xref: /aosp_15_r20/external/ComputeLibrary/arm_compute/runtime/CL/functions/CLLSTMLayerQuantized.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_CLLSTMLAYERQUANTIZED_H
25 #define ARM_COMPUTE_CLLSTMLAYERQUANTIZED_H
26 
27 #include "arm_compute/core/Types.h"
28 #include "arm_compute/runtime/CL/functions/CLActivationLayer.h"
29 #include "arm_compute/runtime/CL/functions/CLConcatenateLayer.h"
30 #include "arm_compute/runtime/CL/functions/CLDequantizationLayer.h"
31 #include "arm_compute/runtime/CL/functions/CLElementwiseOperations.h"
32 #include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"
33 #include "arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h"
34 #include "arm_compute/runtime/CL/functions/CLPixelWiseMultiplication.h"
35 #include "arm_compute/runtime/CL/functions/CLQuantizationLayer.h"
36 #include "arm_compute/runtime/CL/functions/CLSlice.h"
37 #include "arm_compute/runtime/CL/functions/CLTranspose.h"
38 
39 #include "arm_compute/runtime/common/LSTMParams.h"
40 
41 namespace arm_compute
42 {
43 // Forward declarations
44 class ICLTensor;
45 
46 /** Basic function to run @ref CLLSTMLayerQuantized
47  *
48  * This function calls the following CL functions/kernels:
49  *
50  * -# @ref CLGEMMLowpMatrixMultiplyCore      Quantized matrix multiplication core. Accumulators are 32-bit integers
51  * -# @ref CLGEMMLowpOutputStage             Convert 32-bit integers into QSYMM16
52  * -# @ref CLTranspose                       Matrix transpose
53  * -# @ref CLConcatenateLayer                Tensor concatenation
54  * -# @ref CLActivationLayer                 Activation functions (tanh and logistic)
55  * -# @ref CLArithmeticAddition              Elementwise addition
56  * -# @ref CLPixelWiseMultiplication         Elementwise multiplication
57  * -# @ref CLSlice                           Tensor slicing
58  * -# @ref CLDequantizationLayer             Dequantize into float
59  * -# @ref CLQuantizationLayer               Quantize from float
60  * */
61 class CLLSTMLayerQuantized : public IFunction
62 {
63 public:
64     /** Default constructor */
65     CLLSTMLayerQuantized(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
66     /** Prevent instances of this class from being copied (As this class contains pointers) */
67     CLLSTMLayerQuantized(const CLLSTMLayerQuantized &) = delete;
68     /** Default move constructor */
69     CLLSTMLayerQuantized(CLLSTMLayerQuantized &&) = default;
70     /** Prevent instances of this class from being copied (As this class contains pointers) */
71     CLLSTMLayerQuantized &operator=(const CLLSTMLayerQuantized &) = delete;
72     /** Default move assignment operator */
73     CLLSTMLayerQuantized &operator=(CLLSTMLayerQuantized &&) = default;
74     /** Initialize function's tensors.
75      *
76      * Valid data layouts:
77      * - All
78      *
79      * Valid data type configurations:
80      * |src0 - src8 |src9 - src12 |src13   |src14  |dst0   |dst1   |
81      * |:-----------|:------------|:-------|:------|:------|:------|
82      * |QASYMM8     |S32          |QSYMM16 |QASYMM8|QSYMM16|QASYMM8|
83      *
84      * @param[in]  input                       Source tensor. Input is a 2D tensor with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
85      * @param[in]  input_to_input_weights      2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
86      * @param[in]  input_to_forget_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
87      * @param[in]  input_to_cell_weights       2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
88      * @param[in]  input_to_output_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
89      * @param[in]  recurrent_to_input_weights  2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
90      * @param[in]  recurrent_to_forget_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
91      * @param[in]  recurrent_to_cell_weights   2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
92      * @param[in]  recurrent_to_output_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
93      * @param[in]  input_gate_bias             1D weights tensor with dimensions [output_size]. Data type supported: S32.
94      * @param[in]  forget_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
95      * @param[in]  cell_bias                   1D weights tensor with dimensions [output_size]. Data type supported: S32.
96      * @param[in]  output_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
97      * @param[in]  cell_state_in               2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
98      * @param[in]  output_state_in             2D tensor with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
99      * @param[out] cell_state_out              Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
100      * @param[out] output_state_out            Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
101      */
102     void configure(const ICLTensor *input,
103                    const ICLTensor *input_to_input_weights, const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights,
104                    const ICLTensor *recurrent_to_input_weights, const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights,
105                    const ICLTensor *input_gate_bias, const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias,
106                    ICLTensor *cell_state_in, const ICLTensor *output_state_in,
107                    ICLTensor *cell_state_out, ICLTensor *output_state_out);
108     /** Initialize function's tensors.
109      *
110      * @param[in]  compile_context             The compile context to be used.
111      * @param[in]  input                       Source tensor. Input is a 2D tensor with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
112      * @param[in]  input_to_input_weights      2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
113      * @param[in]  input_to_forget_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
114      * @param[in]  input_to_cell_weights       2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
115      * @param[in]  input_to_output_weights     2D weights tensor with dimensions [input_size, output_size]. Data type supported: Same as @p input.
116      * @param[in]  recurrent_to_input_weights  2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
117      * @param[in]  recurrent_to_forget_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
118      * @param[in]  recurrent_to_cell_weights   2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
119      * @param[in]  recurrent_to_output_weights 2D weights tensor with dimensions [output_size, output_size]. Data type supported: Same as @p input.
120      * @param[in]  input_gate_bias             1D weights tensor with dimensions [output_size]. Data type supported: S32.
121      * @param[in]  forget_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
122      * @param[in]  cell_bias                   1D weights tensor with dimensions [output_size]. Data type supported: S32.
123      * @param[in]  output_gate_bias            1D weights tensor with dimensions [output_size]. Data type supported: S32.
124      * @param[in]  cell_state_in               2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
125      * @param[in]  output_state_in             2D tensor with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
126      * @param[out] cell_state_out              Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
127      * @param[out] output_state_out            Destination tensor. Output is a 2D tensor with dimensions [output_size, batch_size].Data types supported: Same as @p input.
128      */
129     void configure(const CLCompileContext &compile_context, const ICLTensor *input,
130                    const ICLTensor *input_to_input_weights, const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights,
131                    const ICLTensor *recurrent_to_input_weights, const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights,
132                    const ICLTensor *input_gate_bias, const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias,
133                    ICLTensor *cell_state_in, const ICLTensor *output_state_in,
134                    ICLTensor *cell_state_out, ICLTensor *output_state_out);
135 
136     /** Static function to check if given info will lead to a valid configuration of @ref CLLSTMLayerQuantized
137      *
138      * @param[in]  input                       Source tensor info. Input is a 2D tensor info with dimensions [input_size, batch_size]. Data types supported: QASYMM8.
139      * @param[in]  input_to_input_weights      2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
140      * @param[in]  input_to_forget_weights     2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
141      * @param[in]  input_to_cell_weights       2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
142      * @param[in]  input_to_output_weights     2D weights tensor info with dimensions [input_size, output_size]. Data type supported: Same as @p input.
143      * @param[in]  recurrent_to_input_weights  2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
144      * @param[in]  recurrent_to_forget_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
145      * @param[in]  recurrent_to_cell_weights   2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
146      * @param[in]  recurrent_to_output_weights 2D weights tensor info with dimensions [output_size, output_size]. Data type supported: Same as @p input.
147      * @param[in]  input_gate_bias             1D weights tensor info with dimensions [output_size]. Data type supported: S32.
148      * @param[in]  forget_gate_bias            1D weights tensor info with dimensions [output_size]. Data type supported: S32.
149      * @param[in]  cell_bias                   1D weights tensor info with dimensions [output_size]. Data type supported: S32.
150      * @param[in]  output_gate_bias            1D weights tensor info with dimensions [output_size]. Data type supported: S32.
151      * @param[in]  cell_state_in               2D tensor info with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
152      * @param[in]  output_state_in             2D tensor info with dimensions [output_size, batch_size]. Data type supported: Same as @p input.
153      * @param[out] cell_state_out              Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size]. Data type supported:  QSYMM16.
154      * @param[out] output_state_out            Destination tensor info. Output is a 2D tensor info with dimensions [output_size, batch_size].Data types supported: Same as @p input.
155      *
156      * @return a status
157      */
158     static Status validate(const ITensorInfo *input,
159                            const ITensorInfo *input_to_input_weights, const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
160                            const ITensorInfo *recurrent_to_input_weights, const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
161                            const ITensorInfo *input_gate_bias, const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
162                            const ITensorInfo *cell_state_in, const ITensorInfo *output_state_in,
163                            const ITensorInfo *cell_state_out, const ITensorInfo *output_state_out);
164 
165     // Inherited methods overridden:
166     void run() override;
167     void prepare() override;
168 
169 private:
170     MemoryGroup _memory_group;
171 
172     // Functions used
173     CLGEMMLowpMatrixMultiplyCore _gemmlowp;
174     CLGEMMLowpOutputStage        _output_stage;
175     CLTranspose                  _transpose_weights;
176     CLConcatenateLayer           _concat_input_weights;
177     CLConcatenateLayer           _concat_recurrent_weights;
178     CLConcatenateLayer           _concat_weights;
179     CLConcatenateLayer           _concat_inputs;
180     CLConcatenateLayer           _concat_bias;
181     CLActivationLayer            _sigmoid_forget_gate;
182     CLActivationLayer            _sigmoid_input_gate;
183     CLActivationLayer            _sigmoid_output_gate;
184     CLActivationLayer            _tanh_modulation_gate;
185     CLActivationLayer            _tanh_output_state;
186     CLArithmeticAddition         _add_cell_state_tmps;
187     CLArithmeticAddition         _add2;
188     CLPixelWiseMultiplication    _mul_forget_gate_cell_state;
189     CLPixelWiseMultiplication    _mul_input_gate_input_mod_gate;
190     CLPixelWiseMultiplication    _mul_output_state_tmp_output_gate;
191     CLSlice                      _slice_input_tensor;
192     CLSlice                      _slice_forget_tensor;
193     CLSlice                      _slice_cell_tensor;
194     CLSlice                      _slice_output_tensor;
195     CLDequantizationLayer        _dequantize;
196     CLQuantizationLayer          _quantize;
197 
198     // Tensor pointers
199     const ICLTensor *_input_to_input_weights;
200     const ICLTensor *_input_to_forget_weights;
201     const ICLTensor *_input_to_cell_weights;
202     const ICLTensor *_input_to_output_weights;
203     const ICLTensor *_recurrent_to_input_weights;
204     const ICLTensor *_recurrent_to_forget_weights;
205     const ICLTensor *_recurrent_to_cell_weights;
206     const ICLTensor *_recurrent_to_output_weights;
207     const ICLTensor *_input_gate_bias;
208     const ICLTensor *_forget_gate_bias;
209     const ICLTensor *_cell_bias;
210     const ICLTensor *_output_gate_bias;
211 
212     // Temporary tensors
213     CLTensor _recurrent_weights;
214     CLTensor _input_weights;
215     CLTensor _weights;
216     CLTensor _input;
217     CLTensor _weights_transposed;
218     CLTensor _output_highp;
219     CLTensor _output_lowp;
220     CLTensor _bias;
221     CLTensor _forget_gate_input;
222     CLTensor _input_gate_input;
223     CLTensor _output_gate_input;
224     CLTensor _input_modulation_gate_input;
225     CLTensor _forget_gate_output;
226     CLTensor _input_gate_output;
227     CLTensor _output_gate_output;
228     CLTensor _input_modulation_gate_output;
229     CLTensor _cell_state_tmp1;
230     CLTensor _cell_state_tmp2;
231     CLTensor _output_state_tmp;
232     CLTensor _output_state_out_symm;
233     CLTensor _output_state_out_f32;
234 
235     bool _is_prepared;
236 };
237 } // namespace arm_compute
238 #endif /* ARM_COMPUTE_CLLSTMLAYERQUANTIZED_H */
239