xref: /aosp_15_r20/external/ComputeLibrary/arm_compute/runtime/CL/functions/CLGEMMDeconvolutionLayer.h (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_CLGEMMDECONVOLUTIONLAYER_H
25 #define ARM_COMPUTE_CLGEMMDECONVOLUTIONLAYER_H
26 
27 #include "arm_compute/runtime/CL/CLTensor.h"
28 #include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h"
29 #include "arm_compute/runtime/CL/functions/CLGEMM.h"
30 #include "arm_compute/runtime/CL/functions/CLGEMMLowpMatrixMultiplyCore.h"
31 #include "arm_compute/runtime/CL/functions/CLGEMMLowpOutputStage.h"
32 #include "arm_compute/runtime/CL/functions/CLPermute.h"
33 #include "arm_compute/runtime/CL/functions/CLReshapeLayer.h"
34 #include "arm_compute/runtime/CL/functions/CLSlice.h"
35 #include "arm_compute/runtime/CL/functions/CLTranspose.h"
36 #include "arm_compute/runtime/IFunction.h"
37 #include "arm_compute/runtime/IMemoryManager.h"
38 #include "arm_compute/runtime/MemoryGroup.h"
39 
40 #include <memory>
41 
42 namespace arm_compute
43 {
44 class CLDeconvolutionReshapeOutputKernel;
45 class ICLTensor;
46 /** Function to run the deconvolution layer through a call to GEMM.
47  *
48  * Deconvolution Layer is the backward pass of Convolution Layer. First we transform the input depending on the stride and pad info and then perform a 1x1
49  * convolution pass. Input stride defines how many zeroes we should put between each element of the input, pad is the amount of padding and finally a is a user
50  * specified value where a < stride - 1, that increases the padding top and right of the input image.
51  *
52  *  The relation between input to output is as follows:
53  *  \f[
54  *       width\_output = (width\_input - 1) \cdot stride\_x - 2 \cdot padding\_x + kernel\_x
55  *  \f]
56  *  \f[
57  *       height\_output = (height\_input - 1) \cdot stride\_y - 2 \cdot padding\_y + kernel\_y
58  *  \f]
59  *
60  *  where:
61  *      width_input is the size of the first input dimension.
62  *      height_input is the size of the second input dimension.
63  *      width_output is the size of the first output dimension.
64  *      height_output is the size of the second output dimension.
65  *      kernel_x and kernel_y are the convolution sizes in x and y.
66  *      stride_x and stride_y is the input stride of the first and second dimension.
67  *
68  * The weights used by Deconvolution are supposed to be the same as the ones used for Convolution.
69  *
70  * This function calls the following OpenCL kernels/functions:
71  *
72  * -# @ref CLGEMMLowpMatrixMultiplyCore
73  * -# @ref CLGEMMLowpOutputStage
74  * -# @ref CLPermute
75  * -# @ref CLPermute
76  * -# @ref CLReshapeLayer
77  * -# @ref CLTranspose
78  * -# @ref CLDeconvolutionReshapeOutputKernel
79  * -# @ref CLSlice
80  */
81 class CLGEMMDeconvolutionLayer : public IFunction
82 {
83 public:
84     /** Constructor */
85     CLGEMMDeconvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr);
86     /** Prevent instances of this class from being copied (As this class contains pointers) */
87     CLGEMMDeconvolutionLayer(const CLGEMMDeconvolutionLayer &) = delete;
88     /** Default move constructor */
89     CLGEMMDeconvolutionLayer(CLGEMMDeconvolutionLayer &&) = default;
90     /** Prevent instances of this class from being copied (As this class contains pointers) */
91     CLGEMMDeconvolutionLayer &operator=(const CLGEMMDeconvolutionLayer &) = delete;
92     /** Default move assignment operator */
93     CLGEMMDeconvolutionLayer &operator=(CLGEMMDeconvolutionLayer &&) = default;
94     /** Default desctructor */
95     ~CLGEMMDeconvolutionLayer();
96     /** Set the input, weights, biases and output tensors.
97      *
98      * Valid data layouts:
99      * - NHWC
100      *
101      * Valid data type configurations:
102      * |src0           |src1               |src2     |dst            |
103      * |:--------------|:------------------|:--------|:--------------|
104      * |F16            |F16                |F16      |F16            |
105      * |F32            |F32                |F32      |F32            |
106      * |QASYMM8        |QASYMM8            |S32      |QASYMM8        |
107      * |QASYMM8_SIGNED |QASYMM8_SIGNED     |S32      |QASYMM8_SIGNED |
108      *
109      * @param[in,out] input       Input tensor. 3 lower dimensions represent a single input, and an optional 4th dimension for batch of inputs.
110      *                            Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32. Data layout supported: NHWC
111      * @param[in]     weights     The 4d weights with dimensions [width, height, IFM, OFM]. Data type supported: Same as @p input. Data layout supported: same as @p input.
112      * @param[in]     bias        (Optional) The biases have one dimension. Data type supported: Same as @p input. Data layout supported: same as @p input.
113      * @param[out]    output      Output tensor. The output has the same number of dimensions as the @p input. Data layout supported: same as @p input.
114      * @param[in]     deconv_info Contains padding and policies to be used in the deconvolution, this is described in @ref PadStrideInfo. This function supports only stride_x = weights.width && stride_y = weights.height. Moreover, padding is not supported.
115      */
116     void configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &deconv_info);
117     /** Set the input, weights, biases and output tensors.
118      *
119      * @param[in]     compile_context The compile context to be used.
120      * @param[in,out] input           Input tensor. 3 lower dimensions represent a single input, and an optional 4th dimension for batch of inputs.
121      *                                Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32. Data layout supported: NHWC
122      * @param[in]     weights         The 4d weights with dimensions [width, height, IFM, OFM]. Data type supported: Same as @p input. Data layout supported: same as @p input.
123      * @param[in]     bias            (Optional) The biases have one dimension. Data type supported: Same as @p input. Data layout supported: same as @p input.
124      * @param[out]    output          Output tensor. The output has the same number of dimensions as the @p input. Data layout supported: same as @p input.
125      * @param[in]     deconv_info     Contains padding and policies to be used in the deconvolution, this is described in @ref PadStrideInfo. This function supports only stride_x = weights.width && stride_y = weights.height. Moreover, padding is not supported.
126      */
127     void configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &deconv_info);
128     /** Static function to check if given info will lead to a valid configuration of @ref CLDeconvolutionLayer
129      *
130      * @param[in] input       Input tensor info. 3 lower dimensions represent a single input, and an optional 4th dimension for batch of inputs.
131      *                        Data types supported: QASYMM8/QASYMM8_SIGNED/F16/F32. Data layout supported: NHWC
132      * @param[in] weights     The 4d weights info with dimensions [width, height, IFM, OFM]. Data type supported: Same as @p input. Data layout supported: same as @p input.
133      * @param[in] bias        (Optional) The biases have one dimension. Data type supported: Same as @p input. Data layout supported: same as @p input.
134      * @param[in] output      Output tensor info. The output has the same number of dimensions as the @p input. Data layout supported: same as @p input.
135      * @param[in] deconv_info Contains padding and policies to be used in the deconvolution, this is described in @ref PadStrideInfo.
136      *
137      * @return a status
138      */
139     static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *output, const PadStrideInfo &deconv_info);
140 
141     // Inherited methods overridden:
142     void run() override;
143     void prepare() override;
144 
145 private:
146     MemoryGroup _memory_group;
147 
148     CLGEMM                                              _mm_gemm;
149     CLGEMMLowpMatrixMultiplyCore                        _mm_gemmlowp;
150     CLGEMMLowpOutputStage                               _gemmlowp_output_stage;
151     CLPermute                                           _permute_input_to_nhwc;
152     CLPermute                                           _permute_weights_to_nhwc;
153     CLReshapeLayer                                      _reshape_weights;
154     CLTranspose                                         _transpose_weights;
155     std::unique_ptr<CLDeconvolutionReshapeOutputKernel> _deconv_reshape;
156     CLSlice                                             _slice_gemm;
157 
158     CLTensor _gemmlowp_final;
159     CLTensor _reshaped_weights;
160     CLTensor _reshaped_weights_t;
161     CLTensor _permuted_input;
162     CLTensor _permuted_weights;
163     CLTensor _gemm_output;
164     CLTensor _slice_gemm_input;
165 
166     const ICLTensor *_original_weights;
167     bool             _is_prepared;
168     bool             _padded_input;
169     bool             _is_nchw;
170     bool             _is_quantized;
171 };
172 } // namespace arm_compute
173 #endif /* ARM_COMPUTE_CLGEMMDECONVOLUTIONLAYER_H */
174