xref: /aosp_15_r20/external/ComputeLibrary/arm_compute/runtime/NEON/functions/NEFuseBatchNormalization.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_NEFUSEBATCHNORMALIZATION_H
25 #define ARM_COMPUTE_NEFUSEBATCHNORMALIZATION_H
26 
27 #include "arm_compute/core/ITensor.h"
28 #include "arm_compute/core/Types.h"
29 #include "arm_compute/runtime/IFunction.h"
30 
31 namespace arm_compute
32 {
33 // Forward declarations
34 class ITensor;
35 class NEFuseBatchNormalizationKernel;
36 
37 /** Basic function to fuse the batch normalization node to a preceding convolution node */
38 class NEFuseBatchNormalization : public IFunction
39 {
40 public:
41     /** Default constructor */
42     NEFuseBatchNormalization();
43     /** Prevent instances of this class from being copied (As this class contains pointers) */
44     NEFuseBatchNormalization(const NEFuseBatchNormalization &) = delete;
45     /** Prevent instances of this class from being copied (As this class contains pointers) */
46     NEFuseBatchNormalization &operator=(const NEFuseBatchNormalization &) = delete;
47     /** Allow instances of this class to be moved */
48     NEFuseBatchNormalization(NEFuseBatchNormalization &&) = default;
49     /** Allow instances of this class to be moved */
50     NEFuseBatchNormalization &operator=(NEFuseBatchNormalization &&) = default;
51     /** Default destructor */
52     ~NEFuseBatchNormalization();
53     /** Set the input and output tensors.
54      *
55      * Valid data layouts:
56      * - NHWC
57      * - NCHW
58      *
59      * Valid data type configurations:
60      * |src            |dst            |
61      * |:--------------|:--------------|
62      * |F32            |F32            |
63      * |F16            |F16            |
64      *
65      * @param[in]  input_weights Input weights tensor for convolution or depthwise convolution layer. Data type supported: F16/F32. Data layout supported: NCHW, NHWC
66      * @param[in]  bn_mean       Batch normalization layer mean tensor. Same as @p input_weights
67      * @param[in]  bn_var        Batch normalization layer variance tensor. Same as @p input_weights
68      * @param[out] fused_weights (Optional) Output fused weights tensor. It can be a nullptr in case of in-place computation. Same as @p input_weights
69      * @param[out] fused_bias    (Optional) Output fused bias tensor. It can be a nullptr in case of in-place computation and input_bias != nullptr. Same as @p input_weights
70      * @param[in]  input_bias    (Optional) Input bias tensor for convolution or depthwise convolution layer. It can be a nullptr in case the bias tensor is not required. Same as @p input_weights
71      * @param[in]  bn_beta       (Optional) Batch normalization layer beta tensor. It can be a nullptr in case the beta tensor is not required. Same as @p input_weights
72      *                           @note if nullptr, bn_beta is set to 0.0
73      * @param[in]  bn_gamma      (Optional) Batch normalization layer gamma tensor. It can be a nullptr in case the gamma tensor is not required. Same as @p input_weights
74      *                           @note if nullptr, bn_gamma is set to 1.0
75      * @param[in]  epsilon       (Optional) Batch normalization layer epsilon parameter. Defaults to 0.001f.
76      * @param[in]  fbn_type      (Optional) Fused batch normalization type. Defaults to Convolution.
77      */
78     void configure(const ITensor *input_weights, const ITensor *bn_mean, const ITensor *bn_var, ITensor *fused_weights, ITensor *fused_bias,
79                    const ITensor *input_bias = nullptr, const ITensor *bn_beta = nullptr, const ITensor *bn_gamma = nullptr,
80                    float epsilon = 0.001f, FuseBatchNormalizationType fbn_type = FuseBatchNormalizationType::CONVOLUTION);
81     /** Static function to check if given info will lead to a valid configuration of @ref NEFuseBatchNormalization
82      *
83      * @param[in] input_weights Input weights tensor info for convolution or depthwise convolution layer. Data type supported: F16/F32. Data layout supported: NCHW, NHWC
84      * @param[in] bn_mean       Batch normalization layer mean tensor info. Same as @p input_weights
85      * @param[in] bn_var        Batch normalization layer variance tensor info. Same as @p input_weights
86      * @param[in] fused_weights (Optional) Output fused weights tensor info. It can be a nullptr in case of in-place computation. Same as @p input_weights
87      * @param[in] fused_bias    (Optional) Output fused bias tensor info. It can be a nullptr in case of in-place computation and input_bias != nullptr. Same as @p input_weights
88      * @param[in] input_bias    (Optional) Input bias tensor info for convolution or depthwise convolution layer. It can be a nullptr in case the bias tensor is not required. Same as @p input_weights
89      * @param[in] bn_beta       (Optional) Batch normalization layer beta tensor info. It can be a nullptr in case the beta tensor is not required. Same as @p input_weights
90      *                          @note if nullptr, bn_beta is set to 0.0
91      * @param[in] bn_gamma      (Optional) Batch normalization layer gamma tensor info. It can be a nullptr in case the gamma tensor is not required. Same as @p input_weights
92      *                          @note if nullptr, bn_gamma is set to 1.0
93      * @param[in] epsilon       (Optional) Batch normalization layer epsilon parameter. Defaults to 0.001f.
94      * @param[in] fbn_type      (Optional) Fused batch normalization type. Defaults to Convolution.
95      *
96      * @return a status
97      */
98     static Status validate(const ITensorInfo *input_weights, const ITensorInfo *bn_mean, const ITensorInfo *bn_var,
99                            const ITensorInfo *fused_weights, const ITensorInfo *fused_bias,
100                            const ITensorInfo *input_bias = nullptr, const ITensorInfo *bn_beta = nullptr, const ITensorInfo *bn_gamma = nullptr,
101                            float epsilon = 0.001f, FuseBatchNormalizationType fbn_type = FuseBatchNormalizationType::CONVOLUTION);
102 
103     // Inherited methods overridden:
104     void run() override;
105 
106 private:
107     std::unique_ptr<NEFuseBatchNormalizationKernel> _fuse_bn_kernel;
108 };
109 } // namespace arm_compute
110 #endif /*ARM_COMPUTE_NEFUSEBATCHNORMALIZATION_H */
111