xref: /aosp_15_r20/external/libvpx/vpx_dsp/arm/vpx_convolve8_neon_i8mm.c (revision fb1b10ab9aebc7c7068eedab379b749d7e3900be)
1 /*
2  *  Copyright (c) 2023 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <arm_neon.h>
12 #include <assert.h>
13 
14 #include "./vpx_config.h"
15 #include "./vpx_dsp_rtcd.h"
16 #include "vpx/vpx_integer.h"
17 #include "vpx_dsp/arm/mem_neon.h"
18 #include "vpx_dsp/arm/transpose_neon.h"
19 #include "vpx_dsp/arm/vpx_convolve8_neon.h"
20 #include "vpx_dsp/vpx_filter.h"
21 #include "vpx_ports/mem.h"
22 
23 DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = {
24   0, 1, 2,  3,  1, 2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6,
25   4, 5, 6,  7,  5, 6,  7,  8,  6,  7,  8,  9,  7,  8,  9,  10,
26   8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14
27 };
28 
29 DECLARE_ALIGNED(16, static const uint8_t, dot_prod_merge_block_tbl[48]) = {
30   // Shift left and insert new last column in transposed 4x4 block.
31   1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28,
32   // Shift left and insert two new columns in transposed 4x4 block.
33   2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29,
34   // Shift left and insert three new columns in transposed 4x4 block.
35   3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30
36 };
37 
convolve4_4_h(const uint8x16_t samples,const int8x8_t filters,const uint8x16_t permute_tbl)38 static INLINE int16x4_t convolve4_4_h(const uint8x16_t samples,
39                                       const int8x8_t filters,
40                                       const uint8x16_t permute_tbl) {
41   // Permute samples ready for dot product.
42   // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 }
43   uint8x16_t permuted_samples = vqtbl1q_u8(samples, permute_tbl);
44 
45   int32x4_t sum =
46       vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples, filters, 0);
47 
48   // Further narrowing and packing is performed by the caller.
49   return vmovn_s32(sum);
50 }
51 
convolve4_8_h(const uint8x16_t samples,const int8x8_t filters,const uint8x16x2_t permute_tbl)52 static INLINE uint8x8_t convolve4_8_h(const uint8x16_t samples,
53                                       const int8x8_t filters,
54                                       const uint8x16x2_t permute_tbl) {
55   // Permute samples ready for dot product.
56   // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 }
57   // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 }
58   uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
59                                      vqtbl1q_u8(samples, permute_tbl.val[1]) };
60 
61   // First 4 output values.
62   int32x4_t sum0 =
63       vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0);
64   // Second 4 output values.
65   int32x4_t sum1 =
66       vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[1], filters, 0);
67 
68   // Narrow and re-pack.
69   int16x8_t sum = vcombine_s16(vmovn_s32(sum0), vmovn_s32(sum1));
70   // We halved the filter values so -1 from right shift.
71   return vqrshrun_n_s16(sum, FILTER_BITS - 1);
72 }
73 
convolve8_4_h(const uint8x16_t samples,const int8x8_t filters,const uint8x16x2_t permute_tbl)74 static INLINE int16x4_t convolve8_4_h(const uint8x16_t samples,
75                                       const int8x8_t filters,
76                                       const uint8x16x2_t permute_tbl) {
77   // Permute samples ready for dot product.
78   // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 }
79   // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 }
80   uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
81                                      vqtbl1q_u8(samples, permute_tbl.val[1]) };
82 
83   int32x4_t sum =
84       vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0);
85   sum = vusdotq_lane_s32(sum, permuted_samples[1], filters, 1);
86 
87   // Further narrowing and packing is performed by the caller.
88   return vshrn_n_s32(sum, 1);
89 }
90 
convolve8_8_h(const uint8x16_t samples,const int8x8_t filters,const uint8x16x3_t permute_tbl)91 static INLINE uint8x8_t convolve8_8_h(const uint8x16_t samples,
92                                       const int8x8_t filters,
93                                       const uint8x16x3_t permute_tbl) {
94   // Permute samples ready for dot product.
95   // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 }
96   // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 }
97   // { 8,  9, 10, 11,  9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
98   uint8x16_t permuted_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
99                                      vqtbl1q_u8(samples, permute_tbl.val[1]),
100                                      vqtbl1q_u8(samples, permute_tbl.val[2]) };
101 
102   // First 4 output values.
103   int32x4_t sum0 =
104       vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[0], filters, 0);
105   sum0 = vusdotq_lane_s32(sum0, permuted_samples[1], filters, 1);
106   // Second 4 output values.
107   int32x4_t sum1 =
108       vusdotq_lane_s32(vdupq_n_s32(0), permuted_samples[1], filters, 0);
109   sum1 = vusdotq_lane_s32(sum1, permuted_samples[2], filters, 1);
110 
111   // Narrow and re-pack.
112   int16x8_t sum = vcombine_s16(vshrn_n_s32(sum0, 1), vshrn_n_s32(sum1, 1));
113   return vqrshrun_n_s16(sum, FILTER_BITS - 1);
114 }
115 
convolve_4tap_horiz_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,int w,int h,const int8x8_t filter)116 static INLINE void convolve_4tap_horiz_neon_i8mm(const uint8_t *src,
117                                                  ptrdiff_t src_stride,
118                                                  uint8_t *dst,
119                                                  ptrdiff_t dst_stride, int w,
120                                                  int h, const int8x8_t filter) {
121   if (w == 4) {
122     const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl);
123 
124     do {
125       uint8x16_t s0, s1, s2, s3;
126       load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
127 
128       int16x4_t t0 = convolve4_4_h(s0, filter, permute_tbl);
129       int16x4_t t1 = convolve4_4_h(s1, filter, permute_tbl);
130       int16x4_t t2 = convolve4_4_h(s2, filter, permute_tbl);
131       int16x4_t t3 = convolve4_4_h(s3, filter, permute_tbl);
132       // We halved the filter values so -1 from right shift.
133       uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1);
134       uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1);
135 
136       store_u8(dst + 0 * dst_stride, dst_stride, d01);
137       store_u8(dst + 2 * dst_stride, dst_stride, d23);
138 
139       src += 4 * src_stride;
140       dst += 4 * dst_stride;
141       h -= 4;
142     } while (h != 0);
143   } else {
144     const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl);
145 
146     do {
147       const uint8_t *s = src;
148       uint8_t *d = dst;
149       int width = w;
150 
151       do {
152         uint8x16_t s0, s1, s2, s3;
153         load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
154 
155         uint8x8_t d0 = convolve4_8_h(s0, filter, permute_tbl);
156         uint8x8_t d1 = convolve4_8_h(s1, filter, permute_tbl);
157         uint8x8_t d2 = convolve4_8_h(s2, filter, permute_tbl);
158         uint8x8_t d3 = convolve4_8_h(s3, filter, permute_tbl);
159 
160         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
161 
162         s += 8;
163         d += 8;
164         width -= 8;
165       } while (width != 0);
166       src += 4 * src_stride;
167       dst += 4 * dst_stride;
168       h -= 4;
169     } while (h != 0);
170   }
171 }
172 
convolve_8tap_horiz_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,int w,int h,const int8x8_t filter)173 static INLINE void convolve_8tap_horiz_neon_i8mm(const uint8_t *src,
174                                                  ptrdiff_t src_stride,
175                                                  uint8_t *dst,
176                                                  ptrdiff_t dst_stride, int w,
177                                                  int h, const int8x8_t filter) {
178   if (w == 4) {
179     const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl);
180 
181     do {
182       uint8x16_t s0, s1, s2, s3;
183       load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
184 
185       int16x4_t t0 = convolve8_4_h(s0, filter, permute_tbl);
186       int16x4_t t1 = convolve8_4_h(s1, filter, permute_tbl);
187       int16x4_t t2 = convolve8_4_h(s2, filter, permute_tbl);
188       int16x4_t t3 = convolve8_4_h(s3, filter, permute_tbl);
189       uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1);
190       uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1);
191 
192       store_u8(dst + 0 * dst_stride, dst_stride, d01);
193       store_u8(dst + 2 * dst_stride, dst_stride, d23);
194 
195       src += 4 * src_stride;
196       dst += 4 * dst_stride;
197       h -= 4;
198     } while (h != 0);
199   } else {
200     const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
201 
202     do {
203       const uint8_t *s = src;
204       uint8_t *d = dst;
205       int width = w;
206 
207       do {
208         uint8x16_t s0, s1, s2, s3;
209         load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
210 
211         uint8x8_t d0 = convolve8_8_h(s0, filter, permute_tbl);
212         uint8x8_t d1 = convolve8_8_h(s1, filter, permute_tbl);
213         uint8x8_t d2 = convolve8_8_h(s2, filter, permute_tbl);
214         uint8x8_t d3 = convolve8_8_h(s3, filter, permute_tbl);
215 
216         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
217 
218         s += 8;
219         d += 8;
220         width -= 8;
221       } while (width != 0);
222       src += 4 * src_stride;
223       dst += 4 * dst_stride;
224       h -= 4;
225     } while (h != 0);
226   }
227 }
228 
vpx_convolve8_horiz_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,const InterpKernel * filter,int x0_q4,int x_step_q4,int y0_q4,int y_step_q4,int w,int h)229 void vpx_convolve8_horiz_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride,
230                                    uint8_t *dst, ptrdiff_t dst_stride,
231                                    const InterpKernel *filter, int x0_q4,
232                                    int x_step_q4, int y0_q4, int y_step_q4,
233                                    int w, int h) {
234   assert((intptr_t)dst % 4 == 0);
235   assert(dst_stride % 4 == 0);
236   assert(x_step_q4 == 16);
237 
238   (void)x_step_q4;
239   (void)y0_q4;
240   (void)y_step_q4;
241 
242   if (vpx_get_filter_taps(filter[x0_q4]) <= 4) {
243     // Load 4-tap filter into first 4 elements of the vector.
244     // All 4-tap and bilinear filter values are even, so halve them to reduce
245     // intermediate precision requirements.
246     const int16x4_t x_filter = vld1_s16(filter[x0_q4] + 2);
247     const int8x8_t x_filter_4tap =
248         vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1);
249 
250     convolve_4tap_horiz_neon_i8mm(src - 1, src_stride, dst, dst_stride, w, h,
251                                   x_filter_4tap);
252 
253   } else {
254     const int8x8_t x_filter_8tap = vmovn_s16(vld1q_s16(filter[x0_q4]));
255 
256     convolve_8tap_horiz_neon_i8mm(src - 3, src_stride, dst, dst_stride, w, h,
257                                   x_filter_8tap);
258   }
259 }
260 
vpx_convolve8_avg_horiz_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,const InterpKernel * filter,int x0_q4,int x_step_q4,int y0_q4,int y_step_q4,int w,int h)261 void vpx_convolve8_avg_horiz_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride,
262                                        uint8_t *dst, ptrdiff_t dst_stride,
263                                        const InterpKernel *filter, int x0_q4,
264                                        int x_step_q4, int y0_q4, int y_step_q4,
265                                        int w, int h) {
266   const int8x8_t filters = vmovn_s16(vld1q_s16(filter[x0_q4]));
267 
268   assert((intptr_t)dst % 4 == 0);
269   assert(dst_stride % 4 == 0);
270   assert(x_step_q4 == 16);
271 
272   (void)x_step_q4;
273   (void)y0_q4;
274   (void)y_step_q4;
275 
276   src -= 3;
277 
278   if (w == 4) {
279     const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl);
280 
281     do {
282       uint8x16_t s0, s1, s2, s3;
283       load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
284 
285       int16x4_t t0 = convolve8_4_h(s0, filters, permute_tbl);
286       int16x4_t t1 = convolve8_4_h(s1, filters, permute_tbl);
287       int16x4_t t2 = convolve8_4_h(s2, filters, permute_tbl);
288       int16x4_t t3 = convolve8_4_h(s3, filters, permute_tbl);
289       uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1);
290       uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1);
291 
292       uint8x8_t dd01 = load_u8(dst + 0 * dst_stride, dst_stride);
293       uint8x8_t dd23 = load_u8(dst + 2 * dst_stride, dst_stride);
294 
295       d01 = vrhadd_u8(d01, dd01);
296       d23 = vrhadd_u8(d23, dd23);
297 
298       store_u8(dst + 0 * dst_stride, dst_stride, d01);
299       store_u8(dst + 2 * dst_stride, dst_stride, d23);
300 
301       src += 4 * src_stride;
302       dst += 4 * dst_stride;
303       h -= 4;
304     } while (h != 0);
305   } else {
306     const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
307 
308     do {
309       const uint8_t *s = src;
310       uint8_t *d = dst;
311       int width = w;
312 
313       do {
314         uint8x16_t s0, s1, s2, s3;
315         load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
316 
317         uint8x8_t d0 = convolve8_8_h(s0, filters, permute_tbl);
318         uint8x8_t d1 = convolve8_8_h(s1, filters, permute_tbl);
319         uint8x8_t d2 = convolve8_8_h(s2, filters, permute_tbl);
320         uint8x8_t d3 = convolve8_8_h(s3, filters, permute_tbl);
321 
322         uint8x8_t dd0, dd1, dd2, dd3;
323         load_u8_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
324 
325         d0 = vrhadd_u8(d0, dd0);
326         d1 = vrhadd_u8(d1, dd1);
327         d2 = vrhadd_u8(d2, dd2);
328         d3 = vrhadd_u8(d3, dd3);
329 
330         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
331 
332         s += 8;
333         d += 8;
334         width -= 8;
335       } while (width != 0);
336       src += 4 * src_stride;
337       dst += 4 * dst_stride;
338       h -= 4;
339     } while (h != 0);
340   }
341 }
342 
transpose_concat_4x4(uint8x8_t a0,uint8x8_t a1,uint8x8_t a2,uint8x8_t a3,uint8x16_t * b)343 static INLINE void transpose_concat_4x4(uint8x8_t a0, uint8x8_t a1,
344                                         uint8x8_t a2, uint8x8_t a3,
345                                         uint8x16_t *b) {
346   // Transpose 8-bit elements and concatenate result rows as follows:
347   // a0: 00, 01, 02, 03, XX, XX, XX, XX
348   // a1: 10, 11, 12, 13, XX, XX, XX, XX
349   // a2: 20, 21, 22, 23, XX, XX, XX, XX
350   // a3: 30, 31, 32, 33, XX, XX, XX, XX
351   //
352   // b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
353 
354   uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0));
355   uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0));
356   uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0));
357   uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0));
358 
359   uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0];
360   uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0];
361 
362   uint16x8_t a0123 =
363       vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)).val[0];
364 
365   *b = vreinterpretq_u8_u16(a0123);
366 }
367 
transpose_concat_8x4(uint8x8_t a0,uint8x8_t a1,uint8x8_t a2,uint8x8_t a3,uint8x16_t * b0,uint8x16_t * b1)368 static INLINE void transpose_concat_8x4(uint8x8_t a0, uint8x8_t a1,
369                                         uint8x8_t a2, uint8x8_t a3,
370                                         uint8x16_t *b0, uint8x16_t *b1) {
371   // Transpose 8-bit elements and concatenate result rows as follows:
372   // a0: 00, 01, 02, 03, 04, 05, 06, 07
373   // a1: 10, 11, 12, 13, 14, 15, 16, 17
374   // a2: 20, 21, 22, 23, 24, 25, 26, 27
375   // a3: 30, 31, 32, 33, 34, 35, 36, 37
376   //
377   // b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
378   // b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37
379 
380   uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0));
381   uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0));
382   uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0));
383   uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0));
384 
385   uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0];
386   uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0];
387 
388   uint16x8x2_t a0123 =
389       vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23));
390 
391   *b0 = vreinterpretq_u8_u16(a0123.val[0]);
392   *b1 = vreinterpretq_u8_u16(a0123.val[1]);
393 }
394 
convolve8_4_v(const uint8x16_t samples_lo,const uint8x16_t samples_hi,const int8x8_t filters)395 static INLINE int16x4_t convolve8_4_v(const uint8x16_t samples_lo,
396                                       const uint8x16_t samples_hi,
397                                       const int8x8_t filters) {
398   // Sample permutation is performed by the caller.
399   int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), samples_lo, filters, 0);
400   sum = vusdotq_lane_s32(sum, samples_hi, filters, 1);
401 
402   // Further narrowing and packing is performed by the caller.
403   return vshrn_n_s32(sum, 1);
404 }
405 
convolve8_8_v(const uint8x16_t samples0_lo,const uint8x16_t samples0_hi,const uint8x16_t samples1_lo,const uint8x16_t samples1_hi,const int8x8_t filters)406 static INLINE uint8x8_t convolve8_8_v(const uint8x16_t samples0_lo,
407                                       const uint8x16_t samples0_hi,
408                                       const uint8x16_t samples1_lo,
409                                       const uint8x16_t samples1_hi,
410                                       const int8x8_t filters) {
411   // Sample permutation is performed by the caller.
412 
413   // First 4 output values.
414   int32x4_t sum0 = vusdotq_lane_s32(vdupq_n_s32(0), samples0_lo, filters, 0);
415   sum0 = vusdotq_lane_s32(sum0, samples0_hi, filters, 1);
416   // Second 4 output values.
417   int32x4_t sum1 = vusdotq_lane_s32(vdupq_n_s32(0), samples1_lo, filters, 0);
418   sum1 = vusdotq_lane_s32(sum1, samples1_hi, filters, 1);
419 
420   // Narrow and re-pack.
421   int16x8_t sum = vcombine_s16(vshrn_n_s32(sum0, 1), vshrn_n_s32(sum1, 1));
422   return vqrshrun_n_s16(sum, FILTER_BITS - 1);
423 }
424 
convolve_8tap_vert_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,int w,int h,const int8x8_t filter)425 static INLINE void convolve_8tap_vert_neon_i8mm(const uint8_t *src,
426                                                 ptrdiff_t src_stride,
427                                                 uint8_t *dst,
428                                                 ptrdiff_t dst_stride, int w,
429                                                 int h, const int8x8_t filter) {
430   const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(dot_prod_merge_block_tbl);
431   if (w == 4) {
432     uint8x8_t s0, s1, s2, s3, s4, s5, s6;
433     load_u8_8x7(src, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
434     src += 7 * src_stride;
435 
436     // This operation combines a conventional transpose and the sample permute
437     // (see horizontal case) required before computing the dot product.
438     uint8x16_t s0123, s1234, s2345, s3456;
439     transpose_concat_4x4(s0, s1, s2, s3, &s0123);
440     transpose_concat_4x4(s1, s2, s3, s4, &s1234);
441     transpose_concat_4x4(s2, s3, s4, s5, &s2345);
442     transpose_concat_4x4(s3, s4, s5, s6, &s3456);
443 
444     do {
445       uint8x8_t s7, s8, s9, s10;
446       load_u8_8x4(src, src_stride, &s7, &s8, &s9, &s10);
447 
448       uint8x16_t s78910;
449       transpose_concat_4x4(s7, s8, s9, s10, &s78910);
450 
451       // Merge new data into block from previous iteration.
452       uint8x16x2_t samples_LUT = { { s3456, s78910 } };
453       uint8x16_t s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
454       uint8x16_t s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
455       uint8x16_t s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
456 
457       int16x4_t d0 = convolve8_4_v(s0123, s4567, filter);
458       int16x4_t d1 = convolve8_4_v(s1234, s5678, filter);
459       int16x4_t d2 = convolve8_4_v(s2345, s6789, filter);
460       int16x4_t d3 = convolve8_4_v(s3456, s78910, filter);
461       uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1);
462       uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1);
463 
464       store_u8(dst + 0 * dst_stride, dst_stride, d01);
465       store_u8(dst + 2 * dst_stride, dst_stride, d23);
466 
467       // Prepare block for next iteration - re-using as much as possible.
468       // Shuffle everything up four rows.
469       s0123 = s4567;
470       s1234 = s5678;
471       s2345 = s6789;
472       s3456 = s78910;
473 
474       src += 4 * src_stride;
475       dst += 4 * dst_stride;
476       h -= 4;
477     } while (h != 0);
478   } else {
479     do {
480       const uint8_t *s = src;
481       uint8_t *d = dst;
482       int height = h;
483 
484       uint8x8_t s0, s1, s2, s3, s4, s5, s6;
485       load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
486       s += 7 * src_stride;
487 
488       // This operation combines a conventional transpose and the sample permute
489       // (see horizontal case) required before computing the dot product.
490       uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
491           s3456_lo, s3456_hi;
492       transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
493       transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi);
494       transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi);
495       transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi);
496 
497       do {
498         uint8x8_t s7, s8, s9, s10;
499         load_u8_8x4(s, src_stride, &s7, &s8, &s9, &s10);
500 
501         uint8x16_t s78910_lo, s78910_hi;
502         transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi);
503 
504         // Merge new data into block from previous iteration.
505         uint8x16x2_t samples_LUT = { { s3456_lo, s78910_lo } };
506         uint8x16_t s4567_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
507         uint8x16_t s5678_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
508         uint8x16_t s6789_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
509 
510         samples_LUT.val[0] = s3456_hi;
511         samples_LUT.val[1] = s78910_hi;
512         uint8x16_t s4567_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
513         uint8x16_t s5678_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
514         uint8x16_t s6789_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
515 
516         uint8x8_t d0 =
517             convolve8_8_v(s0123_lo, s4567_lo, s0123_hi, s4567_hi, filter);
518         uint8x8_t d1 =
519             convolve8_8_v(s1234_lo, s5678_lo, s1234_hi, s5678_hi, filter);
520         uint8x8_t d2 =
521             convolve8_8_v(s2345_lo, s6789_lo, s2345_hi, s6789_hi, filter);
522         uint8x8_t d3 =
523             convolve8_8_v(s3456_lo, s78910_lo, s3456_hi, s78910_hi, filter);
524 
525         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
526 
527         // Prepare block for next iteration - re-using as much as possible.
528         // Shuffle everything up four rows.
529         s0123_lo = s4567_lo;
530         s0123_hi = s4567_hi;
531         s1234_lo = s5678_lo;
532         s1234_hi = s5678_hi;
533         s2345_lo = s6789_lo;
534         s2345_hi = s6789_hi;
535         s3456_lo = s78910_lo;
536         s3456_hi = s78910_hi;
537 
538         s += 4 * src_stride;
539         d += 4 * dst_stride;
540         height -= 4;
541       } while (height != 0);
542       src += 8;
543       dst += 8;
544       w -= 8;
545     } while (w != 0);
546   }
547 }
548 
vpx_convolve8_vert_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,const InterpKernel * filter,int x0_q4,int x_step_q4,int y0_q4,int y_step_q4,int w,int h)549 void vpx_convolve8_vert_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride,
550                                   uint8_t *dst, ptrdiff_t dst_stride,
551                                   const InterpKernel *filter, int x0_q4,
552                                   int x_step_q4, int y0_q4, int y_step_q4,
553                                   int w, int h) {
554   assert((intptr_t)dst % 4 == 0);
555   assert(dst_stride % 4 == 0);
556   assert(y_step_q4 == 16);
557 
558   (void)x0_q4;
559   (void)x_step_q4;
560   (void)y_step_q4;
561 
562   if (vpx_get_filter_taps(filter[y0_q4]) <= 4) {
563     const int16x8_t y_filter = vld1q_s16(filter[y0_q4]);
564 
565     convolve_4tap_vert_neon(src - src_stride, src_stride, dst, dst_stride, w, h,
566                             y_filter);
567   } else {
568     const int8x8_t y_filter = vmovn_s16(vld1q_s16(filter[y0_q4]));
569 
570     convolve_8tap_vert_neon_i8mm(src - 3 * src_stride, src_stride, dst,
571                                  dst_stride, w, h, y_filter);
572   }
573 }
574 
vpx_convolve8_avg_vert_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,const InterpKernel * filter,int x0_q4,int x_step_q4,int y0_q4,int y_step_q4,int w,int h)575 void vpx_convolve8_avg_vert_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride,
576                                       uint8_t *dst, ptrdiff_t dst_stride,
577                                       const InterpKernel *filter, int x0_q4,
578                                       int x_step_q4, int y0_q4, int y_step_q4,
579                                       int w, int h) {
580   const int8x8_t filters = vmovn_s16(vld1q_s16(filter[y0_q4]));
581   const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(dot_prod_merge_block_tbl);
582 
583   assert((intptr_t)dst % 4 == 0);
584   assert(dst_stride % 4 == 0);
585   assert(y_step_q4 == 16);
586 
587   (void)x0_q4;
588   (void)x_step_q4;
589   (void)y_step_q4;
590 
591   src -= 3 * src_stride;
592 
593   if (w == 4) {
594     uint8x8_t s0, s1, s2, s3, s4, s5, s6;
595     load_u8_8x7(src, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
596     src += 7 * src_stride;
597 
598     // This operation combines a conventional transpose and the sample permute
599     // (see horizontal case) required before computing the dot product.
600     uint8x16_t s0123, s1234, s2345, s3456;
601     transpose_concat_4x4(s0, s1, s2, s3, &s0123);
602     transpose_concat_4x4(s1, s2, s3, s4, &s1234);
603     transpose_concat_4x4(s2, s3, s4, s5, &s2345);
604     transpose_concat_4x4(s3, s4, s5, s6, &s3456);
605 
606     do {
607       uint8x8_t s7, s8, s9, s10;
608       load_u8_8x4(src, src_stride, &s7, &s8, &s9, &s10);
609 
610       uint8x16_t s78910;
611       transpose_concat_4x4(s7, s8, s9, s10, &s78910);
612 
613       // Merge new data into block from previous iteration.
614       uint8x16x2_t samples_LUT = { { s3456, s78910 } };
615       uint8x16_t s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
616       uint8x16_t s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
617       uint8x16_t s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
618 
619       int16x4_t d0 = convolve8_4_v(s0123, s4567, filters);
620       int16x4_t d1 = convolve8_4_v(s1234, s5678, filters);
621       int16x4_t d2 = convolve8_4_v(s2345, s6789, filters);
622       int16x4_t d3 = convolve8_4_v(s3456, s78910, filters);
623       uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1);
624       uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1);
625 
626       uint8x8_t dd01 = load_u8(dst + 0 * dst_stride, dst_stride);
627       uint8x8_t dd23 = load_u8(dst + 2 * dst_stride, dst_stride);
628 
629       d01 = vrhadd_u8(d01, dd01);
630       d23 = vrhadd_u8(d23, dd23);
631 
632       store_u8(dst + 0 * dst_stride, dst_stride, d01);
633       store_u8(dst + 2 * dst_stride, dst_stride, d23);
634 
635       // Prepare block for next iteration - re-using as much as possible.
636       // Shuffle everything up four rows.
637       s0123 = s4567;
638       s1234 = s5678;
639       s2345 = s6789;
640       s3456 = s78910;
641 
642       src += 4 * src_stride;
643       dst += 4 * dst_stride;
644       h -= 4;
645     } while (h != 0);
646   } else {
647     do {
648       const uint8_t *s = src;
649       uint8_t *d = dst;
650       int height = h;
651 
652       uint8x8_t s0, s1, s2, s3, s4, s5, s6;
653       load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
654       s += 7 * src_stride;
655 
656       // This operation combines a conventional transpose and the sample permute
657       // (see horizontal case) required before computing the dot product.
658       uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
659           s3456_lo, s3456_hi;
660       transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
661       transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi);
662       transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi);
663       transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi);
664 
665       do {
666         uint8x8_t s7, s8, s9, s10;
667         load_u8_8x4(s, src_stride, &s7, &s8, &s9, &s10);
668 
669         uint8x16_t s78910_lo, s78910_hi;
670         transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi);
671 
672         // Merge new data into block from previous iteration.
673         uint8x16x2_t samples_LUT = { { s3456_lo, s78910_lo } };
674         uint8x16_t s4567_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
675         uint8x16_t s5678_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
676         uint8x16_t s6789_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
677 
678         samples_LUT.val[0] = s3456_hi;
679         samples_LUT.val[1] = s78910_hi;
680         uint8x16_t s4567_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
681         uint8x16_t s5678_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
682         uint8x16_t s6789_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
683 
684         uint8x8_t d0 =
685             convolve8_8_v(s0123_lo, s4567_lo, s0123_hi, s4567_hi, filters);
686         uint8x8_t d1 =
687             convolve8_8_v(s1234_lo, s5678_lo, s1234_hi, s5678_hi, filters);
688         uint8x8_t d2 =
689             convolve8_8_v(s2345_lo, s6789_lo, s2345_hi, s6789_hi, filters);
690         uint8x8_t d3 =
691             convolve8_8_v(s3456_lo, s78910_lo, s3456_hi, s78910_hi, filters);
692 
693         uint8x8_t dd0, dd1, dd2, dd3;
694         load_u8_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
695 
696         d0 = vrhadd_u8(d0, dd0);
697         d1 = vrhadd_u8(d1, dd1);
698         d2 = vrhadd_u8(d2, dd2);
699         d3 = vrhadd_u8(d3, dd3);
700 
701         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
702 
703         /* Prepare block for next iteration - re-using as much as possible. */
704         /* Shuffle everything up four rows. */
705         s0123_lo = s4567_lo;
706         s0123_hi = s4567_hi;
707         s1234_lo = s5678_lo;
708         s1234_hi = s5678_hi;
709         s2345_lo = s6789_lo;
710         s2345_hi = s6789_hi;
711         s3456_lo = s78910_lo;
712         s3456_hi = s78910_hi;
713 
714         s += 4 * src_stride;
715         d += 4 * dst_stride;
716         height -= 4;
717       } while (height != 0);
718       src += 8;
719       dst += 8;
720       w -= 8;
721     } while (w != 0);
722   }
723 }
724 
convolve_4tap_2d_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,int w,int h,const int8x8_t x_filter,const uint8x8_t y_filter)725 static INLINE void convolve_4tap_2d_neon_i8mm(const uint8_t *src,
726                                               ptrdiff_t src_stride,
727                                               uint8_t *dst,
728                                               ptrdiff_t dst_stride, int w,
729                                               int h, const int8x8_t x_filter,
730                                               const uint8x8_t y_filter) {
731   // Neon does not have lane-referencing multiply or multiply-accumulate
732   // instructions that operate on vectors of 8-bit elements. This means we have
733   // to duplicate filter taps into a whole vector and use standard multiply /
734   // multiply-accumulate instructions.
735   const uint8x8_t y_filter_taps[4] = { vdup_lane_u8(y_filter, 2),
736                                        vdup_lane_u8(y_filter, 3),
737                                        vdup_lane_u8(y_filter, 4),
738                                        vdup_lane_u8(y_filter, 5) };
739 
740   if (w == 4) {
741     const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl);
742 
743     uint8x16_t h_s0, h_s1, h_s2;
744     load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2);
745 
746     int16x4_t t0 = convolve4_4_h(h_s0, x_filter, permute_tbl);
747     int16x4_t t1 = convolve4_4_h(h_s1, x_filter, permute_tbl);
748     int16x4_t t2 = convolve4_4_h(h_s2, x_filter, permute_tbl);
749     // We halved the filter values so -1 from right shift.
750     uint8x8_t v_s01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1);
751     uint8x8_t v_s12 = vqrshrun_n_s16(vcombine_s16(t1, t2), FILTER_BITS - 1);
752 
753     src += 3 * src_stride;
754 
755     do {
756       uint8x16_t h_s3, h_s4, h_s5, h_s6;
757       load_u8_16x4(src, src_stride, &h_s3, &h_s4, &h_s5, &h_s6);
758 
759       int16x4_t t3 = convolve4_4_h(h_s3, x_filter, permute_tbl);
760       int16x4_t t4 = convolve4_4_h(h_s4, x_filter, permute_tbl);
761       int16x4_t t5 = convolve4_4_h(h_s5, x_filter, permute_tbl);
762       int16x4_t t6 = convolve4_4_h(h_s6, x_filter, permute_tbl);
763       // We halved the filter values so -1 from right shift.
764       uint8x8_t v_s34 = vqrshrun_n_s16(vcombine_s16(t3, t4), FILTER_BITS - 1);
765       uint8x8_t v_s56 = vqrshrun_n_s16(vcombine_s16(t5, t6), FILTER_BITS - 1);
766       uint8x8_t v_s23 = vext_u8(v_s12, v_s34, 4);
767       uint8x8_t v_s45 = vext_u8(v_s34, v_s56, 4);
768 
769       uint8x8_t d01 = convolve4_8(v_s01, v_s12, v_s23, v_s34, y_filter_taps);
770       uint8x8_t d23 = convolve4_8(v_s23, v_s34, v_s45, v_s56, y_filter_taps);
771 
772       store_unaligned_u8(dst + 0 * dst_stride, dst_stride, d01);
773       store_unaligned_u8(dst + 2 * dst_stride, dst_stride, d23);
774 
775       v_s01 = v_s45;
776       v_s12 = v_s56;
777       src += 4 * src_stride;
778       dst += 4 * dst_stride;
779       h -= 4;
780     } while (h != 0);
781   } else {
782     const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl);
783 
784     do {
785       const uint8_t *s = src;
786       uint8_t *d = dst;
787       int height = h;
788 
789       uint8x16_t h_s0, h_s1, h_s2;
790       load_u8_16x3(s, src_stride, &h_s0, &h_s1, &h_s2);
791 
792       uint8x8_t v_s0 = convolve4_8_h(h_s0, x_filter, permute_tbl);
793       uint8x8_t v_s1 = convolve4_8_h(h_s1, x_filter, permute_tbl);
794       uint8x8_t v_s2 = convolve4_8_h(h_s2, x_filter, permute_tbl);
795 
796       s += 3 * src_stride;
797 
798       do {
799         uint8x16_t h_s3, h_s4, h_s5, h_s6;
800         load_u8_16x4(s, src_stride, &h_s3, &h_s4, &h_s5, &h_s6);
801 
802         uint8x8_t v_s3 = convolve4_8_h(h_s3, x_filter, permute_tbl);
803         uint8x8_t v_s4 = convolve4_8_h(h_s4, x_filter, permute_tbl);
804         uint8x8_t v_s5 = convolve4_8_h(h_s5, x_filter, permute_tbl);
805         uint8x8_t v_s6 = convolve4_8_h(h_s6, x_filter, permute_tbl);
806 
807         uint8x8_t d0 = convolve4_8(v_s0, v_s1, v_s2, v_s3, y_filter_taps);
808         uint8x8_t d1 = convolve4_8(v_s1, v_s2, v_s3, v_s4, y_filter_taps);
809         uint8x8_t d2 = convolve4_8(v_s2, v_s3, v_s4, v_s5, y_filter_taps);
810         uint8x8_t d3 = convolve4_8(v_s3, v_s4, v_s5, v_s6, y_filter_taps);
811 
812         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
813 
814         v_s0 = v_s4;
815         v_s1 = v_s5;
816         v_s2 = v_s6;
817         s += 4 * src_stride;
818         d += 4 * dst_stride;
819         height -= 4;
820       } while (height != 0);
821       src += 8;
822       dst += 8;
823       w -= 8;
824     } while (w != 0);
825   }
826 }
827 
convolve_8tap_2d_horiz_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,int w,int h,const int8x8_t filter)828 static INLINE void convolve_8tap_2d_horiz_neon_i8mm(
829     const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
830     ptrdiff_t dst_stride, int w, int h, const int8x8_t filter) {
831   if (w == 4) {
832     const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl);
833 
834     do {
835       uint8x16_t s0, s1, s2, s3;
836       load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
837 
838       int16x4_t d0 = convolve8_4_h(s0, filter, permute_tbl);
839       int16x4_t d1 = convolve8_4_h(s1, filter, permute_tbl);
840       int16x4_t d2 = convolve8_4_h(s2, filter, permute_tbl);
841       int16x4_t d3 = convolve8_4_h(s3, filter, permute_tbl);
842       uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1);
843       uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1);
844 
845       store_u8(dst + 0 * dst_stride, dst_stride, d01);
846       store_u8(dst + 2 * dst_stride, dst_stride, d23);
847 
848       src += 4 * src_stride;
849       dst += 4 * dst_stride;
850       h -= 4;
851     } while (h > 3);
852 
853     // Process final three rows (h % 4 == 3). See vpx_convolve_neon_i8mm()
854     // below for further details on possible values of block height.
855     uint8x16_t s0, s1, s2;
856     load_u8_16x3(src, src_stride, &s0, &s1, &s2);
857 
858     int16x4_t d0 = convolve8_4_h(s0, filter, permute_tbl);
859     int16x4_t d1 = convolve8_4_h(s1, filter, permute_tbl);
860     int16x4_t d2 = convolve8_4_h(s2, filter, permute_tbl);
861     uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1);
862     uint8x8_t d23 =
863         vqrshrun_n_s16(vcombine_s16(d2, vdup_n_s16(0)), FILTER_BITS - 1);
864 
865     store_u8(dst + 0 * dst_stride, dst_stride, d01);
866     store_u8_4x1(dst + 2 * dst_stride, d23);
867   } else {
868     const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
869 
870     do {
871       const uint8_t *s = src;
872       uint8_t *d = dst;
873       int width = w;
874 
875       do {
876         uint8x16_t s0, s1, s2, s3;
877         load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
878 
879         uint8x8_t d0 = convolve8_8_h(s0, filter, permute_tbl);
880         uint8x8_t d1 = convolve8_8_h(s1, filter, permute_tbl);
881         uint8x8_t d2 = convolve8_8_h(s2, filter, permute_tbl);
882         uint8x8_t d3 = convolve8_8_h(s3, filter, permute_tbl);
883 
884         store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
885 
886         s += 8;
887         d += 8;
888         width -= 8;
889       } while (width > 0);
890       src += 4 * src_stride;
891       dst += 4 * dst_stride;
892       h -= 4;
893     } while (h > 3);
894 
895     // Process final three rows (h % 4 == 3). See vpx_convolve_neon_i8mm()
896     // below for further details on possible values of block height.
897     const uint8_t *s = src;
898     uint8_t *d = dst;
899     int width = w;
900 
901     do {
902       uint8x16_t s0, s1, s2;
903       load_u8_16x3(s, src_stride, &s0, &s1, &s2);
904 
905       uint8x8_t d0 = convolve8_8_h(s0, filter, permute_tbl);
906       uint8x8_t d1 = convolve8_8_h(s1, filter, permute_tbl);
907       uint8x8_t d2 = convolve8_8_h(s2, filter, permute_tbl);
908 
909       store_u8_8x3(d, dst_stride, d0, d1, d2);
910 
911       s += 8;
912       d += 8;
913       width -= 8;
914     } while (width > 0);
915   }
916 }
917 
vpx_convolve8_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,const InterpKernel * filter,int x0_q4,int x_step_q4,int y0_q4,int y_step_q4,int w,int h)918 void vpx_convolve8_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride,
919                              uint8_t *dst, ptrdiff_t dst_stride,
920                              const InterpKernel *filter, int x0_q4,
921                              int x_step_q4, int y0_q4, int y_step_q4, int w,
922                              int h) {
923   assert(x_step_q4 == 16);
924   assert(y_step_q4 == 16);
925 
926   (void)x_step_q4;
927   (void)y_step_q4;
928 
929   const int x_filter_taps = vpx_get_filter_taps(filter[x0_q4]) <= 4 ? 4 : 8;
930   const int y_filter_taps = vpx_get_filter_taps(filter[y0_q4]) <= 4 ? 4 : 8;
931   // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2
932   // lines post both horizontally and vertically.
933   const ptrdiff_t horiz_offset = x_filter_taps / 2 - 1;
934   const ptrdiff_t vert_offset = (y_filter_taps / 2 - 1) * src_stride;
935 
936   if (x_filter_taps == 4 && y_filter_taps == 4) {
937     const int16x4_t x_filter = vld1_s16(filter[x0_q4] + 2);
938     const int16x8_t y_filter = vld1q_s16(filter[y0_q4]);
939 
940     // 4-tap and bilinear filter values are even, so halve them to reduce
941     // intermediate precision requirements.
942     const int8x8_t x_filter_4tap =
943         vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1);
944     const uint8x8_t y_filter_4tap =
945         vshrn_n_u16(vreinterpretq_u16_s16(vabsq_s16(y_filter)), 1);
946 
947     convolve_4tap_2d_neon_i8mm(src - horiz_offset - vert_offset, src_stride,
948                                dst, dst_stride, w, h, x_filter_4tap,
949                                y_filter_4tap);
950     return;
951   }
952 
953   // Given our constraints: w <= 64, h <= 64, taps <= 8 we can reduce the
954   // maximum buffer size to 64 * (64 + 7).
955   DECLARE_ALIGNED(32, uint8_t, im_block[64 * 71]);
956   const int im_stride = 64;
957   const int im_height = h + SUBPEL_TAPS - 1;
958 
959   const int8x8_t x_filter_8tap = vmovn_s16(vld1q_s16(filter[x0_q4]));
960   const int8x8_t y_filter_8tap = vmovn_s16(vld1q_s16(filter[y0_q4]));
961 
962   convolve_8tap_2d_horiz_neon_i8mm(src - horiz_offset - vert_offset, src_stride,
963                                    im_block, im_stride, w, im_height,
964                                    x_filter_8tap);
965 
966   convolve_8tap_vert_neon_i8mm(im_block, im_stride, dst, dst_stride, w, h,
967                                y_filter_8tap);
968 }
969 
vpx_convolve8_avg_neon_i8mm(const uint8_t * src,ptrdiff_t src_stride,uint8_t * dst,ptrdiff_t dst_stride,const InterpKernel * filter,int x0_q4,int x_step_q4,int y0_q4,int y_step_q4,int w,int h)970 void vpx_convolve8_avg_neon_i8mm(const uint8_t *src, ptrdiff_t src_stride,
971                                  uint8_t *dst, ptrdiff_t dst_stride,
972                                  const InterpKernel *filter, int x0_q4,
973                                  int x_step_q4, int y0_q4, int y_step_q4, int w,
974                                  int h) {
975   DECLARE_ALIGNED(32, uint8_t, im_block[64 * 71]);
976   const int im_stride = 64;
977 
978   // Averaging convolution always uses an 8-tap filter.
979   // Account for the vertical phase needing 3 lines prior and 4 lines post.
980   const int im_height = h + SUBPEL_TAPS - 1;
981   const ptrdiff_t offset = SUBPEL_TAPS / 2 - 1;
982 
983   assert(y_step_q4 == 16);
984   assert(x_step_q4 == 16);
985 
986   const int8x8_t x_filter_8tap = vmovn_s16(vld1q_s16(filter[x0_q4]));
987 
988   convolve_8tap_2d_horiz_neon_i8mm(src - offset - offset * src_stride,
989                                    src_stride, im_block, im_stride, w,
990                                    im_height, x_filter_8tap);
991 
992   vpx_convolve8_avg_vert_neon_i8mm(im_block + offset * im_stride, im_stride,
993                                    dst, dst_stride, filter, x0_q4, x_step_q4,
994                                    y0_q4, y_step_q4, w, h);
995 }
996