xref: /aosp_15_r20/external/ComputeLibrary/arm_compute/runtime/CL/functions/CLWinogradConvolutionLayer.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_CLWINOGRADCONVOLUTIONLAYER_H
25 #define ARM_COMPUTE_CLWINOGRADCONVOLUTIONLAYER_H
26 
27 #include "arm_compute/core/Types.h"
28 #include "arm_compute/runtime/IFunction.h"
29 #include "arm_compute/runtime/IMemoryManager.h"
30 
31 #include <memory>
32 
33 namespace arm_compute
34 {
35 class CLCompileContext;
36 class ICLTensor;
37 class ITensorInfo;
38 
39 /** Basic function to execute Winograd-based convolution on OpenCL. This function calls the following OpenCL functions/kernels:
40  *
41  *  -# @ref opencl::ClWinogradConv2d
42  *
43  */
44 class CLWinogradConvolutionLayer : public IFunction
45 {
46 public:
47     /** Default Constructor */
48     CLWinogradConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
49     /** Default Destructor */
50     ~CLWinogradConvolutionLayer();
51     /** Prevent instances of this class from being copied (As this class contains pointers) */
52     CLWinogradConvolutionLayer(const CLWinogradConvolutionLayer &) = delete;
53     /** Default move constructor */
54     CLWinogradConvolutionLayer(CLWinogradConvolutionLayer &&) = default;
55     /** Prevent instances of this class from being copied (As this class contains pointers) */
56     CLWinogradConvolutionLayer &operator=(const CLWinogradConvolutionLayer &) = delete;
57     /** Default move assignment operator */
58     CLWinogradConvolutionLayer &operator=(CLWinogradConvolutionLayer &&) = default;
59     /** Set the input and output tensors.
60      *
61      * Valid data layouts:
62      * - NHWC
63      * - NCHW
64      *
65      * Valid data type configurations:
66      * |src0           |src1           |src2   |dst            |
67      * |:--------------|:--------------|:------|:--------------|
68      * |F16            |F16            |F16    |F16            |
69      * |F32            |F32            |F32    |F32            |
70      *
71      * @note: This function only works with 3x3,3x1,1x3,5x5,5x1,1x5,7x1 and 1x7 kernels along with unit strides for both NCHW and NHWC data layout
72      * @note  Some Winograd configurations (i.e. F(4x4, 5x5)) are supported only with enable_fast_math = true
73      *
74      * @param[in]  input            Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
75      *                              while every optional dimension from 4 and above represent a batch of inputs.
76      *                              Data types supported: F16/F32.
77      * @param[in]  weights          Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM]. Data type supported:Same as @p input.
78      * @param[in]  biases           Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].Data type supported: Same as @p input
79      * @param[out] output           Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
80      *                              Data types supported: Same as @p input.
81      * @param[in]  conv_info        Contains padding and stride information described in @ref PadStrideInfo.
82      * @param[in]  act_info         (Optional) Activation layer information in case of a fused activation.
83      * @param[in]  enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
84      *                              available which may introduce a drop of accuracy as well. Default is false
85      */
86     void configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
87                    const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false);
88     /** Set the input and output tensors.
89      *
90      * @note: This function only works with 3x3,3x1,1x3,5x5,5x1,1x5,7x1 and 1x7 kernels along with unit strides for both NCHW and NHWC data layout
91      * @note  Some Winograd configurations (i.e. F(4x4, 5x5)) are supported only with enable_fast_math = true
92      *
93      * @param[in]  compile_context  The compile context to be used.
94      * @param[in]  input            Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
95      *                              while every optional dimension from 4 and above represent a batch of inputs.
96      *                              Data types supported: F16/F32.
97      * @param[in]  weights          Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM]. Data type supported:Same as @p input.
98      * @param[in]  biases           Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].Data type supported: Same as @p input
99      * @param[out] output           Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
100      *                              Data types supported: Same as @p input.
101      * @param[in]  conv_info        Contains padding and stride information described in @ref PadStrideInfo.
102      * @param[in]  act_info         (Optional) Activation layer information in case of a fused activation.
103      * @param[in]  enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
104      *                              available which may introduce a drop of accuracy as well. Default is false
105      */
106     void configure(const CLCompileContext &compile_context, ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
107                    const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false);
108     /** Static function to check if given info will lead to a valid configuration of @ref CLWinogradConvolutionLayer
109      *
110      * @note: This function only works with 3x3,3x1,1x3,5x5,5x1 and 1x5 kernels along with unit strides for both NCHW and NHWC data layout
111      * @note  Some Winograd configurations (i.e. F(4x4, 5x5)) are supported only with enable_fast_math = true
112      *
113      * @param[in]  input            Source tensor. 3 lower dimensions represent a single input [width, height, IFM],
114      *                              while every optional dimension from 4 and above represent a batch of inputs.
115      *                              Data types supported: F16/F32.
116      * @param[in]  weights          Weights tensor. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM]. Data type supported:Same as @p input.
117      * @param[in]  biases           Biases tensor. Shared biases supported. Biases are 1D tensor with dimensions [OFM].Data type supported: Same as @p input
118      * @param[out] output           Destination tensor. 3 lower dimensions represent a single output [width, height, OFM], while the rest represent batch of outputs.
119      *                              Data types supported: Same as @p input.
120      * @param[in]  conv_info        Contains padding and stride information described in @ref PadStrideInfo.
121      * @param[in]  act_info         (Optional) Activation layer information in case of a fused activation.
122      * @param[in]  enable_fast_math (Optional) Enable fast math computation. In case this flag were set, the function could dispatch the fastest implementation
123      *                              available which may introduce a drop of accuracy as well. Default is false
124      *
125      * @return a status
126      */
127     static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
128                            const ActivationLayerInfo &act_info = ActivationLayerInfo(), bool enable_fast_math = false);
129 
130     // Inherited methods overridden:
131     void run() override;
132     void prepare() override;
133 
134 private:
135     struct Impl;
136     std::unique_ptr<Impl> _impl;
137 };
138 } // namespace arm_compute
139 #endif /* ARM_COMPUTE_CLWINOGRADCONVOLUTIONLAYER_H */
140