature);
6535 state->current_function = NULL;
6536
6537 if (!glsl_type_is_void(signature->return_type) && !state->found_return) {
6538 YYLTYPE loc = this->get_location();
6539 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6540 "%s, but no return statement",
6541 signature->function_name(),
6542 glsl_get_type_name(signature->return_type));
6543 }
6544
6545 /* Function definitions do not have r-values.
6546 */
6547 return NULL;
6548 }
6549
6550
6551 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6552 ast_jump_statement::hir(exec_list *instructions,
6553 struct _mesa_glsl_parse_state *state)
6554 {
6555 void *ctx = state;
6556
6557 switch (mode) {
6558 case ast_return: {
6559 ir_return *inst;
6560 assert(state->current_function);
6561
6562 if (opt_return_value) {
6563 ir_rvalue *ret = opt_return_value->hir(instructions, state);
6564
6565 /* The value of the return type can be NULL if the shader says
6566 * 'return foo();' and foo() is a function that returns void.
6567 *
6568 * NOTE: The GLSL spec doesn't say that this is an error. The type
6569 * of the return value is void. If the return type of the function is
6570 * also void, then this should compile without error. Seriously.
6571 */
6572 const glsl_type *const ret_type =
6573 (ret == NULL) ? &glsl_type_builtin_void : ret->type;
6574
6575 /* Implicit conversions are not allowed for return values prior to
6576 * ARB_shading_language_420pack.
6577 */
6578 if (state->current_function->return_type != ret_type) {
6579 YYLTYPE loc = this->get_location();
6580
6581 if (state->has_420pack()) {
6582 if (!apply_implicit_conversion(state->current_function->return_type,
6583 ret, state)
6584 || (ret->type != state->current_function->return_type)) {
6585 _mesa_glsl_error(& loc, state,
6586 "could not implicitly convert return value "
6587 "to %s, in function `%s'",
6588 glsl_get_type_name(state->current_function->return_type),
6589 state->current_function->function_name());
6590 }
6591 } else {
6592 _mesa_glsl_error(& loc, state,
6593 "`return' with wrong type %s, in function `%s' "
6594 "returning %s",
6595 glsl_get_type_name(ret_type),
6596 state->current_function->function_name(),
6597 glsl_get_type_name(state->current_function->return_type));
6598 }
6599 } else if (state->current_function->return_type->base_type ==
6600 GLSL_TYPE_VOID) {
6601 YYLTYPE loc = this->get_location();
6602
6603 /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6604 * specs add a clarification:
6605 *
6606 * "A void function can only use return without a return argument, even if
6607 * the return argument has void type. Return statements only accept values:
6608 *
6609 * void func1() { }
6610 * void func2() { return func1(); } // illegal return statement"
6611 */
6612 _mesa_glsl_error(& loc, state,
6613 "void functions can only use `return' without a "
6614 "return argument");
6615 }
6616
6617 inst = new(ctx) ir_return(ret);
6618 } else {
6619 if (state->current_function->return_type->base_type !=
6620 GLSL_TYPE_VOID) {
6621 YYLTYPE loc = this->get_location();
6622
6623 _mesa_glsl_error(& loc, state,
6624 "`return' with no value, in function %s returning "
6625 "non-void",
6626 state->current_function->function_name());
6627 }
6628 inst = new(ctx) ir_return;
6629 }
6630
6631 state->found_return = true;
6632 instructions->push_tail(inst);
6633 break;
6634 }
6635
6636 case ast_discard:
6637 if (state->stage != MESA_SHADER_FRAGMENT) {
6638 YYLTYPE loc = this->get_location();
6639
6640 _mesa_glsl_error(& loc, state,
6641 "`discard' may only appear in a fragment shader");
6642 }
6643 instructions->push_tail(new(ctx) ir_discard);
6644 break;
6645
6646 case ast_break:
6647 case ast_continue:
6648 if (mode == ast_continue &&
6649 state->loop_nesting_ast == NULL) {
6650 YYLTYPE loc = this->get_location();
6651
6652 _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6653 } else if (mode == ast_break &&
6654 state->loop_nesting_ast == NULL &&
6655 state->switch_state.switch_nesting_ast == NULL) {
6656 YYLTYPE loc = this->get_location();
6657
6658 _mesa_glsl_error(& loc, state,
6659 "break may only appear in a loop or a switch");
6660 } else {
6661 /* For a loop, inline the for loop expression again, since we don't
6662 * know where near the end of the loop body the normal copy of it is
6663 * going to be placed. Same goes for the condition for a do-while
6664 * loop.
6665 */
6666 if (state->loop_nesting_ast != NULL &&
6667 mode == ast_continue && !state->switch_state.is_switch_innermost) {
6668 if (state->loop_nesting_ast->rest_expression) {
6669 clone_ir_list(ctx, instructions,
6670 &state->loop_nesting_ast->rest_instructions);
6671 }
6672 if (state->loop_nesting_ast->mode ==
6673 ast_iteration_statement::ast_do_while) {
6674 state->loop_nesting_ast->condition_to_hir(instructions, state);
6675 }
6676 }
6677
6678 if (state->switch_state.is_switch_innermost &&
6679 mode == ast_continue) {
6680 /* Set 'continue_inside' to true. */
6681 ir_rvalue *const true_val = new (ctx) ir_constant(true);
6682 ir_dereference_variable *deref_continue_inside_var =
6683 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6684 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6685 true_val));
6686
6687 /* Break out from the switch, continue for the loop will
6688 * be called right after switch. */
6689 ir_loop_jump *const jump =
6690 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6691 instructions->push_tail(jump);
6692
6693 } else if (state->switch_state.is_switch_innermost &&
6694 mode == ast_break) {
6695 /* Force break out of switch by inserting a break. */
6696 ir_loop_jump *const jump =
6697 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6698 instructions->push_tail(jump);
6699 } else {
6700 ir_loop_jump *const jump =
6701 new(ctx) ir_loop_jump((mode == ast_break)
6702 ? ir_loop_jump::jump_break
6703 : ir_loop_jump::jump_continue);
6704 instructions->push_tail(jump);
6705 }
6706 }
6707
6708 break;
6709 }
6710
6711 /* Jump instructions do not have r-values.
6712 */
6713 return NULL;
6714 }
6715
6716
6717 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6718 ast_demote_statement::hir(exec_list *instructions,
6719 struct _mesa_glsl_parse_state *state)
6720 {
6721 void *ctx = state;
6722
6723 if (state->stage != MESA_SHADER_FRAGMENT) {
6724 YYLTYPE loc = this->get_location();
6725
6726 _mesa_glsl_error(& loc, state,
6727 "`demote' may only appear in a fragment shader");
6728 }
6729
6730 instructions->push_tail(new(ctx) ir_demote);
6731
6732 return NULL;
6733 }
6734
6735
6736 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6737 ast_selection_statement::hir(exec_list *instructions,
6738 struct _mesa_glsl_parse_state *state)
6739 {
6740 void *ctx = state;
6741
6742 ir_rvalue *const condition = this->condition->hir(instructions, state);
6743
6744 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6745 *
6746 * "Any expression whose type evaluates to a Boolean can be used as the
6747 * conditional expression bool-expression. Vector types are not accepted
6748 * as the expression to if."
6749 *
6750 * The checks are separated so that higher quality diagnostics can be
6751 * generated for cases where both rules are violated.
6752 */
6753 if (!glsl_type_is_boolean(condition->type) || !glsl_type_is_scalar(condition->type)) {
6754 YYLTYPE loc = this->condition->get_location();
6755
6756 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6757 "boolean");
6758 }
6759
6760 ir_if *const stmt = new(ctx) ir_if(condition);
6761
6762 if (then_statement != NULL) {
6763 state->symbols->push_scope();
6764 then_statement->hir(& stmt->then_instructions, state);
6765 state->symbols->pop_scope();
6766 }
6767
6768 if (else_statement != NULL) {
6769 state->symbols->push_scope();
6770 else_statement->hir(& stmt->else_instructions, state);
6771 state->symbols->pop_scope();
6772 }
6773
6774 instructions->push_tail(stmt);
6775
6776 /* if-statements do not have r-values.
6777 */
6778 return NULL;
6779 }
6780
6781
6782 struct case_label {
6783 /** Value of the case label. */
6784 unsigned value;
6785
6786 /** Does this label occur after the default? */
6787 bool after_default;
6788
6789 /**
6790 * AST for the case label.
6791 *
6792 * This is only used to generate error messages for duplicate labels.
6793 */
6794 ast_expression *ast;
6795 };
6796
6797 /* Used for detection of duplicate case values, compare
6798 * given contents directly.
6799 */
6800 static bool
compare_case_value(const void * a,const void * b)6801 compare_case_value(const void *a, const void *b)
6802 {
6803 return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6804 }
6805
6806
6807 /* Used for detection of duplicate case values, just
6808 * returns key contents as is.
6809 */
6810 static unsigned
key_contents(const void * key)6811 key_contents(const void *key)
6812 {
6813 return ((struct case_label *) key)->value;
6814 }
6815
6816 void
eval_test_expression(exec_list * instructions,struct _mesa_glsl_parse_state * state)6817 ast_switch_statement::eval_test_expression(exec_list *instructions,
6818 struct _mesa_glsl_parse_state *state)
6819 {
6820 if (test_val == NULL)
6821 test_val = this->test_expression->hir(instructions, state);
6822 }
6823
6824 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6825 ast_switch_statement::hir(exec_list *instructions,
6826 struct _mesa_glsl_parse_state *state)
6827 {
6828 void *ctx = state;
6829
6830 this->eval_test_expression(instructions, state);
6831
6832 /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6833 *
6834 * "The type of init-expression in a switch statement must be a
6835 * scalar integer."
6836 */
6837 if (!glsl_type_is_scalar(test_val->type) ||
6838 !glsl_type_is_integer_32(test_val->type)) {
6839 YYLTYPE loc = this->test_expression->get_location();
6840
6841 _mesa_glsl_error(& loc,
6842 state,
6843 "switch-statement expression must be scalar "
6844 "integer");
6845 return NULL;
6846 }
6847
6848 /* Track the switch-statement nesting in a stack-like manner.
6849 */
6850 struct glsl_switch_state saved = state->switch_state;
6851
6852 state->switch_state.is_switch_innermost = true;
6853 state->switch_state.switch_nesting_ast = this;
6854 state->switch_state.labels_ht =
6855 _mesa_hash_table_create(NULL, key_contents,
6856 compare_case_value);
6857 state->switch_state.previous_default = NULL;
6858
6859 /* Initalize is_fallthru state to false.
6860 */
6861 ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6862 state->switch_state.is_fallthru_var =
6863 new(ctx) ir_variable(&glsl_type_builtin_bool,
6864 "switch_is_fallthru_tmp",
6865 ir_var_temporary);
6866 instructions->push_tail(state->switch_state.is_fallthru_var);
6867
6868 ir_dereference_variable *deref_is_fallthru_var =
6869 new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6870 instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6871 is_fallthru_val));
6872
6873 /* Initialize continue_inside state to false.
6874 */
6875 state->switch_state.continue_inside =
6876 new(ctx) ir_variable(&glsl_type_builtin_bool,
6877 "continue_inside_tmp",
6878 ir_var_temporary);
6879 instructions->push_tail(state->switch_state.continue_inside);
6880
6881 ir_rvalue *const false_val = new (ctx) ir_constant(false);
6882 ir_dereference_variable *deref_continue_inside_var =
6883 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6884 instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6885 false_val));
6886
6887 state->switch_state.run_default =
6888 new(ctx) ir_variable(&glsl_type_builtin_bool,
6889 "run_default_tmp",
6890 ir_var_temporary);
6891 instructions->push_tail(state->switch_state.run_default);
6892
6893 /* Loop around the switch is used for flow control. */
6894 ir_loop * loop = new(ctx) ir_loop();
6895 instructions->push_tail(loop);
6896
6897 /* Cache test expression.
6898 */
6899 test_to_hir(&loop->body_instructions, state);
6900
6901 /* Emit code for body of switch stmt.
6902 */
6903 body->hir(&loop->body_instructions, state);
6904
6905 /* Insert a break at the end to exit loop. */
6906 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6907 loop->body_instructions.push_tail(jump);
6908
6909 /* If we are inside loop, check if continue got called inside switch. */
6910 if (state->loop_nesting_ast != NULL) {
6911 ir_dereference_variable *deref_continue_inside =
6912 new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6913 ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6914 ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6915
6916 if (state->loop_nesting_ast != NULL) {
6917 if (state->loop_nesting_ast->rest_expression) {
6918 clone_ir_list(ctx, &irif->then_instructions,
6919 &state->loop_nesting_ast->rest_instructions);
6920 }
6921 if (state->loop_nesting_ast->mode ==
6922 ast_iteration_statement::ast_do_while) {
6923 state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6924 }
6925 }
6926 irif->then_instructions.push_tail(jump);
6927 instructions->push_tail(irif);
6928 }
6929
6930 _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6931
6932 state->switch_state = saved;
6933
6934 /* Switch statements do not have r-values. */
6935 return NULL;
6936 }
6937
6938
6939 void
test_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6940 ast_switch_statement::test_to_hir(exec_list *instructions,
6941 struct _mesa_glsl_parse_state *state)
6942 {
6943 void *ctx = state;
6944
6945 /* set to true to avoid a duplicate "use of uninitialized variable" warning
6946 * on the switch test case. The first one would be already raised when
6947 * getting the test_expression at ast_switch_statement::hir
6948 */
6949 test_expression->set_is_lhs(true);
6950 /* Cache value of test expression. */
6951 this->eval_test_expression(instructions, state);
6952
6953 state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6954 "switch_test_tmp",
6955 ir_var_temporary);
6956 ir_dereference_variable *deref_test_var =
6957 new(ctx) ir_dereference_variable(state->switch_state.test_var);
6958
6959 instructions->push_tail(state->switch_state.test_var);
6960 instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6961 }
6962
6963
6964 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6965 ast_switch_body::hir(exec_list *instructions,
6966 struct _mesa_glsl_parse_state *state)
6967 {
6968 if (stmts != NULL) {
6969 state->symbols->push_scope();
6970 stmts->hir(instructions, state);
6971 state->symbols->pop_scope();
6972 }
6973
6974 /* Switch bodies do not have r-values. */
6975 return NULL;
6976 }
6977
6978 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6979 ast_case_statement_list::hir(exec_list *instructions,
6980 struct _mesa_glsl_parse_state *state)
6981 {
6982 exec_list default_case, after_default, tmp;
6983
6984 foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6985 case_stmt->hir(&tmp, state);
6986
6987 /* Default case. */
6988 if (state->switch_state.previous_default && default_case.is_empty()) {
6989 default_case.append_list(&tmp);
6990 continue;
6991 }
6992
6993 /* If default case found, append 'after_default' list. */
6994 if (!default_case.is_empty())
6995 after_default.append_list(&tmp);
6996 else
6997 instructions->append_list(&tmp);
6998 }
6999
7000 /* Handle the default case. This is done here because default might not be
7001 * the last case. We need to add checks against following cases first to see
7002 * if default should be chosen or not.
7003 */
7004 if (!default_case.is_empty()) {
7005 ir_factory body(instructions, state);
7006
7007 ir_expression *cmp = NULL;
7008
7009 hash_table_foreach(state->switch_state.labels_ht, entry) {
7010 const struct case_label *const l = (struct case_label *) entry->data;
7011
7012 /* If the switch init-value is the value of one of the labels that
7013 * occurs after the default case, disable execution of the default
7014 * case.
7015 */
7016 if (l->after_default) {
7017 ir_constant *const cnst =
7018 state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
7019 ? body.constant(unsigned(l->value))
7020 : body.constant(int(l->value));
7021
7022 cmp = cmp == NULL
7023 ? equal(cnst, state->switch_state.test_var)
7024 : logic_or(cmp, equal(cnst, state->switch_state.test_var));
7025 }
7026 }
7027
7028 if (cmp != NULL)
7029 body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
7030 else
7031 body.emit(assign(state->switch_state.run_default, body.constant(true)));
7032
7033 /* Append default case and all cases after it. */
7034 instructions->append_list(&default_case);
7035 instructions->append_list(&after_default);
7036 }
7037
7038 /* Case statements do not have r-values. */
7039 return NULL;
7040 }
7041
7042 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7043 ast_case_statement::hir(exec_list *instructions,
7044 struct _mesa_glsl_parse_state *state)
7045 {
7046 labels->hir(instructions, state);
7047
7048 /* Guard case statements depending on fallthru state. */
7049 ir_dereference_variable *const deref_fallthru_guard =
7050 new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
7051 ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
7052
7053 foreach_list_typed (ast_node, stmt, link, & this->stmts)
7054 stmt->hir(& test_fallthru->then_instructions, state);
7055
7056 instructions->push_tail(test_fallthru);
7057
7058 /* Case statements do not have r-values. */
7059 return NULL;
7060 }
7061
7062
7063 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7064 ast_case_label_list::hir(exec_list *instructions,
7065 struct _mesa_glsl_parse_state *state)
7066 {
7067 foreach_list_typed (ast_case_label, label, link, & this->labels)
7068 label->hir(instructions, state);
7069
7070 /* Case labels do not have r-values. */
7071 return NULL;
7072 }
7073
7074 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7075 ast_case_label::hir(exec_list *instructions,
7076 struct _mesa_glsl_parse_state *state)
7077 {
7078 ir_factory body(instructions, state);
7079
7080 ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
7081
7082 /* If not default case, ... */
7083 if (this->test_value != NULL) {
7084 /* Conditionally set fallthru state based on
7085 * comparison of cached test expression value to case label.
7086 */
7087 ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
7088 ir_constant *label_const =
7089 label_rval->constant_expression_value(body.mem_ctx);
7090
7091 if (!label_const) {
7092 YYLTYPE loc = this->test_value->get_location();
7093
7094 _mesa_glsl_error(& loc, state,
7095 "switch statement case label must be a "
7096 "constant expression");
7097
7098 /* Stuff a dummy value in to allow processing to continue. */
7099 label_const = body.constant(0);
7100 } else {
7101 hash_entry *entry =
7102 _mesa_hash_table_search(state->switch_state.labels_ht,
7103 &label_const->value.u[0]);
7104
7105 if (entry) {
7106 const struct case_label *const l =
7107 (struct case_label *) entry->data;
7108 const ast_expression *const previous_label = l->ast;
7109 YYLTYPE loc = this->test_value->get_location();
7110
7111 _mesa_glsl_error(& loc, state, "duplicate case value");
7112
7113 loc = previous_label->get_location();
7114 _mesa_glsl_error(& loc, state, "this is the previous case label");
7115 } else {
7116 struct case_label *l = ralloc(state->switch_state.labels_ht,
7117 struct case_label);
7118
7119 l->value = label_const->value.u[0];
7120 l->after_default = state->switch_state.previous_default != NULL;
7121 l->ast = this->test_value;
7122
7123 _mesa_hash_table_insert(state->switch_state.labels_ht,
7124 &label_const->value.u[0],
7125 l);
7126 }
7127 }
7128
7129 /* Create an r-value version of the ir_constant label here (after we may
7130 * have created a fake one in error cases) that can be passed to
7131 * apply_implicit_conversion below.
7132 */
7133 ir_rvalue *label = label_const;
7134
7135 ir_rvalue *deref_test_var =
7136 new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
7137
7138 /*
7139 * From GLSL 4.40 specification section 6.2 ("Selection"):
7140 *
7141 * "The type of the init-expression value in a switch statement must
7142 * be a scalar int or uint. The type of the constant-expression value
7143 * in a case label also must be a scalar int or uint. When any pair
7144 * of these values is tested for "equal value" and the types do not
7145 * match, an implicit conversion will be done to convert the int to a
7146 * uint (see section 4.1.10 “Implicit Conversions”) before the compare
7147 * is done."
7148 */
7149 if (label->type != state->switch_state.test_var->type) {
7150 YYLTYPE loc = this->test_value->get_location();
7151
7152 const glsl_type *type_a = label->type;
7153 const glsl_type *type_b = state->switch_state.test_var->type;
7154
7155 /* Check if int->uint implicit conversion is supported. */
7156 bool integer_conversion_supported =
7157 _mesa_glsl_can_implicitly_convert(&glsl_type_builtin_int, &glsl_type_builtin_uint,
7158 state->has_implicit_conversions(),
7159 state->has_implicit_int_to_uint_conversion());
7160
7161 if ((!glsl_type_is_integer_32(type_a) || !glsl_type_is_integer_32(type_b)) ||
7162 !integer_conversion_supported) {
7163 _mesa_glsl_error(&loc, state, "type mismatch with switch "
7164 "init-expression and case label (%s != %s)",
7165 glsl_get_type_name(type_a), glsl_get_type_name(type_b));
7166 } else {
7167 /* Conversion of the case label. */
7168 if (type_a->base_type == GLSL_TYPE_INT) {
7169 if (!apply_implicit_conversion(&glsl_type_builtin_uint,
7170 label, state))
7171 _mesa_glsl_error(&loc, state, "implicit type conversion error");
7172 } else {
7173 /* Conversion of the init-expression value. */
7174 if (!apply_implicit_conversion(&glsl_type_builtin_uint,
7175 deref_test_var, state))
7176 _mesa_glsl_error(&loc, state, "implicit type conversion error");
7177 }
7178 }
7179
7180 /* If the implicit conversion was allowed, the types will already be
7181 * the same. If the implicit conversion wasn't allowed, smash the
7182 * type of the label anyway. This will prevent the expression
7183 * constructor (below) from failing an assertion.
7184 */
7185 label->type = deref_test_var->type;
7186 }
7187
7188 body.emit(assign(fallthru_var,
7189 logic_or(fallthru_var, equal(label, deref_test_var))));
7190 } else { /* default case */
7191 if (state->switch_state.previous_default) {
7192 YYLTYPE loc = this->get_location();
7193 _mesa_glsl_error(& loc, state,
7194 "multiple default labels in one switch");
7195
7196 loc = state->switch_state.previous_default->get_location();
7197 _mesa_glsl_error(& loc, state, "this is the first default label");
7198 }
7199 state->switch_state.previous_default = this;
7200
7201 /* Set fallthru condition on 'run_default' bool. */
7202 body.emit(assign(fallthru_var,
7203 logic_or(fallthru_var,
7204 state->switch_state.run_default)));
7205 }
7206
7207 /* Case statements do not have r-values. */
7208 return NULL;
7209 }
7210
7211 void
condition_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7212 ast_iteration_statement::condition_to_hir(exec_list *instructions,
7213 struct _mesa_glsl_parse_state *state)
7214 {
7215 void *ctx = state;
7216
7217 if (condition != NULL) {
7218 ir_rvalue *const cond =
7219 condition->hir(instructions, state);
7220
7221 if ((cond == NULL)
7222 || !glsl_type_is_boolean(cond->type) || !glsl_type_is_scalar(cond->type)) {
7223 YYLTYPE loc = condition->get_location();
7224
7225 _mesa_glsl_error(& loc, state,
7226 "loop condition must be scalar boolean");
7227 } else {
7228 /* As the first code in the loop body, generate a block that looks
7229 * like 'if (!condition) break;' as the loop termination condition.
7230 */
7231 ir_rvalue *const not_cond =
7232 new(ctx) ir_expression(ir_unop_logic_not, cond);
7233
7234 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
7235
7236 ir_jump *const break_stmt =
7237 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
7238
7239 if_stmt->then_instructions.push_tail(break_stmt);
7240 instructions->push_tail(if_stmt);
7241 }
7242 }
7243 }
7244
7245
7246 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7247 ast_iteration_statement::hir(exec_list *instructions,
7248 struct _mesa_glsl_parse_state *state)
7249 {
7250 void *ctx = state;
7251
7252 /* For-loops and while-loops start a new scope, but do-while loops do not.
7253 */
7254 if (mode != ast_do_while)
7255 state->symbols->push_scope();
7256
7257 if (init_statement != NULL)
7258 init_statement->hir(instructions, state);
7259
7260 ir_loop *const stmt = new(ctx) ir_loop();
7261 instructions->push_tail(stmt);
7262
7263 /* Track the current loop nesting. */
7264 ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
7265
7266 state->loop_nesting_ast = this;
7267
7268 /* Likewise, indicate that following code is closest to a loop,
7269 * NOT closest to a switch.
7270 */
7271 bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
7272 state->switch_state.is_switch_innermost = false;
7273
7274 if (mode != ast_do_while)
7275 condition_to_hir(&stmt->body_instructions, state);
7276
7277 if (rest_expression != NULL)
7278 rest_expression->hir(&rest_instructions, state);
7279
7280 if (body != NULL) {
7281 if (mode == ast_do_while)
7282 state->symbols->push_scope();
7283
7284 body->hir(& stmt->body_instructions, state);
7285
7286 if (mode == ast_do_while)
7287 state->symbols->pop_scope();
7288 }
7289
7290 if (rest_expression != NULL)
7291 stmt->body_instructions.append_list(&rest_instructions);
7292
7293 if (mode == ast_do_while)
7294 condition_to_hir(&stmt->body_instructions, state);
7295
7296 if (mode != ast_do_while)
7297 state->symbols->pop_scope();
7298
7299 /* Restore previous nesting before returning. */
7300 state->loop_nesting_ast = nesting_ast;
7301 state->switch_state.is_switch_innermost = saved_is_switch_innermost;
7302
7303 /* Loops do not have r-values.
7304 */
7305 return NULL;
7306 }
7307
7308
7309 /**
7310 * Determine if the given type is valid for establishing a default precision
7311 * qualifier.
7312 *
7313 * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
7314 *
7315 * "The precision statement
7316 *
7317 * precision precision-qualifier type;
7318 *
7319 * can be used to establish a default precision qualifier. The type field
7320 * can be either int or float or any of the sampler types, and the
7321 * precision-qualifier can be lowp, mediump, or highp."
7322 *
7323 * GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
7324 * qualifiers on sampler types, but this seems like an oversight (since the
7325 * intention of including these in GLSL 1.30 is to allow compatibility with ES
7326 * shaders). So we allow int, float, and all sampler types regardless of GLSL
7327 * version.
7328 */
7329 static bool
is_valid_default_precision_type(const struct glsl_type * const type)7330 is_valid_default_precision_type(const struct glsl_type *const type)
7331 {
7332 if (type == NULL)
7333 return false;
7334
7335 switch (type->base_type) {
7336 case GLSL_TYPE_INT:
7337 case GLSL_TYPE_FLOAT:
7338 /* "int" and "float" are valid, but vectors and matrices are not. */
7339 return type->vector_elements == 1 && type->matrix_columns == 1;
7340 case GLSL_TYPE_SAMPLER:
7341 case GLSL_TYPE_TEXTURE:
7342 case GLSL_TYPE_IMAGE:
7343 case GLSL_TYPE_ATOMIC_UINT:
7344 return true;
7345 default:
7346 return false;
7347 }
7348 }
7349
7350
7351 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7352 ast_type_specifier::hir(exec_list *instructions,
7353 struct _mesa_glsl_parse_state *state)
7354 {
7355 if (this->default_precision == ast_precision_none && this->structure == NULL)
7356 return NULL;
7357
7358 YYLTYPE loc = this->get_location();
7359
7360 /* If this is a precision statement, check that the type to which it is
7361 * applied is either float or int.
7362 *
7363 * From section 4.5.3 of the GLSL 1.30 spec:
7364 * "The precision statement
7365 * precision precision-qualifier type;
7366 * can be used to establish a default precision qualifier. The type
7367 * field can be either int or float [...]. Any other types or
7368 * qualifiers will result in an error.
7369 */
7370 if (this->default_precision != ast_precision_none) {
7371 if (!state->check_precision_qualifiers_allowed(&loc))
7372 return NULL;
7373
7374 if (this->structure != NULL) {
7375 _mesa_glsl_error(&loc, state,
7376 "precision qualifiers do not apply to structures");
7377 return NULL;
7378 }
7379
7380 if (this->array_specifier != NULL) {
7381 _mesa_glsl_error(&loc, state,
7382 "default precision statements do not apply to "
7383 "arrays");
7384 return NULL;
7385 }
7386
7387 const struct glsl_type *const type =
7388 state->symbols->get_type(this->type_name);
7389 if (!is_valid_default_precision_type(type)) {
7390 _mesa_glsl_error(&loc, state,
7391 "default precision statements apply only to "
7392 "float, int, and opaque types");
7393 return NULL;
7394 }
7395
7396 if (state->es_shader) {
7397 /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7398 * spec says:
7399 *
7400 * "Non-precision qualified declarations will use the precision
7401 * qualifier specified in the most recent precision statement
7402 * that is still in scope. The precision statement has the same
7403 * scoping rules as variable declarations. If it is declared
7404 * inside a compound statement, its effect stops at the end of
7405 * the innermost statement it was declared in. Precision
7406 * statements in nested scopes override precision statements in
7407 * outer scopes. Multiple precision statements for the same basic
7408 * type can appear inside the same scope, with later statements
7409 * overriding earlier statements within that scope."
7410 *
7411 * Default precision specifications follow the same scope rules as
7412 * variables. So, we can track the state of the default precision
7413 * qualifiers in the symbol table, and the rules will just work. This
7414 * is a slight abuse of the symbol table, but it has the semantics
7415 * that we want.
7416 */
7417 state->symbols->add_default_precision_qualifier(this->type_name,
7418 this->default_precision);
7419 }
7420
7421 /* FINISHME: Translate precision statements into IR. */
7422 return NULL;
7423 }
7424
7425 /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7426 * process_record_constructor() can do type-checking on C-style initializer
7427 * expressions of structs, but ast_struct_specifier should only be translated
7428 * to HIR if it is declaring the type of a structure.
7429 *
7430 * The ->is_declaration field is false for initializers of variables
7431 * declared separately from the struct's type definition.
7432 *
7433 * struct S { ... }; (is_declaration = true)
7434 * struct T { ... } t = { ... }; (is_declaration = true)
7435 * S s = { ... }; (is_declaration = false)
7436 */
7437 if (this->structure != NULL && this->structure->is_declaration)
7438 return this->structure->hir(instructions, state);
7439
7440 return NULL;
7441 }
7442
7443
7444 /**
7445 * Process a structure or interface block tree into an array of structure fields
7446 *
7447 * After parsing, where there are some syntax differnces, structures and
7448 * interface blocks are almost identical. They are similar enough that the
7449 * AST for each can be processed the same way into a set of
7450 * \c glsl_struct_field to describe the members.
7451 *
7452 * If we're processing an interface block, var_mode should be the type of the
7453 * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7454 * ir_var_shader_storage). If we're processing a structure, var_mode should be
7455 * ir_var_auto.
7456 *
7457 * \return
7458 * The number of fields processed. A pointer to the array structure fields is
7459 * stored in \c *fields_ret.
7460 */
7461 static unsigned
ast_process_struct_or_iface_block_members(exec_list * instructions,struct _mesa_glsl_parse_state * state,exec_list * declarations,glsl_struct_field ** fields_ret,bool is_interface,enum glsl_matrix_layout matrix_layout,bool allow_reserved_names,ir_variable_mode var_mode,ast_type_qualifier * layout,unsigned block_stream,unsigned block_xfb_buffer,unsigned block_xfb_offset,unsigned expl_location,unsigned expl_align)7462 ast_process_struct_or_iface_block_members(exec_list *instructions,
7463 struct _mesa_glsl_parse_state *state,
7464 exec_list *declarations,
7465 glsl_struct_field **fields_ret,
7466 bool is_interface,
7467 enum glsl_matrix_layout matrix_layout,
7468 bool allow_reserved_names,
7469 ir_variable_mode var_mode,
7470 ast_type_qualifier *layout,
7471 unsigned block_stream,
7472 unsigned block_xfb_buffer,
7473 unsigned block_xfb_offset,
7474 unsigned expl_location,
7475 unsigned expl_align)
7476 {
7477 unsigned decl_count = 0;
7478 unsigned next_offset = 0;
7479
7480 /* Make an initial pass over the list of fields to determine how
7481 * many there are. Each element in this list is an ast_declarator_list.
7482 * This means that we actually need to count the number of elements in the
7483 * 'declarations' list in each of the elements.
7484 */
7485 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7486 decl_count += decl_list->declarations.length();
7487 }
7488
7489 /* Allocate storage for the fields and process the field
7490 * declarations. As the declarations are processed, try to also convert
7491 * the types to HIR. This ensures that structure definitions embedded in
7492 * other structure definitions or in interface blocks are processed.
7493 */
7494 glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7495 decl_count);
7496
7497 bool first_member = true;
7498 bool first_member_has_explicit_location = false;
7499
7500 unsigned i = 0;
7501 foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7502 const char *type_name;
7503 YYLTYPE loc = decl_list->get_location();
7504
7505 decl_list->type->specifier->hir(instructions, state);
7506
7507 /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7508 *
7509 * "Anonymous structures are not supported; so embedded structures
7510 * must have a declarator. A name given to an embedded struct is
7511 * scoped at the same level as the struct it is embedded in."
7512 *
7513 * The same section of the GLSL 1.20 spec says:
7514 *
7515 * "Anonymous structures are not supported. Embedded structures are
7516 * not supported."
7517 *
7518 * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7519 * embedded structures in 1.10 only.
7520 */
7521 if (state->language_version != 110 &&
7522 decl_list->type->specifier->structure != NULL)
7523 _mesa_glsl_error(&loc, state,
7524 "embedded structure declarations are not allowed");
7525
7526 const glsl_type *decl_type =
7527 decl_list->type->glsl_type(& type_name, state);
7528
7529 const struct ast_type_qualifier *const qual =
7530 &decl_list->type->qualifier;
7531
7532 /* From section 4.3.9 of the GLSL 4.40 spec:
7533 *
7534 * "[In interface blocks] opaque types are not allowed."
7535 *
7536 * It should be impossible for decl_type to be NULL here. Cases that
7537 * might naturally lead to decl_type being NULL, especially for the
7538 * is_interface case, will have resulted in compilation having
7539 * already halted due to a syntax error.
7540 */
7541 assert(decl_type);
7542
7543 if (is_interface) {
7544 /* From section 4.3.7 of the ARB_bindless_texture spec:
7545 *
7546 * "(remove the following bullet from the last list on p. 39,
7547 * thereby permitting sampler types in interface blocks; image
7548 * types are also permitted in blocks by this extension)"
7549 *
7550 * * sampler types are not allowed
7551 */
7552 if (glsl_contains_atomic(decl_type) ||
7553 (!state->has_bindless() && glsl_contains_opaque(decl_type))) {
7554 _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7555 "interface block contains %s variable",
7556 state->has_bindless() ? "atomic" : "opaque");
7557 }
7558 } else {
7559 if (glsl_contains_atomic(decl_type)) {
7560 /* From section 4.1.7.3 of the GLSL 4.40 spec:
7561 *
7562 * "Members of structures cannot be declared as atomic counter
7563 * types."
7564 */
7565 _mesa_glsl_error(&loc, state, "atomic counter in structure");
7566 }
7567
7568 if (!state->has_bindless() && glsl_type_contains_image(decl_type)) {
7569 /* FINISHME: Same problem as with atomic counters.
7570 * FINISHME: Request clarification from Khronos and add
7571 * FINISHME: spec quotation here.
7572 */
7573 _mesa_glsl_error(&loc, state, "image in structure");
7574 }
7575 }
7576
7577 if (qual->flags.q.explicit_binding) {
7578 _mesa_glsl_error(&loc, state,
7579 "binding layout qualifier cannot be applied "
7580 "to struct or interface block members");
7581 }
7582
7583 if (is_interface) {
7584 if (!first_member) {
7585 if (!layout->flags.q.explicit_location &&
7586 ((first_member_has_explicit_location &&
7587 !qual->flags.q.explicit_location) ||
7588 (!first_member_has_explicit_location &&
7589 qual->flags.q.explicit_location))) {
7590 _mesa_glsl_error(&loc, state,
7591 "when block-level location layout qualifier "
7592 "is not supplied either all members must "
7593 "have a location layout qualifier or all "
7594 "members must not have a location layout "
7595 "qualifier");
7596 }
7597 } else {
7598 first_member = false;
7599 first_member_has_explicit_location =
7600 qual->flags.q.explicit_location;
7601 }
7602 }
7603
7604 if (qual->flags.q.std140 ||
7605 qual->flags.q.std430 ||
7606 qual->flags.q.packed ||
7607 qual->flags.q.shared) {
7608 _mesa_glsl_error(&loc, state,
7609 "uniform/shader storage block layout qualifiers "
7610 "std140, std430, packed, and shared can only be "
7611 "applied to uniform/shader storage blocks, not "
7612 "members");
7613 }
7614
7615 if (qual->flags.q.constant) {
7616 _mesa_glsl_error(&loc, state,
7617 "const storage qualifier cannot be applied "
7618 "to struct or interface block members");
7619 }
7620
7621 validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7622 validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7623
7624 /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7625 *
7626 * "A block member may be declared with a stream identifier, but
7627 * the specified stream must match the stream associated with the
7628 * containing block."
7629 */
7630 if (qual->flags.q.explicit_stream) {
7631 unsigned qual_stream;
7632 if (process_qualifier_constant(state, &loc, "stream",
7633 qual->stream, &qual_stream) &&
7634 qual_stream != block_stream) {
7635 _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7636 "interface block member does not match "
7637 "the interface block (%u vs %u)", qual_stream,
7638 block_stream);
7639 }
7640 }
7641
7642 int xfb_buffer;
7643 unsigned explicit_xfb_buffer = 0;
7644 if (qual->flags.q.explicit_xfb_buffer) {
7645 unsigned qual_xfb_buffer;
7646 if (process_qualifier_constant(state, &loc, "xfb_buffer",
7647 qual->xfb_buffer, &qual_xfb_buffer)) {
7648 explicit_xfb_buffer = 1;
7649 if (qual_xfb_buffer != block_xfb_buffer)
7650 _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7651 "interface block member does not match "
7652 "the interface block (%u vs %u)",
7653 qual_xfb_buffer, block_xfb_buffer);
7654 }
7655 xfb_buffer = (int) qual_xfb_buffer;
7656 } else {
7657 if (layout)
7658 explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7659 xfb_buffer = (int) block_xfb_buffer;
7660 }
7661
7662 int xfb_stride = -1;
7663 if (qual->flags.q.explicit_xfb_stride) {
7664 unsigned qual_xfb_stride;
7665 if (process_qualifier_constant(state, &loc, "xfb_stride",
7666 qual->xfb_stride, &qual_xfb_stride)) {
7667 xfb_stride = (int) qual_xfb_stride;
7668 }
7669 }
7670
7671 if (qual->flags.q.uniform && qual->has_interpolation()) {
7672 _mesa_glsl_error(&loc, state,
7673 "interpolation qualifiers cannot be used "
7674 "with uniform interface blocks");
7675 }
7676
7677 if ((qual->flags.q.uniform || !is_interface) &&
7678 qual->has_auxiliary_storage()) {
7679 _mesa_glsl_error(&loc, state,
7680 "auxiliary storage qualifiers cannot be used "
7681 "in uniform blocks or structures.");
7682 }
7683
7684 if (qual->flags.q.row_major || qual->flags.q.column_major) {
7685 if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7686 _mesa_glsl_error(&loc, state,
7687 "row_major and column_major can only be "
7688 "applied to interface blocks");
7689 } else
7690 validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7691 }
7692
7693 foreach_list_typed (ast_declaration, decl, link,
7694 &decl_list->declarations) {
7695 YYLTYPE loc = decl->get_location();
7696
7697 if (!allow_reserved_names)
7698 validate_identifier(decl->identifier, loc, state);
7699
7700 const struct glsl_type *field_type =
7701 process_array_type(&loc, decl_type, decl->array_specifier, state);
7702 validate_array_dimensions(field_type, state, &loc);
7703 fields[i].type = field_type;
7704 fields[i].name = decl->identifier;
7705 fields[i].interpolation =
7706 interpret_interpolation_qualifier(qual, field_type,
7707 var_mode, state, &loc);
7708 fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7709 fields[i].sample = qual->flags.q.sample ? 1 : 0;
7710 fields[i].patch = qual->flags.q.patch ? 1 : 0;
7711 fields[i].offset = -1;
7712 fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7713 fields[i].xfb_buffer = xfb_buffer;
7714 fields[i].xfb_stride = xfb_stride;
7715
7716 if (qual->flags.q.explicit_location) {
7717 unsigned qual_location;
7718 if (process_qualifier_constant(state, &loc, "location",
7719 qual->location, &qual_location)) {
7720 fields[i].location = qual_location +
7721 (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7722 expl_location = fields[i].location +
7723 glsl_count_attribute_slots(fields[i].type, false);
7724 }
7725 } else {
7726 if (layout && layout->flags.q.explicit_location) {
7727 fields[i].location = expl_location;
7728 expl_location += glsl_count_attribute_slots(fields[i].type, false);
7729 } else {
7730 fields[i].location = -1;
7731 }
7732 }
7733
7734 if (qual->flags.q.explicit_component) {
7735 unsigned qual_component;
7736 if (process_qualifier_constant(state, &loc, "component",
7737 qual->component, &qual_component)) {
7738 validate_component_layout_for_type(state, &loc, fields[i].type,
7739 qual_component);
7740 fields[i].component = qual_component;
7741 }
7742 } else {
7743 fields[i].component = -1;
7744 }
7745
7746 /* Offset can only be used with std430 and std140 layouts an initial
7747 * value of 0 is used for error detection.
7748 */
7749 unsigned base_alignment = 0;
7750 unsigned size = 0;
7751 if (layout) {
7752 bool row_major;
7753 if (qual->flags.q.row_major ||
7754 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7755 row_major = true;
7756 } else {
7757 row_major = false;
7758 }
7759
7760 if(layout->flags.q.std140) {
7761 base_alignment = glsl_get_std140_base_alignment(field_type, row_major);
7762 size = glsl_get_std140_size(field_type, row_major);
7763 } else if (layout->flags.q.std430) {
7764 base_alignment = glsl_get_std430_base_alignment(field_type, row_major);
7765 size = glsl_get_std430_size(field_type, row_major);
7766 }
7767 }
7768
7769 if (qual->flags.q.explicit_offset) {
7770 unsigned qual_offset;
7771 if (process_qualifier_constant(state, &loc, "offset",
7772 qual->offset, &qual_offset)) {
7773 if (base_alignment != 0 && size != 0) {
7774 if (next_offset > qual_offset)
7775 _mesa_glsl_error(&loc, state, "layout qualifier "
7776 "offset overlaps previous member");
7777
7778 if (qual_offset % base_alignment) {
7779 _mesa_glsl_error(&loc, state, "layout qualifier offset "
7780 "must be a multiple of the base "
7781 "alignment of %s", glsl_get_type_name(field_type));
7782 }
7783 fields[i].offset = qual_offset;
7784 next_offset = qual_offset + size;
7785 } else {
7786 _mesa_glsl_error(&loc, state, "offset can only be used "
7787 "with std430 and std140 layouts");
7788 }
7789 }
7790 }
7791
7792 if (qual->flags.q.explicit_align || expl_align != 0) {
7793 unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7794 next_offset;
7795 if (base_alignment == 0 || size == 0) {
7796 _mesa_glsl_error(&loc, state, "align can only be used with "
7797 "std430 and std140 layouts");
7798 } else if (qual->flags.q.explicit_align) {
7799 unsigned member_align;
7800 if (process_qualifier_constant(state, &loc, "align",
7801 qual->align, &member_align)) {
7802 if (member_align == 0 ||
7803 member_align & (member_align - 1)) {
7804 _mesa_glsl_error(&loc, state, "align layout qualifier "
7805 "is not a power of 2");
7806 } else {
7807 fields[i].offset = align(offset, member_align);
7808 next_offset = fields[i].offset + size;
7809 }
7810 }
7811 } else {
7812 fields[i].offset = align(offset, expl_align);
7813 next_offset = fields[i].offset + size;
7814 }
7815 } else if (!qual->flags.q.explicit_offset) {
7816 if (base_alignment != 0 && size != 0)
7817 next_offset = align(next_offset, base_alignment) + size;
7818 }
7819
7820 /* From the ARB_enhanced_layouts spec:
7821 *
7822 * "The given offset applies to the first component of the first
7823 * member of the qualified entity. Then, within the qualified
7824 * entity, subsequent components are each assigned, in order, to
7825 * the next available offset aligned to a multiple of that
7826 * component's size. Aggregate types are flattened down to the
7827 * component level to get this sequence of components."
7828 */
7829 if (qual->flags.q.explicit_xfb_offset) {
7830 unsigned xfb_offset;
7831 if (process_qualifier_constant(state, &loc, "xfb_offset",
7832 qual->offset, &xfb_offset)) {
7833 fields[i].offset = xfb_offset;
7834 block_xfb_offset = fields[i].offset +
7835 4 * glsl_get_component_slots(field_type);
7836 }
7837 } else {
7838 if (layout && layout->flags.q.explicit_xfb_offset) {
7839 unsigned base_alignment = glsl_type_is_64bit(field_type) ? 8 : 4;
7840 fields[i].offset = align(block_xfb_offset, base_alignment);
7841 block_xfb_offset += 4 * glsl_get_component_slots(field_type);
7842 }
7843 }
7844
7845 /* Propogate row- / column-major information down the fields of the
7846 * structure or interface block. Structures need this data because
7847 * the structure may contain a structure that contains ... a matrix
7848 * that need the proper layout.
7849 */
7850 if (is_interface && layout &&
7851 (layout->flags.q.uniform || layout->flags.q.buffer) &&
7852 (glsl_type_is_matrix(glsl_without_array(field_type))
7853 || glsl_type_is_struct(glsl_without_array(field_type)))) {
7854 /* If no layout is specified for the field, inherit the layout
7855 * from the block.
7856 */
7857 fields[i].matrix_layout = matrix_layout;
7858
7859 if (qual->flags.q.row_major)
7860 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7861 else if (qual->flags.q.column_major)
7862 fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7863
7864 /* If we're processing an uniform or buffer block, the matrix
7865 * layout must be decided by this point.
7866 */
7867 assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7868 || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7869 }
7870
7871 /* Memory qualifiers are allowed on buffer and image variables, while
7872 * the format qualifier is only accepted for images.
7873 */
7874 if (var_mode == ir_var_shader_storage ||
7875 glsl_type_is_image(glsl_without_array(field_type))) {
7876 /* For readonly and writeonly qualifiers the field definition,
7877 * if set, overwrites the layout qualifier.
7878 */
7879 if (qual->flags.q.read_only || qual->flags.q.write_only) {
7880 fields[i].memory_read_only = qual->flags.q.read_only;
7881 fields[i].memory_write_only = qual->flags.q.write_only;
7882 } else {
7883 fields[i].memory_read_only =
7884 layout ? layout->flags.q.read_only : 0;
7885 fields[i].memory_write_only =
7886 layout ? layout->flags.q.write_only : 0;
7887 }
7888
7889 /* For other qualifiers, we set the flag if either the layout
7890 * qualifier or the field qualifier are set
7891 */
7892 fields[i].memory_coherent = qual->flags.q.coherent ||
7893 (layout && layout->flags.q.coherent);
7894 fields[i].memory_volatile = qual->flags.q._volatile ||
7895 (layout && layout->flags.q._volatile);
7896 fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7897 (layout && layout->flags.q.restrict_flag);
7898
7899 if (glsl_type_is_image(glsl_without_array(field_type))) {
7900 if (qual->flags.q.explicit_image_format) {
7901 if (qual->image_base_type !=
7902 glsl_without_array(field_type)->sampled_type) {
7903 _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7904 "match the base data type of the image");
7905 }
7906
7907 fields[i].image_format = qual->image_format;
7908 } else {
7909 if (state->has_image_load_formatted()) {
7910 if (state->EXT_shader_image_load_formatted_warn) {
7911 _mesa_glsl_warning(&loc, state, "GL_EXT_image_load_formatted used");
7912 }
7913 } else if (!qual->flags.q.write_only) {
7914 _mesa_glsl_error(&loc, state, "image not qualified with "
7915 "`writeonly' must have a format layout "
7916 "qualifier");
7917 }
7918
7919 fields[i].image_format = PIPE_FORMAT_NONE;
7920 }
7921 }
7922 }
7923
7924 /* Precision qualifiers do not hold any meaning in Desktop GLSL */
7925 if (state->es_shader) {
7926 fields[i].precision = select_gles_precision(qual->precision,
7927 field_type,
7928 state,
7929 &loc);
7930 } else {
7931 fields[i].precision = qual->precision;
7932 }
7933
7934 i++;
7935 }
7936 }
7937
7938 assert(i == decl_count);
7939
7940 *fields_ret = fields;
7941 return decl_count;
7942 }
7943
7944 static bool
is_anonymous(const glsl_type * t)7945 is_anonymous(const glsl_type *t)
7946 {
7947 /* See handling for struct_specifier in glsl_parser.yy. */
7948 return !strncmp(glsl_get_type_name(t), "#anon", 5);
7949 }
7950
7951 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7952 ast_struct_specifier::hir(exec_list *instructions,
7953 struct _mesa_glsl_parse_state *state)
7954 {
7955 YYLTYPE loc = this->get_location();
7956
7957 unsigned expl_location = 0;
7958 if (layout && layout->flags.q.explicit_location) {
7959 if (!process_qualifier_constant(state, &loc, "location",
7960 layout->location, &expl_location)) {
7961 return NULL;
7962 } else {
7963 expl_location = VARYING_SLOT_VAR0 + expl_location;
7964 }
7965 }
7966
7967 glsl_struct_field *fields;
7968 unsigned decl_count =
7969 ast_process_struct_or_iface_block_members(instructions,
7970 state,
7971 &this->declarations,
7972 &fields,
7973 false,
7974 GLSL_MATRIX_LAYOUT_INHERITED,
7975 false /* allow_reserved_names */,
7976 ir_var_auto,
7977 layout,
7978 0, /* for interface only */
7979 0, /* for interface only */
7980 0, /* for interface only */
7981 expl_location,
7982 0 /* for interface only */);
7983
7984 validate_identifier(this->name, loc, state);
7985
7986 type = glsl_struct_type(fields, decl_count, this->name, false /* packed */);
7987
7988 if (!is_anonymous(type) && !state->symbols->add_type(name, type)) {
7989 const glsl_type *match = state->symbols->get_type(name);
7990 /* allow struct matching for desktop GL - older UE4 does this */
7991 if (match != NULL && state->is_version(130, 0) && glsl_record_compare(match, type, true, false, true))
7992 _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7993 else
7994 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7995 } else {
7996 const glsl_type **s = reralloc(state, state->user_structures,
7997 const glsl_type *,
7998 state->num_user_structures + 1);
7999 if (s != NULL) {
8000 s[state->num_user_structures] = type;
8001 state->user_structures = s;
8002 state->num_user_structures++;
8003 }
8004 }
8005
8006 /* Structure type definitions do not have r-values.
8007 */
8008 return NULL;
8009 }
8010
8011
8012 /**
8013 * Visitor class which detects whether a given interface block has been used.
8014 */
8015 class interface_block_usage_visitor : public ir_hierarchical_visitor
8016 {
8017 public:
interface_block_usage_visitor(ir_variable_mode mode,const glsl_type * block)8018 interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
8019 : mode(mode), block(block), found(false)
8020 {
8021 }
8022
visit(ir_dereference_variable * ir)8023 virtual ir_visitor_status visit(ir_dereference_variable *ir)
8024 {
8025 if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
8026 found = true;
8027 return visit_stop;
8028 }
8029 return visit_continue;
8030 }
8031
usage_found() const8032 bool usage_found() const
8033 {
8034 return this->found;
8035 }
8036
8037 private:
8038 ir_variable_mode mode;
8039 const glsl_type *block;
8040 bool found;
8041 };
8042
8043 static bool
is_unsized_array_last_element(ir_variable * v)8044 is_unsized_array_last_element(ir_variable *v)
8045 {
8046 const glsl_type *interface_type = v->get_interface_type();
8047 int length = interface_type->length;
8048
8049 assert(glsl_type_is_unsized_array(v->type));
8050
8051 /* Check if it is the last element of the interface */
8052 if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
8053 return true;
8054 return false;
8055 }
8056
8057 static void
apply_memory_qualifiers(ir_variable * var,glsl_struct_field field)8058 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
8059 {
8060 var->data.memory_read_only = field.memory_read_only;
8061 var->data.memory_write_only = field.memory_write_only;
8062 var->data.memory_coherent = field.memory_coherent;
8063 var->data.memory_volatile = field.memory_volatile;
8064 var->data.memory_restrict = field.memory_restrict;
8065 }
8066
8067 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8068 ast_interface_block::hir(exec_list *instructions,
8069 struct _mesa_glsl_parse_state *state)
8070 {
8071 YYLTYPE loc = this->get_location();
8072
8073 /* Interface blocks must be declared at global scope */
8074 if (state->current_function != NULL) {
8075 _mesa_glsl_error(&loc, state,
8076 "Interface block `%s' must be declared "
8077 "at global scope",
8078 this->block_name);
8079 }
8080
8081 /* Validate qualifiers:
8082 *
8083 * - Layout Qualifiers as per the table in Section 4.4
8084 * ("Layout Qualifiers") of the GLSL 4.50 spec.
8085 *
8086 * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
8087 * GLSL 4.50 spec:
8088 *
8089 * "Additionally, memory qualifiers may also be used in the declaration
8090 * of shader storage blocks"
8091 *
8092 * Note the table in Section 4.4 says std430 is allowed on both uniform and
8093 * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
8094 * Layout Qualifiers) of the GLSL 4.50 spec says:
8095 *
8096 * "The std430 qualifier is supported only for shader storage blocks;
8097 * using std430 on a uniform block will result in a compile-time error."
8098 */
8099 ast_type_qualifier allowed_blk_qualifiers;
8100 allowed_blk_qualifiers.flags.i = 0;
8101 if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
8102 allowed_blk_qualifiers.flags.q.shared = 1;
8103 allowed_blk_qualifiers.flags.q.packed = 1;
8104 allowed_blk_qualifiers.flags.q.std140 = 1;
8105 allowed_blk_qualifiers.flags.q.row_major = 1;
8106 allowed_blk_qualifiers.flags.q.column_major = 1;
8107 allowed_blk_qualifiers.flags.q.explicit_align = 1;
8108 allowed_blk_qualifiers.flags.q.explicit_binding = 1;
8109 if (this->layout.flags.q.buffer) {
8110 allowed_blk_qualifiers.flags.q.buffer = 1;
8111 allowed_blk_qualifiers.flags.q.std430 = 1;
8112 allowed_blk_qualifiers.flags.q.coherent = 1;
8113 allowed_blk_qualifiers.flags.q._volatile = 1;
8114 allowed_blk_qualifiers.flags.q.restrict_flag = 1;
8115 allowed_blk_qualifiers.flags.q.read_only = 1;
8116 allowed_blk_qualifiers.flags.q.write_only = 1;
8117 } else {
8118 allowed_blk_qualifiers.flags.q.uniform = 1;
8119 }
8120 } else {
8121 /* Interface block */
8122 assert(this->layout.flags.q.in || this->layout.flags.q.out);
8123
8124 allowed_blk_qualifiers.flags.q.explicit_location = 1;
8125 if (this->layout.flags.q.out) {
8126 allowed_blk_qualifiers.flags.q.out = 1;
8127 if (state->stage == MESA_SHADER_GEOMETRY ||
8128 state->stage == MESA_SHADER_TESS_CTRL ||
8129 state->stage == MESA_SHADER_TESS_EVAL ||
8130 state->stage == MESA_SHADER_VERTEX ) {
8131 allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
8132 allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
8133 allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
8134 allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
8135 allowed_blk_qualifiers.flags.q.xfb_stride = 1;
8136 }
8137 if (state->stage == MESA_SHADER_GEOMETRY) {
8138 allowed_blk_qualifiers.flags.q.stream = 1;
8139 allowed_blk_qualifiers.flags.q.explicit_stream = 1;
8140 }
8141 if (state->stage == MESA_SHADER_TESS_CTRL) {
8142 allowed_blk_qualifiers.flags.q.patch = 1;
8143 }
8144 } else {
8145 allowed_blk_qualifiers.flags.q.in = 1;
8146 if (state->stage == MESA_SHADER_TESS_EVAL) {
8147 allowed_blk_qualifiers.flags.q.patch = 1;
8148 }
8149 }
8150 }
8151
8152 this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
8153 "invalid qualifier for block",
8154 this->block_name);
8155
8156 enum glsl_interface_packing packing;
8157 if (this->layout.flags.q.std140) {
8158 packing = GLSL_INTERFACE_PACKING_STD140;
8159 } else if (this->layout.flags.q.packed) {
8160 packing = GLSL_INTERFACE_PACKING_PACKED;
8161 } else if (this->layout.flags.q.std430) {
8162 packing = GLSL_INTERFACE_PACKING_STD430;
8163 } else {
8164 /* The default layout is shared.
8165 */
8166 packing = GLSL_INTERFACE_PACKING_SHARED;
8167 }
8168
8169 ir_variable_mode var_mode;
8170 const char *iface_type_name;
8171 if (this->layout.flags.q.in) {
8172 var_mode = ir_var_shader_in;
8173 iface_type_name = "in";
8174 } else if (this->layout.flags.q.out) {
8175 var_mode = ir_var_shader_out;
8176 iface_type_name = "out";
8177 } else if (this->layout.flags.q.uniform) {
8178 var_mode = ir_var_uniform;
8179 iface_type_name = "uniform";
8180 } else if (this->layout.flags.q.buffer) {
8181 var_mode = ir_var_shader_storage;
8182 iface_type_name = "buffer";
8183 } else {
8184 var_mode = ir_var_auto;
8185 iface_type_name = "UNKNOWN";
8186 assert(!"interface block layout qualifier not found!");
8187 }
8188
8189 enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
8190 if (this->layout.flags.q.row_major)
8191 matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
8192 else if (this->layout.flags.q.column_major)
8193 matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
8194
8195 bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
8196 exec_list declared_variables;
8197 glsl_struct_field *fields;
8198
8199 /* For blocks that accept memory qualifiers (i.e. shader storage), verify
8200 * that we don't have incompatible qualifiers
8201 */
8202 if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
8203 _mesa_glsl_error(&loc, state,
8204 "Interface block sets both readonly and writeonly");
8205 }
8206
8207 unsigned qual_stream;
8208 if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
8209 &qual_stream) ||
8210 !validate_stream_qualifier(&loc, state, qual_stream)) {
8211 /* If the stream qualifier is invalid it doesn't make sense to continue
8212 * on and try to compare stream layouts on member variables against it
8213 * so just return early.
8214 */
8215 return NULL;
8216 }
8217
8218 unsigned qual_xfb_buffer = 0;
8219 if (layout.flags.q.xfb_buffer) {
8220 if (!process_qualifier_constant(state, &loc, "xfb_buffer",
8221 layout.xfb_buffer, &qual_xfb_buffer) ||
8222 !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
8223 return NULL;
8224 }
8225 }
8226
8227 unsigned qual_xfb_offset = 0;
8228 if (layout.flags.q.explicit_xfb_offset) {
8229 if (!process_qualifier_constant(state, &loc, "xfb_offset",
8230 layout.offset, &qual_xfb_offset)) {
8231 return NULL;
8232 }
8233 }
8234
8235 unsigned qual_xfb_stride = 0;
8236 if (layout.flags.q.explicit_xfb_stride) {
8237 if (!process_qualifier_constant(state, &loc, "xfb_stride",
8238 layout.xfb_stride, &qual_xfb_stride)) {
8239 return NULL;
8240 }
8241 }
8242
8243 unsigned expl_location = 0;
8244 if (layout.flags.q.explicit_location) {
8245 if (!process_qualifier_constant(state, &loc, "location",
8246 layout.location, &expl_location)) {
8247 return NULL;
8248 } else {
8249 expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
8250 : VARYING_SLOT_VAR0;
8251 }
8252 }
8253
8254 unsigned expl_align = 0;
8255 if (layout.flags.q.explicit_align) {
8256 if (!process_qualifier_constant(state, &loc, "align",
8257 layout.align, &expl_align)) {
8258 return NULL;
8259 } else {
8260 if (expl_align == 0 || expl_align & (expl_align - 1)) {
8261 _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
8262 "power of 2.");
8263 return NULL;
8264 }
8265 }
8266 }
8267
8268 unsigned int num_variables =
8269 ast_process_struct_or_iface_block_members(&declared_variables,
8270 state,
8271 &this->declarations,
8272 &fields,
8273 true,
8274 matrix_layout,
8275 redeclaring_per_vertex,
8276 var_mode,
8277 &this->layout,
8278 qual_stream,
8279 qual_xfb_buffer,
8280 qual_xfb_offset,
8281 expl_location,
8282 expl_align);
8283
8284 if (!redeclaring_per_vertex) {
8285 validate_identifier(this->block_name, loc, state);
8286
8287 /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
8288 *
8289 * "Block names have no other use within a shader beyond interface
8290 * matching; it is a compile-time error to use a block name at global
8291 * scope for anything other than as a block name."
8292 */
8293 ir_variable *var = state->symbols->get_variable(this->block_name);
8294 if (var && !glsl_type_is_interface(var->type)) {
8295 _mesa_glsl_error(&loc, state, "Block name `%s' is "
8296 "already used in the scope.",
8297 this->block_name);
8298 }
8299 }
8300
8301 const glsl_type *earlier_per_vertex = NULL;
8302 if (redeclaring_per_vertex) {
8303 /* Find the previous declaration of gl_PerVertex. If we're redeclaring
8304 * the named interface block gl_in, we can find it by looking at the
8305 * previous declaration of gl_in. Otherwise we can find it by looking
8306 * at the previous decalartion of any of the built-in outputs,
8307 * e.g. gl_Position.
8308 *
8309 * Also check that the instance name and array-ness of the redeclaration
8310 * are correct.
8311 */
8312 switch (var_mode) {
8313 case ir_var_shader_in:
8314 if (ir_variable *earlier_gl_in =
8315 state->symbols->get_variable("gl_in")) {
8316 earlier_per_vertex = earlier_gl_in->get_interface_type();
8317 } else {
8318 _mesa_glsl_error(&loc, state,
8319 "redeclaration of gl_PerVertex input not allowed "
8320 "in the %s shader",
8321 _mesa_shader_stage_to_string(state->stage));
8322 }
8323 if (this->instance_name == NULL ||
8324 strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
8325 !this->array_specifier->is_single_dimension()) {
8326 _mesa_glsl_error(&loc, state,
8327 "gl_PerVertex input must be redeclared as "
8328 "gl_in[]");
8329 }
8330 break;
8331 case ir_var_shader_out:
8332 if (ir_variable *earlier_gl_Position =
8333 state->symbols->get_variable("gl_Position")) {
8334 earlier_per_vertex = earlier_gl_Position->get_interface_type();
8335 } else if (ir_variable *earlier_gl_out =
8336 state->symbols->get_variable("gl_out")) {
8337 earlier_per_vertex = earlier_gl_out->get_interface_type();
8338 } else {
8339 _mesa_glsl_error(&loc, state,
8340 "redeclaration of gl_PerVertex output not "
8341 "allowed in the %s shader",
8342 _mesa_shader_stage_to_string(state->stage));
8343 }
8344 if (state->stage == MESA_SHADER_TESS_CTRL) {
8345 if (this->instance_name == NULL ||
8346 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
8347 _mesa_glsl_error(&loc, state,
8348 "gl_PerVertex output must be redeclared as "
8349 "gl_out[]");
8350 }
8351 } else {
8352 if (this->instance_name != NULL) {
8353 _mesa_glsl_error(&loc, state,
8354 "gl_PerVertex output may not be redeclared with "
8355 "an instance name");
8356 }
8357 }
8358 break;
8359 default:
8360 _mesa_glsl_error(&loc, state,
8361 "gl_PerVertex must be declared as an input or an "
8362 "output");
8363 break;
8364 }
8365
8366 if (earlier_per_vertex == NULL) {
8367 /* An error has already been reported. Bail out to avoid null
8368 * dereferences later in this function.
8369 */
8370 return NULL;
8371 }
8372
8373 /* Copy locations from the old gl_PerVertex interface block. */
8374 for (unsigned i = 0; i < num_variables; i++) {
8375 int j = glsl_get_field_index(earlier_per_vertex, fields[i].name);
8376 if (j == -1) {
8377 _mesa_glsl_error(&loc, state,
8378 "redeclaration of gl_PerVertex must be a subset "
8379 "of the built-in members of gl_PerVertex");
8380 } else {
8381 fields[i].location =
8382 earlier_per_vertex->fields.structure[j].location;
8383 fields[i].offset =
8384 earlier_per_vertex->fields.structure[j].offset;
8385 fields[i].interpolation =
8386 earlier_per_vertex->fields.structure[j].interpolation;
8387 fields[i].centroid =
8388 earlier_per_vertex->fields.structure[j].centroid;
8389 fields[i].sample =
8390 earlier_per_vertex->fields.structure[j].sample;
8391 fields[i].patch =
8392 earlier_per_vertex->fields.structure[j].patch;
8393 fields[i].precision =
8394 earlier_per_vertex->fields.structure[j].precision;
8395 fields[i].explicit_xfb_buffer =
8396 earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8397 fields[i].xfb_buffer =
8398 earlier_per_vertex->fields.structure[j].xfb_buffer;
8399 fields[i].xfb_stride =
8400 earlier_per_vertex->fields.structure[j].xfb_stride;
8401 }
8402 }
8403
8404 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8405 * spec:
8406 *
8407 * If a built-in interface block is redeclared, it must appear in
8408 * the shader before any use of any member included in the built-in
8409 * declaration, or a compilation error will result.
8410 *
8411 * This appears to be a clarification to the behaviour established for
8412 * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8413 * regardless of GLSL version.
8414 */
8415 interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8416 v.run(instructions);
8417 if (v.usage_found()) {
8418 _mesa_glsl_error(&loc, state,
8419 "redeclaration of a built-in interface block must "
8420 "appear before any use of any member of the "
8421 "interface block");
8422 }
8423 }
8424
8425 const glsl_type *block_type =
8426 glsl_interface_type(fields,
8427 num_variables,
8428 packing,
8429 matrix_layout ==
8430 GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8431 this->block_name);
8432
8433 unsigned component_size = glsl_contains_double(block_type) ? 8 : 4;
8434 int xfb_offset =
8435 layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8436 validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8437 component_size);
8438
8439 if (!state->symbols->add_interface(glsl_get_type_name(block_type), block_type, var_mode)) {
8440 YYLTYPE loc = this->get_location();
8441 _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8442 "already taken in the current scope",
8443 this->block_name, iface_type_name);
8444 }
8445
8446 /* Since interface blocks cannot contain statements, it should be
8447 * impossible for the block to generate any instructions.
8448 */
8449 assert(declared_variables.is_empty());
8450
8451 /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8452 *
8453 * Geometry shader input variables get the per-vertex values written
8454 * out by vertex shader output variables of the same names. Since a
8455 * geometry shader operates on a set of vertices, each input varying
8456 * variable (or input block, see interface blocks below) needs to be
8457 * declared as an array.
8458 */
8459 if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8460 var_mode == ir_var_shader_in) {
8461 _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8462 } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8463 state->stage == MESA_SHADER_TESS_EVAL) &&
8464 !this->layout.flags.q.patch &&
8465 this->array_specifier == NULL &&
8466 var_mode == ir_var_shader_in) {
8467 _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8468 } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8469 !this->layout.flags.q.patch &&
8470 this->array_specifier == NULL &&
8471 var_mode == ir_var_shader_out) {
8472 _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8473 }
8474
8475
8476 /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8477 * says:
8478 *
8479 * "If an instance name (instance-name) is used, then it puts all the
8480 * members inside a scope within its own name space, accessed with the
8481 * field selector ( . ) operator (analogously to structures)."
8482 */
8483 if (this->instance_name) {
8484 if (redeclaring_per_vertex) {
8485 /* When a built-in in an unnamed interface block is redeclared,
8486 * get_variable_being_redeclared() calls
8487 * check_builtin_array_max_size() to make sure that built-in array
8488 * variables aren't redeclared to illegal sizes. But we're looking
8489 * at a redeclaration of a named built-in interface block. So we
8490 * have to manually call check_builtin_array_max_size() for all parts
8491 * of the interface that are arrays.
8492 */
8493 for (unsigned i = 0; i < num_variables; i++) {
8494 if (glsl_type_is_array(fields[i].type)) {
8495 const unsigned size = glsl_array_size(fields[i].type);
8496 check_builtin_array_max_size(fields[i].name, size, loc, state);
8497 }
8498 }
8499 } else {
8500 validate_identifier(this->instance_name, loc, state);
8501 }
8502
8503 ir_variable *var;
8504
8505 if (this->array_specifier != NULL) {
8506 const glsl_type *block_array_type =
8507 process_array_type(&loc, block_type, this->array_specifier, state);
8508
8509 /* From Section 4.4.1 (Input Layout Qualifiers) of the GLSL 4.50 spec:
8510 *
8511 * "For some blocks declared as arrays, the location can only be applied
8512 * at the block level: When a block is declared as an array where
8513 * additional locations are needed for each member for each block array
8514 * element, it is a compile-time error to specify locations on the block
8515 * members. That is, when locations would be under specified by applying
8516 * them on block members, they are not allowed on block members. For
8517 * arrayed interfaces (those generally having an extra level of
8518 * arrayness due to interface expansion), the outer array is stripped
8519 * before applying this rule"
8520 *
8521 * From 4.4.1 (Input Layout Qualifiers) and
8522 * 4.4.2 (Output Layout Qualifiers) of GLSL ES 3.20
8523 *
8524 * "If an input is declared as an array of blocks, excluding
8525 * per-vertex-arrays as required for tessellation, it is an error
8526 * to declare a member of the block with a location qualifier."
8527 *
8528 * "If an output is declared as an array of blocks, excluding
8529 * per-vertex-arrays as required for tessellation, it is an error
8530 * to declare a member of the block with a location qualifier."
8531 */
8532 if (!redeclaring_per_vertex &&
8533 (state->has_enhanced_layouts() || state->has_shader_io_blocks())) {
8534 bool allow_location;
8535 switch (state->stage)
8536 {
8537 case MESA_SHADER_TESS_CTRL:
8538 allow_location = this->array_specifier->is_single_dimension();
8539 break;
8540 case MESA_SHADER_TESS_EVAL:
8541 case MESA_SHADER_GEOMETRY:
8542 allow_location = (this->array_specifier->is_single_dimension()
8543 && var_mode == ir_var_shader_in);
8544 break;
8545 default:
8546 allow_location = false;
8547 break;
8548 }
8549
8550 if (!allow_location) {
8551 for (unsigned i = 0; i < num_variables; i++) {
8552 if (fields[i].location != -1) {
8553 _mesa_glsl_error(&loc, state,
8554 "explicit member locations are not allowed in "
8555 "blocks declared as arrays %s shader",
8556 _mesa_shader_stage_to_string(state->stage));
8557 }
8558 }
8559 }
8560 }
8561
8562 /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8563 *
8564 * For uniform blocks declared an array, each individual array
8565 * element corresponds to a separate buffer object backing one
8566 * instance of the block. As the array size indicates the number
8567 * of buffer objects needed, uniform block array declarations
8568 * must specify an array size.
8569 *
8570 * And a few paragraphs later:
8571 *
8572 * Geometry shader input blocks must be declared as arrays and
8573 * follow the array declaration and linking rules for all
8574 * geometry shader inputs. All other input and output block
8575 * arrays must specify an array size.
8576 *
8577 * The same applies to tessellation shaders.
8578 *
8579 * The upshot of this is that the only circumstance where an
8580 * interface array size *doesn't* need to be specified is on a
8581 * geometry shader input, tessellation control shader input,
8582 * tessellation control shader output, and tessellation evaluation
8583 * shader input.
8584 */
8585 if (glsl_type_is_unsized_array(block_array_type)) {
8586 bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8587 state->stage == MESA_SHADER_TESS_CTRL ||
8588 state->stage == MESA_SHADER_TESS_EVAL;
8589 bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8590
8591 if (this->layout.flags.q.in) {
8592 if (!allow_inputs)
8593 _mesa_glsl_error(&loc, state,
8594 "unsized input block arrays not allowed in "
8595 "%s shader",
8596 _mesa_shader_stage_to_string(state->stage));
8597 } else if (this->layout.flags.q.out) {
8598 if (!allow_outputs)
8599 _mesa_glsl_error(&loc, state,
8600 "unsized output block arrays not allowed in "
8601 "%s shader",
8602 _mesa_shader_stage_to_string(state->stage));
8603 } else {
8604 /* by elimination, this is a uniform block array */
8605 _mesa_glsl_error(&loc, state,
8606 "unsized uniform block arrays not allowed in "
8607 "%s shader",
8608 _mesa_shader_stage_to_string(state->stage));
8609 }
8610 }
8611
8612 /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8613 *
8614 * * Arrays of arrays of blocks are not allowed
8615 */
8616 if (state->es_shader && glsl_type_is_array(block_array_type) &&
8617 glsl_type_is_array(block_array_type->fields.array)) {
8618 _mesa_glsl_error(&loc, state,
8619 "arrays of arrays interface blocks are "
8620 "not allowed");
8621 }
8622
8623 var = new(state) ir_variable(block_array_type,
8624 this->instance_name,
8625 var_mode);
8626 } else {
8627 var = new(state) ir_variable(block_type,
8628 this->instance_name,
8629 var_mode);
8630 }
8631
8632 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8633 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8634
8635 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8636 var->data.read_only = true;
8637
8638 var->data.patch = this->layout.flags.q.patch;
8639
8640 if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8641 handle_geometry_shader_input_decl(state, loc, var);
8642 else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8643 state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8644 handle_tess_shader_input_decl(state, loc, var);
8645 else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8646 handle_tess_ctrl_shader_output_decl(state, loc, var);
8647
8648 for (unsigned i = 0; i < num_variables; i++) {
8649 if (var->data.mode == ir_var_shader_storage)
8650 apply_memory_qualifiers(var, fields[i]);
8651 }
8652
8653 if (ir_variable *earlier =
8654 state->symbols->get_variable(this->instance_name)) {
8655 if (!redeclaring_per_vertex) {
8656 _mesa_glsl_error(&loc, state, "`%s' redeclared",
8657 this->instance_name);
8658 }
8659 earlier->data.how_declared = ir_var_declared_normally;
8660 earlier->type = var->type;
8661 earlier->reinit_interface_type(block_type);
8662 delete var;
8663 } else {
8664 if (this->layout.flags.q.explicit_binding) {
8665 apply_explicit_binding(state, &loc, var, var->type,
8666 &this->layout);
8667 }
8668
8669 var->data.stream = qual_stream;
8670 if (layout.flags.q.explicit_location) {
8671 var->data.location = expl_location;
8672 var->data.explicit_location = true;
8673 }
8674
8675 state->symbols->add_variable(var);
8676 instructions->push_tail(var);
8677 }
8678 } else {
8679 /* In order to have an array size, the block must also be declared with
8680 * an instance name.
8681 */
8682 assert(this->array_specifier == NULL);
8683
8684 for (unsigned i = 0; i < num_variables; i++) {
8685 ir_variable *var =
8686 new(state) ir_variable(fields[i].type,
8687 ralloc_strdup(state, fields[i].name),
8688 var_mode);
8689 var->data.interpolation = fields[i].interpolation;
8690 var->data.centroid = fields[i].centroid;
8691 var->data.sample = fields[i].sample;
8692 var->data.patch = fields[i].patch;
8693 var->data.stream = qual_stream;
8694 var->data.location = fields[i].location;
8695
8696 if (fields[i].location != -1)
8697 var->data.explicit_location = true;
8698
8699 var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8700 var->data.xfb_buffer = fields[i].xfb_buffer;
8701
8702 if (fields[i].offset != -1)
8703 var->data.explicit_xfb_offset = true;
8704 var->data.offset = fields[i].offset;
8705
8706 var->init_interface_type(block_type);
8707
8708 if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8709 var->data.read_only = true;
8710
8711 /* Precision qualifiers do not have any meaning in Desktop GLSL */
8712 if (state->es_shader) {
8713 var->data.precision =
8714 select_gles_precision(fields[i].precision, fields[i].type,
8715 state, &loc);
8716 }
8717
8718 if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8719 var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8720 ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8721 } else {
8722 var->data.matrix_layout = fields[i].matrix_layout;
8723 }
8724
8725 if (var->data.mode == ir_var_shader_storage)
8726 apply_memory_qualifiers(var, fields[i]);
8727
8728 /* Examine var name here since var may get deleted in the next call */
8729 bool var_is_gl_id = is_gl_identifier(var->name);
8730
8731 if (redeclaring_per_vertex) {
8732 bool is_redeclaration;
8733 var =
8734 get_variable_being_redeclared(&var, loc, state,
8735 true /* allow_all_redeclarations */,
8736 &is_redeclaration);
8737 if (!var_is_gl_id || !is_redeclaration) {
8738 _mesa_glsl_error(&loc, state,
8739 "redeclaration of gl_PerVertex can only "
8740 "include built-in variables");
8741 } else if (var->data.how_declared == ir_var_declared_normally) {
8742 _mesa_glsl_error(&loc, state,
8743 "`%s' has already been redeclared",
8744 var->name);
8745 } else {
8746 var->data.how_declared = ir_var_declared_in_block;
8747 var->reinit_interface_type(block_type);
8748 }
8749 continue;
8750 }
8751
8752 if (state->symbols->get_variable(var->name) != NULL)
8753 _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8754
8755 /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8756 * The UBO declaration itself doesn't get an ir_variable unless it
8757 * has an instance name. This is ugly.
8758 */
8759 if (this->layout.flags.q.explicit_binding) {
8760 apply_explicit_binding(state, &loc, var,
8761 var->get_interface_type(), &this->layout);
8762 }
8763
8764 if (glsl_type_is_unsized_array(var->type)) {
8765 if (var->is_in_shader_storage_block() &&
8766 is_unsized_array_last_element(var)) {
8767 var->data.from_ssbo_unsized_array = true;
8768 } else {
8769 /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8770 *
8771 * "If an array is declared as the last member of a shader storage
8772 * block and the size is not specified at compile-time, it is
8773 * sized at run-time. In all other cases, arrays are sized only
8774 * at compile-time."
8775 *
8776 * In desktop GLSL it is allowed to have unsized-arrays that are
8777 * not last, as long as we can determine that they are implicitly
8778 * sized.
8779 */
8780 if (state->es_shader) {
8781 _mesa_glsl_error(&loc, state, "unsized array `%s' "
8782 "definition: only last member of a shader "
8783 "storage block can be defined as unsized "
8784 "array", fields[i].name);
8785 }
8786 }
8787 }
8788
8789 state->symbols->add_variable(var);
8790 instructions->push_tail(var);
8791 }
8792
8793 if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8794 /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8795 *
8796 * It is also a compilation error ... to redeclare a built-in
8797 * block and then use a member from that built-in block that was
8798 * not included in the redeclaration.
8799 *
8800 * This appears to be a clarification to the behaviour established
8801 * for gl_PerVertex by GLSL 1.50, therefore we implement this
8802 * behaviour regardless of GLSL version.
8803 *
8804 * To prevent the shader from using a member that was not included in
8805 * the redeclaration, we disable any ir_variables that are still
8806 * associated with the old declaration of gl_PerVertex (since we've
8807 * already updated all of the variables contained in the new
8808 * gl_PerVertex to point to it).
8809 *
8810 * As a side effect this will prevent
8811 * validate_intrastage_interface_blocks() from getting confused and
8812 * thinking there are conflicting definitions of gl_PerVertex in the
8813 * shader.
8814 */
8815 foreach_in_list_safe(ir_instruction, node, instructions) {
8816 ir_variable *const var = node->as_variable();
8817 if (var != NULL &&
8818 var->get_interface_type() == earlier_per_vertex &&
8819 var->data.mode == var_mode) {
8820 if (var->data.how_declared == ir_var_declared_normally) {
8821 _mesa_glsl_error(&loc, state,
8822 "redeclaration of gl_PerVertex cannot "
8823 "follow a redeclaration of `%s'",
8824 var->name);
8825 }
8826 state->symbols->disable_variable(var->name);
8827 var->remove();
8828 }
8829 }
8830 }
8831 }
8832
8833 return NULL;
8834 }
8835
8836
8837 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8838 ast_tcs_output_layout::hir(exec_list *instructions,
8839 struct _mesa_glsl_parse_state *state)
8840 {
8841 YYLTYPE loc = this->get_location();
8842
8843 unsigned num_vertices;
8844 if (!state->out_qualifier->vertices->
8845 process_qualifier_constant(state, "vertices", &num_vertices,
8846 false)) {
8847 /* return here to stop cascading incorrect error messages */
8848 return NULL;
8849 }
8850
8851 /* If any shader outputs occurred before this declaration and specified an
8852 * array size, make sure the size they specified is consistent with the
8853 * primitive type.
8854 */
8855 if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8856 _mesa_glsl_error(&loc, state,
8857 "this tessellation control shader output layout "
8858 "specifies %u vertices, but a previous output "
8859 "is declared with size %u",
8860 num_vertices, state->tcs_output_size);
8861 return NULL;
8862 }
8863
8864 state->tcs_output_vertices_specified = true;
8865
8866 /* If any shader outputs occurred before this declaration and did not
8867 * specify an array size, their size is determined now.
8868 */
8869 foreach_in_list (ir_instruction, node, instructions) {
8870 ir_variable *var = node->as_variable();
8871 if (var == NULL || var->data.mode != ir_var_shader_out)
8872 continue;
8873
8874 /* Note: Not all tessellation control shader output are arrays. */
8875 if (!glsl_type_is_unsized_array(var->type) || var->data.patch)
8876 continue;
8877
8878 if (var->data.max_array_access >= (int)num_vertices) {
8879 _mesa_glsl_error(&loc, state,
8880 "this tessellation control shader output layout "
8881 "specifies %u vertices, but an access to element "
8882 "%u of output `%s' already exists", num_vertices,
8883 var->data.max_array_access, var->name);
8884 } else {
8885 var->type = glsl_array_type(var->type->fields.array,
8886 num_vertices, 0);
8887 }
8888 }
8889
8890 return NULL;
8891 }
8892
8893
8894 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8895 ast_gs_input_layout::hir(exec_list *instructions,
8896 struct _mesa_glsl_parse_state *state)
8897 {
8898 YYLTYPE loc = this->get_location();
8899
8900 /* Should have been prevented by the parser. */
8901 assert(!state->gs_input_prim_type_specified
8902 || state->in_qualifier->prim_type == this->prim_type);
8903
8904 /* If any shader inputs occurred before this declaration and specified an
8905 * array size, make sure the size they specified is consistent with the
8906 * primitive type.
8907 */
8908 unsigned num_vertices =
8909 mesa_vertices_per_prim(gl_to_mesa_prim(this->prim_type));
8910 if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8911 _mesa_glsl_error(&loc, state,
8912 "this geometry shader input layout implies %u vertices"
8913 " per primitive, but a previous input is declared"
8914 " with size %u", num_vertices, state->gs_input_size);
8915 return NULL;
8916 }
8917
8918 state->gs_input_prim_type_specified = true;
8919
8920 /* If any shader inputs occurred before this declaration and did not
8921 * specify an array size, their size is determined now.
8922 */
8923 foreach_in_list(ir_instruction, node, instructions) {
8924 ir_variable *var = node->as_variable();
8925 if (var == NULL || var->data.mode != ir_var_shader_in)
8926 continue;
8927
8928 /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8929 * array; skip it.
8930 */
8931
8932 if (glsl_type_is_unsized_array(var->type)) {
8933 if (var->data.max_array_access >= (int)num_vertices) {
8934 _mesa_glsl_error(&loc, state,
8935 "this geometry shader input layout implies %u"
8936 " vertices, but an access to element %u of input"
8937 " `%s' already exists", num_vertices,
8938 var->data.max_array_access, var->name);
8939 } else {
8940 var->type = glsl_array_type(var->type->fields.array,
8941 num_vertices, 0);
8942 }
8943 }
8944 }
8945
8946 return NULL;
8947 }
8948
8949
8950 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8951 ast_cs_input_layout::hir(exec_list *instructions,
8952 struct _mesa_glsl_parse_state *state)
8953 {
8954 YYLTYPE loc = this->get_location();
8955
8956 /* From the ARB_compute_shader specification:
8957 *
8958 * If the local size of the shader in any dimension is greater
8959 * than the maximum size supported by the implementation for that
8960 * dimension, a compile-time error results.
8961 *
8962 * It is not clear from the spec how the error should be reported if
8963 * the total size of the work group exceeds
8964 * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8965 * report it at compile time as well.
8966 */
8967 GLuint64 total_invocations = 1;
8968 unsigned qual_local_size[3];
8969 for (int i = 0; i < 3; i++) {
8970
8971 char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8972 'x' + i);
8973 /* Infer a local_size of 1 for unspecified dimensions */
8974 if (this->local_size[i] == NULL) {
8975 qual_local_size[i] = 1;
8976 } else if (!this->local_size[i]->
8977 process_qualifier_constant(state, local_size_str,
8978 &qual_local_size[i], false)) {
8979 ralloc_free(local_size_str);
8980 return NULL;
8981 }
8982 ralloc_free(local_size_str);
8983
8984 if (qual_local_size[i] > state->consts->MaxComputeWorkGroupSize[i]) {
8985 _mesa_glsl_error(&loc, state,
8986 "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8987 " (%d)", 'x' + i,
8988 state->consts->MaxComputeWorkGroupSize[i]);
8989 break;
8990 }
8991 total_invocations *= qual_local_size[i];
8992 if (total_invocations >
8993 state->consts->MaxComputeWorkGroupInvocations) {
8994 _mesa_glsl_error(&loc, state,
8995 "product of local_sizes exceeds "
8996 "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8997 state->consts->MaxComputeWorkGroupInvocations);
8998 break;
8999 }
9000 }
9001
9002 /* If any compute input layout declaration preceded this one, make sure it
9003 * was consistent with this one.
9004 */
9005 if (state->cs_input_local_size_specified) {
9006 for (int i = 0; i < 3; i++) {
9007 if (state->cs_input_local_size[i] != qual_local_size[i]) {
9008 _mesa_glsl_error(&loc, state,
9009 "compute shader input layout does not match"
9010 " previous declaration");
9011 return NULL;
9012 }
9013 }
9014 }
9015
9016 /* The ARB_compute_variable_group_size spec says:
9017 *
9018 * If a compute shader including a *local_size_variable* qualifier also
9019 * declares a fixed local group size using the *local_size_x*,
9020 * *local_size_y*, or *local_size_z* qualifiers, a compile-time error
9021 * results
9022 */
9023 if (state->cs_input_local_size_variable_specified) {
9024 _mesa_glsl_error(&loc, state,
9025 "compute shader can't include both a variable and a "
9026 "fixed local group size");
9027 return NULL;
9028 }
9029
9030 state->cs_input_local_size_specified = true;
9031 for (int i = 0; i < 3; i++)
9032 state->cs_input_local_size[i] = qual_local_size[i];
9033
9034 /* We may now declare the built-in constant gl_WorkGroupSize (see
9035 * builtin_variable_generator::generate_constants() for why we didn't
9036 * declare it earlier).
9037 */
9038 ir_variable *var = new(state->symbols)
9039 ir_variable(&glsl_type_builtin_uvec3, "gl_WorkGroupSize", ir_var_auto);
9040 var->data.how_declared = ir_var_declared_implicitly;
9041 var->data.read_only = true;
9042 instructions->push_tail(var);
9043 state->symbols->add_variable(var);
9044 ir_constant_data data;
9045 memset(&data, 0, sizeof(data));
9046 for (int i = 0; i < 3; i++)
9047 data.u[i] = qual_local_size[i];
9048 var->constant_value = new(var) ir_constant(&glsl_type_builtin_uvec3, &data);
9049 var->constant_initializer =
9050 new(var) ir_constant(&glsl_type_builtin_uvec3, &data);
9051 var->data.has_initializer = true;
9052 var->data.is_implicit_initializer = false;
9053
9054 return NULL;
9055 }
9056
9057
9058 static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state * state,exec_list * instructions)9059 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
9060 exec_list *instructions)
9061 {
9062 bool gl_FragColor_assigned = false;
9063 bool gl_FragData_assigned = false;
9064 bool gl_FragSecondaryColor_assigned = false;
9065 bool gl_FragSecondaryData_assigned = false;
9066 bool user_defined_fs_output_assigned = false;
9067 ir_variable *user_defined_fs_output = NULL;
9068
9069 /* It would be nice to have proper location information. */
9070 YYLTYPE loc;
9071 memset(&loc, 0, sizeof(loc));
9072
9073 foreach_in_list(ir_instruction, node, instructions) {
9074 ir_variable *var = node->as_variable();
9075
9076 if (!var || !var->data.assigned)
9077 continue;
9078
9079 if (strcmp(var->name, "gl_FragColor") == 0) {
9080 gl_FragColor_assigned = true;
9081 if (!var->constant_initializer && state->zero_init) {
9082 const ir_constant_data data = { { 0 } };
9083 var->data.has_initializer = true;
9084 var->data.is_implicit_initializer = true;
9085 var->constant_initializer = new(var) ir_constant(var->type, &data);
9086 }
9087 }
9088 else if (strcmp(var->name, "gl_FragData") == 0)
9089 gl_FragData_assigned = true;
9090 else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
9091 gl_FragSecondaryColor_assigned = true;
9092 else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
9093 gl_FragSecondaryData_assigned = true;
9094 else if (!is_gl_identifier(var->name)) {
9095 if (state->stage == MESA_SHADER_FRAGMENT &&
9096 var->data.mode == ir_var_shader_out) {
9097 user_defined_fs_output_assigned = true;
9098 user_defined_fs_output = var;
9099 }
9100 }
9101 }
9102
9103 /* From the GLSL 1.30 spec:
9104 *
9105 * "If a shader statically assigns a value to gl_FragColor, it
9106 * may not assign a value to any element of gl_FragData. If a
9107 * shader statically writes a value to any element of
9108 * gl_FragData, it may not assign a value to
9109 * gl_FragColor. That is, a shader may assign values to either
9110 * gl_FragColor or gl_FragData, but not both. Multiple shaders
9111 * linked together must also consistently write just one of
9112 * these variables. Similarly, if user declared output
9113 * variables are in use (statically assigned to), then the
9114 * built-in variables gl_FragColor and gl_FragData may not be
9115 * assigned to. These incorrect usages all generate compile
9116 * time errors."
9117 */
9118 if (gl_FragColor_assigned && gl_FragData_assigned) {
9119 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9120 "`gl_FragColor' and `gl_FragData'");
9121 } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
9122 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9123 "`gl_FragColor' and `%s'",
9124 user_defined_fs_output->name);
9125 } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
9126 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9127 "`gl_FragSecondaryColorEXT' and"
9128 " `gl_FragSecondaryDataEXT'");
9129 } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
9130 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9131 "`gl_FragColor' and"
9132 " `gl_FragSecondaryDataEXT'");
9133 } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
9134 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9135 "`gl_FragData' and"
9136 " `gl_FragSecondaryColorEXT'");
9137 } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
9138 _mesa_glsl_error(&loc, state, "fragment shader writes to both "
9139 "`gl_FragData' and `%s'",
9140 user_defined_fs_output->name);
9141 }
9142
9143 if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
9144 !state->EXT_blend_func_extended_enable) {
9145 _mesa_glsl_error(&loc, state,
9146 "Dual source blending requires EXT_blend_func_extended");
9147 }
9148 }
9149
9150 static void
verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state * state)9151 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
9152 {
9153 YYLTYPE loc;
9154 memset(&loc, 0, sizeof(loc));
9155
9156 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
9157 *
9158 * "A program will fail to compile or link if any shader
9159 * or stage contains two or more functions with the same
9160 * name if the name is associated with a subroutine type."
9161 */
9162
9163 for (int i = 0; i < state->num_subroutines; i++) {
9164 unsigned definitions = 0;
9165 ir_function *fn = state->subroutines[i];
9166 /* Calculate number of function definitions with the same name */
9167 foreach_in_list(ir_function_signature, sig, &fn->signatures) {
9168 if (sig->is_defined) {
9169 if (++definitions > 1) {
9170 _mesa_glsl_error(&loc, state,
9171 "%s shader contains two or more function "
9172 "definitions with name `%s', which is "
9173 "associated with a subroutine type.\n",
9174 _mesa_shader_stage_to_string(state->stage),
9175 fn->name);
9176 return;
9177 }
9178 }
9179 }
9180 }
9181 }
9182
9183 static void
remove_per_vertex_blocks(exec_list * instructions,_mesa_glsl_parse_state * state,ir_variable_mode mode)9184 remove_per_vertex_blocks(exec_list *instructions,
9185 _mesa_glsl_parse_state *state, ir_variable_mode mode)
9186 {
9187 /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
9188 * if it exists in this shader type.
9189 */
9190 const glsl_type *per_vertex = NULL;
9191 switch (mode) {
9192 case ir_var_shader_in:
9193 if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
9194 per_vertex = gl_in->get_interface_type();
9195 break;
9196 case ir_var_shader_out:
9197 if (ir_variable *gl_Position =
9198 state->symbols->get_variable("gl_Position")) {
9199 per_vertex = gl_Position->get_interface_type();
9200 }
9201 break;
9202 default:
9203 assert(!"Unexpected mode");
9204 break;
9205 }
9206
9207 /* If we didn't find a built-in gl_PerVertex interface block, then we don't
9208 * need to do anything.
9209 */
9210 if (per_vertex == NULL)
9211 return;
9212
9213 /* If the interface block is used by the shader, then we don't need to do
9214 * anything.
9215 */
9216 interface_block_usage_visitor v(mode, per_vertex);
9217 v.run(instructions);
9218 if (v.usage_found())
9219 return;
9220
9221 /* Remove any ir_variable declarations that refer to the interface block
9222 * we're removing.
9223 */
9224 foreach_in_list_safe(ir_instruction, node, instructions) {
9225 ir_variable *const var = node->as_variable();
9226 if (var != NULL && var->get_interface_type() == per_vertex &&
9227 var->data.mode == mode &&
9228 var->data.how_declared == ir_var_declared_implicitly) {
9229 state->symbols->disable_variable(var->name);
9230 var->remove();
9231 }
9232 }
9233 }
9234
9235 ir_rvalue *
hir(exec_list *,struct _mesa_glsl_parse_state * state)9236 ast_warnings_toggle::hir(exec_list *,
9237 struct _mesa_glsl_parse_state *state)
9238 {
9239 state->warnings_enabled = enable;
9240 return NULL;
9241 }
9242