xref: /aosp_15_r20/external/libaom/aom_dsp/x86/aom_subpixel_8t_intrin_avx2.c (revision 77c1e3ccc04c968bd2bc212e87364f250e820521)
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved.
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <immintrin.h>
13 
14 #include "config/aom_dsp_rtcd.h"
15 
16 #include "aom_dsp/x86/convolve.h"
17 #include "aom_dsp/x86/convolve_avx2.h"
18 #include "aom_dsp/x86/synonyms_avx2.h"
19 #include "aom_ports/mem.h"
20 
21 #if defined(__clang__)
22 #if (__clang_major__ > 0 && __clang_major__ < 3) ||            \
23     (__clang_major__ == 3 && __clang_minor__ <= 3) ||          \
24     (defined(__APPLE__) && defined(__apple_build_version__) && \
25      ((__clang_major__ == 4 && __clang_minor__ <= 2) ||        \
26       (__clang_major__ == 5 && __clang_minor__ == 0)))
27 #define MM256_BROADCASTSI128_SI256(x) \
28   _mm_broadcastsi128_si256((__m128i const *)&(x))
29 #else  // clang > 3.3, and not 5.0 on macosx.
30 #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
31 #endif  // clang <= 3.3
32 #elif defined(__GNUC__)
33 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6)
34 #define MM256_BROADCASTSI128_SI256(x) \
35   _mm_broadcastsi128_si256((__m128i const *)&(x))
36 #elif __GNUC__ == 4 && __GNUC_MINOR__ == 7
37 #define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x)
38 #else  // gcc > 4.7
39 #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
40 #endif  // gcc <= 4.6
41 #else   // !(gcc || clang)
42 #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
43 #endif  // __clang__
44 
xx_storeu2_epi32(const uint8_t * output_ptr,const ptrdiff_t stride,const __m256i * a)45 static inline void xx_storeu2_epi32(const uint8_t *output_ptr,
46                                     const ptrdiff_t stride, const __m256i *a) {
47   *((int *)(output_ptr)) = _mm_cvtsi128_si32(_mm256_castsi256_si128(*a));
48   *((int *)(output_ptr + stride)) =
49       _mm_cvtsi128_si32(_mm256_extracti128_si256(*a, 1));
50 }
51 
xx_loadu2_epi64(const void * hi,const void * lo)52 static inline __m256i xx_loadu2_epi64(const void *hi, const void *lo) {
53   __m256i a = _mm256_castsi128_si256(_mm_loadl_epi64((const __m128i *)(lo)));
54   a = _mm256_inserti128_si256(a, _mm_loadl_epi64((const __m128i *)(hi)), 1);
55   return a;
56 }
57 
xx_storeu2_epi64(const uint8_t * output_ptr,const ptrdiff_t stride,const __m256i * a)58 static inline void xx_storeu2_epi64(const uint8_t *output_ptr,
59                                     const ptrdiff_t stride, const __m256i *a) {
60   _mm_storel_epi64((__m128i *)output_ptr, _mm256_castsi256_si128(*a));
61   _mm_storel_epi64((__m128i *)(output_ptr + stride),
62                    _mm256_extractf128_si256(*a, 1));
63 }
64 
xx_store2_mi128(const uint8_t * output_ptr,const ptrdiff_t stride,const __m256i * a)65 static inline void xx_store2_mi128(const uint8_t *output_ptr,
66                                    const ptrdiff_t stride, const __m256i *a) {
67   _mm_store_si128((__m128i *)output_ptr, _mm256_castsi256_si128(*a));
68   _mm_store_si128((__m128i *)(output_ptr + stride),
69                   _mm256_extractf128_si256(*a, 1));
70 }
71 
aom_filter_block1d4_h4_avx2(const uint8_t * src_ptr,ptrdiff_t src_pixels_per_line,uint8_t * output_ptr,ptrdiff_t output_pitch,uint32_t output_height,const int16_t * filter)72 static void aom_filter_block1d4_h4_avx2(
73     const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
74     ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
75   __m128i filtersReg;
76   __m256i addFilterReg32, filt1Reg, firstFilters, srcReg32b1, srcRegFilt32b1_1;
77   unsigned int i;
78   ptrdiff_t src_stride, dst_stride;
79   src_ptr -= 3;
80   addFilterReg32 = _mm256_set1_epi16(32);
81   filtersReg = _mm_loadu_si128((const __m128i *)filter);
82   filtersReg = _mm_srai_epi16(filtersReg, 1);
83   // converting the 16 bit (short) to 8 bit (byte) and have the same data
84   // in both lanes of 128 bit register.
85   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
86   // have the same data in both lanes of a 256 bit register
87   const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
88 
89   firstFilters =
90       _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi32(0x5040302u));
91   filt1Reg = _mm256_load_si256((__m256i const *)(filt4_d4_global_avx2));
92 
93   // multiple the size of the source and destination stride by two
94   src_stride = src_pixels_per_line << 1;
95   dst_stride = output_pitch << 1;
96   for (i = output_height; i > 1; i -= 2) {
97     // load the 2 strides of source
98     srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
99 
100     // filter the source buffer
101     srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
102 
103     // multiply 4 adjacent elements with the filter and add the result
104     srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
105 
106     srcRegFilt32b1_1 =
107         _mm256_hadds_epi16(srcRegFilt32b1_1, _mm256_setzero_si256());
108 
109     // shift by 6 bit each 16 bit
110     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
111     srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
112 
113     // shrink to 8 bit each 16 bits, the first lane contain the first
114     // convolve result and the second lane contain the second convolve result
115     srcRegFilt32b1_1 =
116         _mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256());
117 
118     src_ptr += src_stride;
119 
120     xx_storeu2_epi32(output_ptr, output_pitch, &srcRegFilt32b1_1);
121     output_ptr += dst_stride;
122   }
123 
124   // if the number of strides is odd.
125   // process only 4 bytes
126   if (i > 0) {
127     __m128i srcReg1, srcRegFilt1_1;
128 
129     srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr));
130 
131     // filter the source buffer
132     srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg));
133 
134     // multiply 4 adjacent elements with the filter and add the result
135     srcRegFilt1_1 =
136         _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters));
137 
138     srcRegFilt1_1 = _mm_hadds_epi16(srcRegFilt1_1, _mm_setzero_si128());
139     // shift by 6 bit each 16 bit
140     srcRegFilt1_1 =
141         _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32));
142     srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6);
143 
144     // shrink to 8 bit each 16 bits, the first lane contain the first
145     // convolve result and the second lane contain the second convolve result
146     srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128());
147 
148     // save 4 bytes
149     *((int *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt1_1);
150   }
151 }
152 
aom_filter_block1d4_h8_avx2(const uint8_t * src_ptr,ptrdiff_t src_pixels_per_line,uint8_t * output_ptr,ptrdiff_t output_pitch,uint32_t output_height,const int16_t * filter)153 static void aom_filter_block1d4_h8_avx2(
154     const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
155     ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
156   __m128i filtersReg;
157   __m256i addFilterReg32, filt1Reg, filt2Reg;
158   __m256i firstFilters, secondFilters;
159   __m256i srcRegFilt32b1_1, srcRegFilt32b2;
160   __m256i srcReg32b1;
161   unsigned int i;
162   ptrdiff_t src_stride, dst_stride;
163   src_ptr -= 3;
164   addFilterReg32 = _mm256_set1_epi16(32);
165   filtersReg = _mm_loadu_si128((const __m128i *)filter);
166   filtersReg = _mm_srai_epi16(filtersReg, 1);
167   // converting the 16 bit (short) to 8 bit (byte) and have the same data
168   // in both lanes of 128 bit register.
169   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
170   // have the same data in both lanes of a 256 bit register
171   const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
172 
173   // duplicate only the first 32 bits
174   firstFilters = _mm256_shuffle_epi32(filtersReg32, 0);
175   // duplicate only the second 32 bits
176   secondFilters = _mm256_shuffle_epi32(filtersReg32, 0x55);
177 
178   filt1Reg = _mm256_load_si256((__m256i const *)filt_d4_global_avx2);
179   filt2Reg = _mm256_load_si256((__m256i const *)(filt_d4_global_avx2 + 32));
180 
181   // multiple the size of the source and destination stride by two
182   src_stride = src_pixels_per_line << 1;
183   dst_stride = output_pitch << 1;
184   for (i = output_height; i > 1; i -= 2) {
185     // load the 2 strides of source
186     srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
187 
188     // filter the source buffer
189     srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
190 
191     // multiply 4 adjacent elements with the filter and add the result
192     srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
193 
194     // filter the source buffer
195     srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
196 
197     // multiply 4 adjacent elements with the filter and add the result
198     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, secondFilters);
199 
200     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);
201 
202     srcRegFilt32b1_1 =
203         _mm256_hadds_epi16(srcRegFilt32b1_1, _mm256_setzero_si256());
204 
205     // shift by 6 bit each 16 bit
206     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
207     srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
208 
209     // shrink to 8 bit each 16 bits, the first lane contain the first
210     // convolve result and the second lane contain the second convolve result
211     srcRegFilt32b1_1 =
212         _mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256());
213 
214     src_ptr += src_stride;
215 
216     xx_storeu2_epi32(output_ptr, output_pitch, &srcRegFilt32b1_1);
217     output_ptr += dst_stride;
218   }
219 
220   // if the number of strides is odd.
221   // process only 4 bytes
222   if (i > 0) {
223     __m128i srcReg1, srcRegFilt1_1;
224     __m128i srcRegFilt2;
225 
226     srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr));
227 
228     // filter the source buffer
229     srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg));
230 
231     // multiply 4 adjacent elements with the filter and add the result
232     srcRegFilt1_1 =
233         _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters));
234 
235     // filter the source buffer
236     srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg));
237 
238     // multiply 4 adjacent elements with the filter and add the result
239     srcRegFilt2 =
240         _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(secondFilters));
241 
242     srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
243     srcRegFilt1_1 = _mm_hadds_epi16(srcRegFilt1_1, _mm_setzero_si128());
244     // shift by 6 bit each 16 bit
245     srcRegFilt1_1 =
246         _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32));
247     srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6);
248 
249     // shrink to 8 bit each 16 bits, the first lane contain the first
250     // convolve result and the second lane contain the second convolve result
251     srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128());
252 
253     // save 4 bytes
254     *((int *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt1_1);
255   }
256 }
257 
aom_filter_block1d8_h4_avx2(const uint8_t * src_ptr,ptrdiff_t src_pixels_per_line,uint8_t * output_ptr,ptrdiff_t output_pitch,uint32_t output_height,const int16_t * filter)258 static void aom_filter_block1d8_h4_avx2(
259     const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
260     ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
261   __m128i filtersReg;
262   __m256i addFilterReg32, filt2Reg, filt3Reg;
263   __m256i secondFilters, thirdFilters;
264   __m256i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3;
265   __m256i srcReg32b1, filtersReg32;
266   unsigned int i;
267   ptrdiff_t src_stride, dst_stride;
268   src_ptr -= 3;
269   addFilterReg32 = _mm256_set1_epi16(32);
270   filtersReg = _mm_loadu_si128((const __m128i *)filter);
271   filtersReg = _mm_srai_epi16(filtersReg, 1);
272   // converting the 16 bit (short) to 8 bit (byte) and have the same data
273   // in both lanes of 128 bit register.
274   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
275   // have the same data in both lanes of a 256 bit register
276   filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
277 
278   // duplicate only the second 16 bits (third and forth byte)
279   // across 256 bit register
280   secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
281   // duplicate only the third 16 bits (fifth and sixth byte)
282   // across 256 bit register
283   thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
284 
285   filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32));
286   filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2));
287 
288   // multiply the size of the source and destination stride by two
289   src_stride = src_pixels_per_line << 1;
290   dst_stride = output_pitch << 1;
291   for (i = output_height; i > 1; i -= 2) {
292     // load the 2 strides of source
293     srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
294 
295     // filter the source buffer
296     srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
297     srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
298 
299     // multiply 2 adjacent elements with the filter and add the result
300     srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
301     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
302 
303     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
304 
305     // shift by 6 bit each 16 bit
306     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
307     srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
308 
309     // shrink to 8 bit each 16 bits
310     srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b1_1);
311 
312     src_ptr += src_stride;
313 
314     xx_storeu2_epi64(output_ptr, output_pitch, &srcRegFilt32b1_1);
315     output_ptr += dst_stride;
316   }
317 
318   // if the number of strides is odd.
319   // process only 8 bytes
320   if (i > 0) {
321     __m128i srcReg1, srcRegFilt1_1;
322     __m128i srcRegFilt2, srcRegFilt3;
323 
324     srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr));
325 
326     // filter the source buffer
327     srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg));
328     srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg));
329 
330     // multiply 2 adjacent elements with the filter and add the result
331     srcRegFilt2 =
332         _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(secondFilters));
333     srcRegFilt3 =
334         _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(thirdFilters));
335 
336     // add and saturate the results together
337     srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt2, srcRegFilt3);
338 
339     // shift by 6 bit each 16 bit
340     srcRegFilt1_1 =
341         _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32));
342     srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6);
343 
344     // shrink to 8 bit each 16 bits
345     srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128());
346 
347     // save 8 bytes
348     _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1_1);
349   }
350 }
351 
aom_filter_block1d8_h8_avx2(const uint8_t * src_ptr,ptrdiff_t src_pixels_per_line,uint8_t * output_ptr,ptrdiff_t output_pitch,uint32_t output_height,const int16_t * filter)352 static void aom_filter_block1d8_h8_avx2(
353     const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
354     ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
355   __m128i filtersReg;
356   __m256i addFilterReg32, filt1Reg, filt2Reg, filt3Reg, filt4Reg;
357   __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
358   __m256i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3;
359   __m256i srcReg32b1;
360   unsigned int i;
361   ptrdiff_t src_stride, dst_stride;
362   src_ptr -= 3;
363   addFilterReg32 = _mm256_set1_epi16(32);
364   filtersReg = _mm_loadu_si128((const __m128i *)filter);
365   filtersReg = _mm_srai_epi16(filtersReg, 1);
366   // converting the 16 bit (short) to 8 bit (byte) and have the same data
367   // in both lanes of 128 bit register.
368   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
369   // have the same data in both lanes of a 256 bit register
370   const __m256i filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
371 
372   // duplicate only the first 16 bits (first and second byte)
373   // across 256 bit register
374   firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u));
375   // duplicate only the second 16 bits (third and forth byte)
376   // across 256 bit register
377   secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
378   // duplicate only the third 16 bits (fifth and sixth byte)
379   // across 256 bit register
380   thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
381   // duplicate only the forth 16 bits (seventh and eighth byte)
382   // across 256 bit register
383   forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u));
384 
385   filt1Reg = _mm256_load_si256((__m256i const *)filt_global_avx2);
386   filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32));
387   filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2));
388   filt4Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 3));
389 
390   // multiple the size of the source and destination stride by two
391   src_stride = src_pixels_per_line << 1;
392   dst_stride = output_pitch << 1;
393   for (i = output_height; i > 1; i -= 2) {
394     // load the 2 strides of source
395     srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
396 
397     // filter the source buffer
398     srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
399     srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt4Reg);
400 
401     // multiply 2 adjacent elements with the filter and add the result
402     srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
403     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
404 
405     // add and saturate the results together
406     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);
407 
408     // filter the source buffer
409     srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
410     srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
411 
412     // multiply 2 adjacent elements with the filter and add the result
413     srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
414     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
415 
416     __m256i sum23 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
417     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, sum23);
418 
419     // shift by 6 bit each 16 bit
420     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
421     srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
422 
423     // shrink to 8 bit each 16 bits, the first lane contain the first
424     // convolve result and the second lane contain the second convolve result
425     srcRegFilt32b1_1 =
426         _mm256_packus_epi16(srcRegFilt32b1_1, _mm256_setzero_si256());
427 
428     src_ptr += src_stride;
429 
430     xx_storeu2_epi64(output_ptr, output_pitch, &srcRegFilt32b1_1);
431     output_ptr += dst_stride;
432   }
433 
434   // if the number of strides is odd.
435   // process only 8 bytes
436   if (i > 0) {
437     __m128i srcReg1, srcRegFilt1_1;
438     __m128i srcRegFilt2, srcRegFilt3;
439 
440     srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr));
441 
442     // filter the source buffer
443     srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg));
444     srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt4Reg));
445 
446     // multiply 2 adjacent elements with the filter and add the result
447     srcRegFilt1_1 =
448         _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters));
449     srcRegFilt2 =
450         _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters));
451 
452     // add and saturate the results together
453     srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
454 
455     // filter the source buffer
456     srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg));
457     srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg));
458 
459     // multiply 2 adjacent elements with the filter and add the result
460     srcRegFilt3 =
461         _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters));
462     srcRegFilt2 =
463         _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters));
464 
465     // add and saturate the results together
466     srcRegFilt1_1 =
467         _mm_adds_epi16(srcRegFilt1_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2));
468 
469     // shift by 6 bit each 16 bit
470     srcRegFilt1_1 =
471         _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32));
472     srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6);
473 
474     // shrink to 8 bit each 16 bits, the first lane contain the first
475     // convolve result and the second lane contain the second convolve
476     // result
477     srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, _mm_setzero_si128());
478 
479     // save 8 bytes
480     _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1_1);
481   }
482 }
483 
aom_filter_block1d16_h4_avx2(const uint8_t * src_ptr,ptrdiff_t src_pixels_per_line,uint8_t * output_ptr,ptrdiff_t output_pitch,uint32_t output_height,const int16_t * filter)484 static void aom_filter_block1d16_h4_avx2(
485     const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
486     ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
487   __m128i filtersReg;
488   __m256i addFilterReg32, filt2Reg, filt3Reg;
489   __m256i secondFilters, thirdFilters;
490   __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
491   __m256i srcReg32b1, srcReg32b2, filtersReg32;
492   unsigned int i;
493   ptrdiff_t src_stride, dst_stride;
494   src_ptr -= 3;
495   addFilterReg32 = _mm256_set1_epi16(32);
496   filtersReg = _mm_loadu_si128((const __m128i *)filter);
497   filtersReg = _mm_srai_epi16(filtersReg, 1);
498   // converting the 16 bit (short) to 8 bit (byte) and have the same data
499   // in both lanes of 128 bit register.
500   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
501   // have the same data in both lanes of a 256 bit register
502   filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
503 
504   // duplicate only the second 16 bits (third and forth byte)
505   // across 256 bit register
506   secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
507   // duplicate only the third 16 bits (fifth and sixth byte)
508   // across 256 bit register
509   thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
510 
511   filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32));
512   filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2));
513 
514   // multiply the size of the source and destination stride by two
515   src_stride = src_pixels_per_line << 1;
516   dst_stride = output_pitch << 1;
517   for (i = output_height; i > 1; i -= 2) {
518     // load the 2 strides of source
519     srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
520 
521     // filter the source buffer
522     srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
523     srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
524 
525     // multiply 2 adjacent elements with the filter and add the result
526     srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
527     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
528 
529     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
530 
531     // reading 2 strides of the next 16 bytes
532     // (part of it was being read by earlier read)
533     srcReg32b2 = yy_loadu2_128(src_ptr + src_pixels_per_line + 8, src_ptr + 8);
534 
535     // filter the source buffer
536     srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b2, filt2Reg);
537     srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt3Reg);
538 
539     // multiply 2 adjacent elements with the filter and add the result
540     srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
541     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
542 
543     // add and saturate the results together
544     srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
545 
546     // shift by 6 bit each 16 bit
547     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
548     srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg32);
549     srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
550     srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 6);
551 
552     // shrink to 8 bit each 16 bits, the first lane contain the first
553     // convolve result and the second lane contain the second convolve result
554     srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1);
555 
556     src_ptr += src_stride;
557 
558     xx_store2_mi128(output_ptr, output_pitch, &srcRegFilt32b1_1);
559     output_ptr += dst_stride;
560   }
561 
562   // if the number of strides is odd.
563   // process only 16 bytes
564   if (i > 0) {
565     __m256i srcReg1, srcReg12;
566     __m256i srcRegFilt2, srcRegFilt3, srcRegFilt1_1;
567 
568     srcReg1 = _mm256_loadu_si256((const __m256i *)(src_ptr));
569     srcReg12 = _mm256_permute4x64_epi64(srcReg1, 0x94);
570 
571     // filter the source buffer
572     srcRegFilt2 = _mm256_shuffle_epi8(srcReg12, filt2Reg);
573     srcRegFilt3 = _mm256_shuffle_epi8(srcReg12, filt3Reg);
574 
575     // multiply 2 adjacent elements with the filter and add the result
576     srcRegFilt2 = _mm256_maddubs_epi16(srcRegFilt2, secondFilters);
577     srcRegFilt3 = _mm256_maddubs_epi16(srcRegFilt3, thirdFilters);
578 
579     // add and saturate the results together
580     srcRegFilt1_1 = _mm256_adds_epi16(srcRegFilt2, srcRegFilt3);
581 
582     // shift by 6 bit each 16 bit
583     srcRegFilt1_1 = _mm256_adds_epi16(srcRegFilt1_1, addFilterReg32);
584     srcRegFilt1_1 = _mm256_srai_epi16(srcRegFilt1_1, 6);
585 
586     // shrink to 8 bit each 16 bits, the first lane contain the first
587     // convolve result and the second lane contain the second convolve
588     // result
589     srcRegFilt1_1 = _mm256_packus_epi16(srcRegFilt1_1, srcRegFilt1_1);
590     srcRegFilt1_1 = _mm256_permute4x64_epi64(srcRegFilt1_1, 0x8);
591 
592     // save 16 bytes
593     _mm_store_si128((__m128i *)output_ptr,
594                     _mm256_castsi256_si128(srcRegFilt1_1));
595   }
596 }
597 
aom_filter_block1d16_h8_avx2(const uint8_t * src_ptr,ptrdiff_t src_pixels_per_line,uint8_t * output_ptr,ptrdiff_t output_pitch,uint32_t output_height,const int16_t * filter)598 static void aom_filter_block1d16_h8_avx2(
599     const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
600     ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
601   __m128i filtersReg;
602   __m256i addFilterReg32, filt1Reg, filt2Reg, filt3Reg, filt4Reg;
603   __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
604   __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
605   __m256i srcReg32b1, srcReg32b2, filtersReg32;
606   unsigned int i;
607   ptrdiff_t src_stride, dst_stride;
608   src_ptr -= 3;
609   addFilterReg32 = _mm256_set1_epi16(32);
610   filtersReg = _mm_loadu_si128((const __m128i *)filter);
611   filtersReg = _mm_srai_epi16(filtersReg, 1);
612   // converting the 16 bit (short) to 8 bit (byte) and have the same data
613   // in both lanes of 128 bit register.
614   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
615   // have the same data in both lanes of a 256 bit register
616   filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
617 
618   // duplicate only the first 16 bits (first and second byte)
619   // across 256 bit register
620   firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u));
621   // duplicate only the second 16 bits (third and forth byte)
622   // across 256 bit register
623   secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
624   // duplicate only the third 16 bits (fifth and sixth byte)
625   // across 256 bit register
626   thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
627   // duplicate only the forth 16 bits (seventh and eighth byte)
628   // across 256 bit register
629   forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u));
630 
631   filt1Reg = _mm256_load_si256((__m256i const *)filt_global_avx2);
632   filt2Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32));
633   filt3Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2));
634   filt4Reg = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 3));
635 
636   // multiple the size of the source and destination stride by two
637   src_stride = src_pixels_per_line << 1;
638   dst_stride = output_pitch << 1;
639   for (i = output_height; i > 1; i -= 2) {
640     // load the 2 strides of source
641     srcReg32b1 = yy_loadu2_128(src_ptr + src_pixels_per_line, src_ptr);
642 
643     // filter the source buffer
644     srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
645     srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt4Reg);
646 
647     // multiply 2 adjacent elements with the filter and add the result
648     srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
649     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
650 
651     // add and saturate the results together
652     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);
653 
654     // filter the source buffer
655     srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
656     srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
657 
658     // multiply 2 adjacent elements with the filter and add the result
659     srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
660     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
661 
662     __m256i sum23 = _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);
663     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, sum23);
664 
665     // reading 2 strides of the next 16 bytes
666     // (part of it was being read by earlier read)
667     srcReg32b2 = yy_loadu2_128(src_ptr + src_pixels_per_line + 8, src_ptr + 8);
668 
669     // filter the source buffer
670     srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg);
671     srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg);
672 
673     // multiply 2 adjacent elements with the filter and add the result
674     srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters);
675     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
676 
677     // add and saturate the results together
678     srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2);
679 
680     // filter the source buffer
681     srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b2, filt2Reg);
682     srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt3Reg);
683 
684     // multiply 2 adjacent elements with the filter and add the result
685     srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
686     srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
687 
688     // add and saturate the results together
689     srcRegFilt32b2_1 = _mm256_adds_epi16(
690         srcRegFilt32b2_1, _mm256_adds_epi16(srcRegFilt32b3, srcRegFilt32b2));
691 
692     // shift by 6 bit each 16 bit
693     srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
694     srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg32);
695     srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 6);
696     srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 6);
697 
698     // shrink to 8 bit each 16 bits, the first lane contain the first
699     // convolve result and the second lane contain the second convolve result
700     srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1);
701 
702     src_ptr += src_stride;
703 
704     xx_store2_mi128(output_ptr, output_pitch, &srcRegFilt32b1_1);
705     output_ptr += dst_stride;
706   }
707 
708   // if the number of strides is odd.
709   // process only 16 bytes
710   if (i > 0) {
711     __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1;
712     __m128i srcRegFilt2, srcRegFilt3;
713 
714     srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr));
715 
716     // filter the source buffer
717     srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg));
718     srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt4Reg));
719 
720     // multiply 2 adjacent elements with the filter and add the result
721     srcRegFilt1_1 =
722         _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters));
723     srcRegFilt2 =
724         _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters));
725 
726     // add and saturate the results together
727     srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
728 
729     // filter the source buffer
730     srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg));
731     srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg));
732 
733     // multiply 2 adjacent elements with the filter and add the result
734     srcRegFilt3 =
735         _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters));
736     srcRegFilt2 =
737         _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters));
738 
739     // add and saturate the results together
740     srcRegFilt1_1 =
741         _mm_adds_epi16(srcRegFilt1_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2));
742 
743     // reading the next 16 bytes
744     // (part of it was being read by earlier read)
745     srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 8));
746 
747     // filter the source buffer
748     srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt1Reg));
749     srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt4Reg));
750 
751     // multiply 2 adjacent elements with the filter and add the result
752     srcRegFilt2_1 =
753         _mm_maddubs_epi16(srcRegFilt2_1, _mm256_castsi256_si128(firstFilters));
754     srcRegFilt2 =
755         _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters));
756 
757     // add and saturate the results together
758     srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);
759 
760     // filter the source buffer
761     srcRegFilt3 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt2Reg));
762     srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt3Reg));
763 
764     // multiply 2 adjacent elements with the filter and add the result
765     srcRegFilt3 =
766         _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters));
767     srcRegFilt2 =
768         _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters));
769 
770     // add and saturate the results together
771     srcRegFilt2_1 =
772         _mm_adds_epi16(srcRegFilt2_1, _mm_adds_epi16(srcRegFilt3, srcRegFilt2));
773 
774     // shift by 6 bit each 16 bit
775     srcRegFilt1_1 =
776         _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg32));
777     srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 6);
778 
779     srcRegFilt2_1 =
780         _mm_adds_epi16(srcRegFilt2_1, _mm256_castsi256_si128(addFilterReg32));
781     srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 6);
782 
783     // shrink to 8 bit each 16 bits, the first lane contain the first
784     // convolve result and the second lane contain the second convolve
785     // result
786     srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);
787 
788     // save 16 bytes
789     _mm_store_si128((__m128i *)output_ptr, srcRegFilt1_1);
790   }
791 }
792 
aom_filter_block1d8_v4_avx2(const uint8_t * src_ptr,ptrdiff_t src_pitch,uint8_t * output_ptr,ptrdiff_t out_pitch,uint32_t output_height,const int16_t * filter)793 static void aom_filter_block1d8_v4_avx2(
794     const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
795     ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
796   __m128i filtersReg;
797   __m256i filtersReg32, addFilterReg32;
798   __m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56;
799   __m256i srcReg23_34_lo, srcReg45_56_lo;
800   __m256i resReg23_34_lo, resReg45_56_lo;
801   __m256i resReglo, resReg;
802   __m256i secondFilters, thirdFilters;
803   unsigned int i;
804   ptrdiff_t src_stride, dst_stride;
805 
806   addFilterReg32 = _mm256_set1_epi16(32);
807   filtersReg = _mm_loadu_si128((const __m128i *)filter);
808   // converting the 16 bit (short) to  8 bit (byte) and have the
809   // same data in both lanes of 128 bit register.
810   filtersReg = _mm_srai_epi16(filtersReg, 1);
811   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
812   // have the same data in both lanes of a 256 bit register
813   filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
814 
815   // duplicate only the second 16 bits (third and forth byte)
816   // across 256 bit register
817   secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
818   // duplicate only the third 16 bits (fifth and sixth byte)
819   // across 256 bit register
820   thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
821 
822   // multiple the size of the source and destination stride by two
823   src_stride = src_pitch << 1;
824   dst_stride = out_pitch << 1;
825 
826   srcReg23 = xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2);
827   srcReg4x = _mm256_castsi128_si256(
828       _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)));
829 
830   // have consecutive loads on the same 256 register
831   srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21);
832 
833   srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34);
834 
835   for (i = output_height; i > 1; i -= 2) {
836     // load the last 2 loads of 16 bytes and have every two
837     // consecutive loads in the same 256 bit register
838     srcReg5x = _mm256_castsi128_si256(
839         _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)));
840     srcReg45 =
841         _mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1);
842 
843     srcReg6x = _mm256_castsi128_si256(
844         _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)));
845     srcReg56 =
846         _mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1);
847 
848     // merge every two consecutive registers
849     srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56);
850 
851     // multiply 2 adjacent elements with the filter and add the result
852     resReg23_34_lo = _mm256_maddubs_epi16(srcReg23_34_lo, secondFilters);
853     resReg45_56_lo = _mm256_maddubs_epi16(srcReg45_56_lo, thirdFilters);
854 
855     // add and saturate the results together
856     resReglo = _mm256_adds_epi16(resReg23_34_lo, resReg45_56_lo);
857 
858     // shift by 6 bit each 16 bit
859     resReglo = _mm256_adds_epi16(resReglo, addFilterReg32);
860     resReglo = _mm256_srai_epi16(resReglo, 6);
861 
862     // shrink to 8 bit each 16 bits, the first lane contain the first
863     // convolve result and the second lane contain the second convolve
864     // result
865     resReg = _mm256_packus_epi16(resReglo, resReglo);
866 
867     src_ptr += src_stride;
868 
869     xx_storeu2_epi64(output_ptr, out_pitch, &resReg);
870 
871     output_ptr += dst_stride;
872 
873     // save part of the registers for next strides
874     srcReg23_34_lo = srcReg45_56_lo;
875     srcReg4x = srcReg6x;
876   }
877 }
878 
aom_filter_block1d8_v8_avx2(const uint8_t * src_ptr,ptrdiff_t src_pitch,uint8_t * output_ptr,ptrdiff_t out_pitch,uint32_t output_height,const int16_t * filter)879 static void aom_filter_block1d8_v8_avx2(
880     const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
881     ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
882   __m128i filtersReg;
883   __m256i addFilterReg32;
884   __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5;
885   __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10;
886   __m256i srcReg32b11, srcReg32b12, filtersReg32;
887   __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
888   unsigned int i;
889   ptrdiff_t src_stride, dst_stride;
890 
891   addFilterReg32 = _mm256_set1_epi16(32);
892   filtersReg = _mm_loadu_si128((const __m128i *)filter);
893   // converting the 16 bit (short) to  8 bit (byte) and have the
894   // same data in both lanes of 128 bit register.
895   filtersReg = _mm_srai_epi16(filtersReg, 1);
896   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
897   // have the same data in both lanes of a 256 bit register
898   filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
899 
900   // duplicate only the first 16 bits (first and second byte)
901   // across 256 bit register
902   firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u));
903   // duplicate only the second 16 bits (third and forth byte)
904   // across 256 bit register
905   secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
906   // duplicate only the third 16 bits (fifth and sixth byte)
907   // across 256 bit register
908   thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
909   // duplicate only the forth 16 bits (seventh and eighth byte)
910   // across 256 bit register
911   forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u));
912 
913   // multiple the size of the source and destination stride by two
914   src_stride = src_pitch << 1;
915   dst_stride = out_pitch << 1;
916 
917   // load 16 bytes 7 times in stride of src_pitch
918   srcReg32b1 = xx_loadu2_epi64(src_ptr + src_pitch, src_ptr);
919   srcReg32b3 =
920       xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2);
921   srcReg32b5 =
922       xx_loadu2_epi64(src_ptr + src_pitch * 5, src_ptr + src_pitch * 4);
923   srcReg32b7 = _mm256_castsi128_si256(
924       _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)));
925 
926   // have each consecutive loads on the same 256 register
927   srcReg32b2 = _mm256_permute2x128_si256(srcReg32b1, srcReg32b3, 0x21);
928   srcReg32b4 = _mm256_permute2x128_si256(srcReg32b3, srcReg32b5, 0x21);
929   srcReg32b6 = _mm256_permute2x128_si256(srcReg32b5, srcReg32b7, 0x21);
930   // merge every two consecutive registers except the last one
931   srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2);
932   srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4);
933   srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6);
934 
935   for (i = output_height; i > 1; i -= 2) {
936     // load the last 2 loads of 16 bytes and have every two
937     // consecutive loads in the same 256 bit register
938     srcReg32b8 = _mm256_castsi128_si256(
939         _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)));
940     srcReg32b7 = _mm256_inserti128_si256(srcReg32b7,
941                                          _mm256_castsi256_si128(srcReg32b8), 1);
942     srcReg32b9 = _mm256_castsi128_si256(
943         _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 8)));
944     srcReg32b8 = _mm256_inserti128_si256(srcReg32b8,
945                                          _mm256_castsi256_si128(srcReg32b9), 1);
946 
947     // merge every two consecutive registers
948     // save
949     srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8);
950 
951     // multiply 2 adjacent elements with the filter and add the result
952     srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters);
953     srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters);
954 
955     // add and saturate the results together
956     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6);
957 
958     // multiply 2 adjacent elements with the filter and add the result
959     srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters);
960     srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters);
961 
962     // add and saturate the results together
963     srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
964                                     _mm256_adds_epi16(srcReg32b8, srcReg32b12));
965 
966     // shift by 6 bit each 16 bit
967     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg32);
968     srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 6);
969 
970     // shrink to 8 bit each 16 bits, the first lane contain the first
971     // convolve result and the second lane contain the second convolve
972     // result
973     srcReg32b1 = _mm256_packus_epi16(srcReg32b10, _mm256_setzero_si256());
974 
975     src_ptr += src_stride;
976 
977     xx_storeu2_epi64(output_ptr, out_pitch, &srcReg32b1);
978 
979     output_ptr += dst_stride;
980 
981     // save part of the registers for next strides
982     srcReg32b10 = srcReg32b11;
983     srcReg32b11 = srcReg32b2;
984     srcReg32b2 = srcReg32b4;
985     srcReg32b7 = srcReg32b9;
986   }
987   if (i > 0) {
988     __m128i srcRegFilt1, srcRegFilt4, srcRegFilt6, srcRegFilt8;
989     // load the last 16 bytes
990     srcRegFilt8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7));
991 
992     // merge the last 2 results together
993     srcRegFilt4 =
994         _mm_unpacklo_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
995 
996     // multiply 2 adjacent elements with the filter and add the result
997     srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10),
998                                     _mm256_castsi256_si128(firstFilters));
999     srcRegFilt4 =
1000         _mm_maddubs_epi16(srcRegFilt4, _mm256_castsi256_si128(forthFilters));
1001 
1002     // add and saturate the results together
1003     srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
1004 
1005     // multiply 2 adjacent elements with the filter and add the result
1006     srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11),
1007                                     _mm256_castsi256_si128(secondFilters));
1008 
1009     // multiply 2 adjacent elements with the filter and add the result
1010     srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2),
1011                                     _mm256_castsi256_si128(thirdFilters));
1012 
1013     // add and saturate the results together
1014     srcRegFilt1 =
1015         _mm_adds_epi16(srcRegFilt1, _mm_adds_epi16(srcRegFilt4, srcRegFilt6));
1016 
1017     // shift by 6 bit each 16 bit
1018     srcRegFilt1 =
1019         _mm_adds_epi16(srcRegFilt1, _mm256_castsi256_si128(addFilterReg32));
1020     srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 6);
1021 
1022     // shrink to 8 bit each 16 bits, the first lane contain the first
1023     // convolve result and the second lane contain the second convolve result
1024     srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, _mm_setzero_si128());
1025 
1026     // save 8 bytes
1027     _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt1);
1028   }
1029 }
1030 
aom_filter_block1d16_v4_avx2(const uint8_t * src_ptr,ptrdiff_t src_pitch,uint8_t * output_ptr,ptrdiff_t out_pitch,uint32_t output_height,const int16_t * filter)1031 static void aom_filter_block1d16_v4_avx2(
1032     const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
1033     ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
1034   __m128i filtersReg;
1035   __m256i filtersReg32, addFilterReg32;
1036   __m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56;
1037   __m256i srcReg23_34_lo, srcReg23_34_hi, srcReg45_56_lo, srcReg45_56_hi;
1038   __m256i resReg23_34_lo, resReg23_34_hi, resReg45_56_lo, resReg45_56_hi;
1039   __m256i resReglo, resReghi, resReg;
1040   __m256i secondFilters, thirdFilters;
1041   unsigned int i;
1042   ptrdiff_t src_stride, dst_stride;
1043 
1044   addFilterReg32 = _mm256_set1_epi16(32);
1045   filtersReg = _mm_loadu_si128((const __m128i *)filter);
1046   // converting the 16 bit (short) to  8 bit (byte) and have the
1047   // same data in both lanes of 128 bit register.
1048   filtersReg = _mm_srai_epi16(filtersReg, 1);
1049   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
1050   // have the same data in both lanes of a 256 bit register
1051   filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
1052 
1053   // duplicate only the second 16 bits (third and forth byte)
1054   // across 256 bit register
1055   secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
1056   // duplicate only the third 16 bits (fifth and sixth byte)
1057   // across 256 bit register
1058   thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
1059 
1060   // multiple the size of the source and destination stride by two
1061   src_stride = src_pitch << 1;
1062   dst_stride = out_pitch << 1;
1063 
1064   srcReg23 = yy_loadu2_128(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2);
1065   srcReg4x = _mm256_castsi128_si256(
1066       _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)));
1067 
1068   // have consecutive loads on the same 256 register
1069   srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21);
1070 
1071   srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34);
1072   srcReg23_34_hi = _mm256_unpackhi_epi8(srcReg23, srcReg34);
1073 
1074   for (i = output_height; i > 1; i -= 2) {
1075     // load the last 2 loads of 16 bytes and have every two
1076     // consecutive loads in the same 256 bit register
1077     srcReg5x = _mm256_castsi128_si256(
1078         _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)));
1079     srcReg45 =
1080         _mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1);
1081 
1082     srcReg6x = _mm256_castsi128_si256(
1083         _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)));
1084     srcReg56 =
1085         _mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1);
1086 
1087     // merge every two consecutive registers
1088     srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56);
1089     srcReg45_56_hi = _mm256_unpackhi_epi8(srcReg45, srcReg56);
1090 
1091     // multiply 2 adjacent elements with the filter and add the result
1092     resReg23_34_lo = _mm256_maddubs_epi16(srcReg23_34_lo, secondFilters);
1093     resReg45_56_lo = _mm256_maddubs_epi16(srcReg45_56_lo, thirdFilters);
1094 
1095     // add and saturate the results together
1096     resReglo = _mm256_adds_epi16(resReg23_34_lo, resReg45_56_lo);
1097 
1098     // multiply 2 adjacent elements with the filter and add the result
1099     resReg23_34_hi = _mm256_maddubs_epi16(srcReg23_34_hi, secondFilters);
1100     resReg45_56_hi = _mm256_maddubs_epi16(srcReg45_56_hi, thirdFilters);
1101 
1102     // add and saturate the results together
1103     resReghi = _mm256_adds_epi16(resReg23_34_hi, resReg45_56_hi);
1104 
1105     // shift by 6 bit each 16 bit
1106     resReglo = _mm256_adds_epi16(resReglo, addFilterReg32);
1107     resReghi = _mm256_adds_epi16(resReghi, addFilterReg32);
1108     resReglo = _mm256_srai_epi16(resReglo, 6);
1109     resReghi = _mm256_srai_epi16(resReghi, 6);
1110 
1111     // shrink to 8 bit each 16 bits, the first lane contain the first
1112     // convolve result and the second lane contain the second convolve
1113     // result
1114     resReg = _mm256_packus_epi16(resReglo, resReghi);
1115 
1116     src_ptr += src_stride;
1117 
1118     xx_store2_mi128(output_ptr, out_pitch, &resReg);
1119 
1120     output_ptr += dst_stride;
1121 
1122     // save part of the registers for next strides
1123     srcReg23_34_lo = srcReg45_56_lo;
1124     srcReg23_34_hi = srcReg45_56_hi;
1125     srcReg4x = srcReg6x;
1126   }
1127 }
1128 
aom_filter_block1d16_v8_avx2(const uint8_t * src_ptr,ptrdiff_t src_pitch,uint8_t * output_ptr,ptrdiff_t out_pitch,uint32_t output_height,const int16_t * filter)1129 static void aom_filter_block1d16_v8_avx2(
1130     const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
1131     ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
1132   __m128i filtersReg;
1133   __m256i addFilterReg32;
1134   __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5;
1135   __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10;
1136   __m256i srcReg32b11, srcReg32b12, filtersReg32;
1137   __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
1138   unsigned int i;
1139   ptrdiff_t src_stride, dst_stride;
1140 
1141   addFilterReg32 = _mm256_set1_epi16(32);
1142   filtersReg = _mm_loadu_si128((const __m128i *)filter);
1143   // converting the 16 bit (short) to  8 bit (byte) and have the
1144   // same data in both lanes of 128 bit register.
1145   filtersReg = _mm_srai_epi16(filtersReg, 1);
1146   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
1147   // have the same data in both lanes of a 256 bit register
1148   filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
1149 
1150   // duplicate only the first 16 bits (first and second byte)
1151   // across 256 bit register
1152   firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u));
1153   // duplicate only the second 16 bits (third and forth byte)
1154   // across 256 bit register
1155   secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u));
1156   // duplicate only the third 16 bits (fifth and sixth byte)
1157   // across 256 bit register
1158   thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u));
1159   // duplicate only the forth 16 bits (seventh and eighth byte)
1160   // across 256 bit register
1161   forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u));
1162 
1163   // multiple the size of the source and destination stride by two
1164   src_stride = src_pitch << 1;
1165   dst_stride = out_pitch << 1;
1166 
1167   // load 16 bytes 7 times in stride of src_pitch
1168   srcReg32b1 = yy_loadu2_128(src_ptr + src_pitch, src_ptr);
1169   srcReg32b3 = yy_loadu2_128(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2);
1170   srcReg32b5 = yy_loadu2_128(src_ptr + src_pitch * 5, src_ptr + src_pitch * 4);
1171   srcReg32b7 = _mm256_castsi128_si256(
1172       _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)));
1173 
1174   // have each consecutive loads on the same 256 register
1175   srcReg32b2 = _mm256_permute2x128_si256(srcReg32b1, srcReg32b3, 0x21);
1176   srcReg32b4 = _mm256_permute2x128_si256(srcReg32b3, srcReg32b5, 0x21);
1177   srcReg32b6 = _mm256_permute2x128_si256(srcReg32b5, srcReg32b7, 0x21);
1178   // merge every two consecutive registers except the last one
1179   srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2);
1180   srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2);
1181 
1182   // save
1183   srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4);
1184   srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4);
1185   srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6);
1186   srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6);
1187 
1188   for (i = output_height; i > 1; i -= 2) {
1189     // load the last 2 loads of 16 bytes and have every two
1190     // consecutive loads in the same 256 bit register
1191     srcReg32b8 = _mm256_castsi128_si256(
1192         _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)));
1193     srcReg32b7 = _mm256_inserti128_si256(srcReg32b7,
1194                                          _mm256_castsi256_si128(srcReg32b8), 1);
1195     srcReg32b9 = _mm256_castsi128_si256(
1196         _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8)));
1197     srcReg32b8 = _mm256_inserti128_si256(srcReg32b8,
1198                                          _mm256_castsi256_si128(srcReg32b9), 1);
1199 
1200     // merge every two consecutive registers
1201     // save
1202     srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8);
1203     srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8);
1204 
1205     // multiply 2 adjacent elements with the filter and add the result
1206     srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters);
1207     srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters);
1208 
1209     // add and saturate the results together
1210     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6);
1211 
1212     // multiply 2 adjacent elements with the filter and add the result
1213     srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters);
1214     srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters);
1215 
1216     // add and saturate the results together
1217     srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
1218                                     _mm256_adds_epi16(srcReg32b8, srcReg32b12));
1219 
1220     // multiply 2 adjacent elements with the filter and add the result
1221     srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters);
1222     srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters);
1223 
1224     srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6);
1225 
1226     // multiply 2 adjacent elements with the filter and add the result
1227     srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters);
1228     srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters);
1229 
1230     // add and saturate the results together
1231     srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
1232                                    _mm256_adds_epi16(srcReg32b8, srcReg32b12));
1233 
1234     // shift by 6 bit each 16 bit
1235     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg32);
1236     srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg32);
1237     srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 6);
1238     srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 6);
1239 
1240     // shrink to 8 bit each 16 bits, the first lane contain the first
1241     // convolve result and the second lane contain the second convolve
1242     // result
1243     srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1);
1244 
1245     src_ptr += src_stride;
1246 
1247     xx_store2_mi128(output_ptr, out_pitch, &srcReg32b1);
1248 
1249     output_ptr += dst_stride;
1250 
1251     // save part of the registers for next strides
1252     srcReg32b10 = srcReg32b11;
1253     srcReg32b1 = srcReg32b3;
1254     srcReg32b11 = srcReg32b2;
1255     srcReg32b3 = srcReg32b5;
1256     srcReg32b2 = srcReg32b4;
1257     srcReg32b5 = srcReg32b7;
1258     srcReg32b7 = srcReg32b9;
1259   }
1260   if (i > 0) {
1261     __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5;
1262     __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8;
1263     // load the last 16 bytes
1264     srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7));
1265 
1266     // merge the last 2 results together
1267     srcRegFilt4 =
1268         _mm_unpacklo_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
1269     srcRegFilt7 =
1270         _mm_unpackhi_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
1271 
1272     // multiply 2 adjacent elements with the filter and add the result
1273     srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10),
1274                                     _mm256_castsi256_si128(firstFilters));
1275     srcRegFilt4 =
1276         _mm_maddubs_epi16(srcRegFilt4, _mm256_castsi256_si128(forthFilters));
1277     srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1),
1278                                     _mm256_castsi256_si128(firstFilters));
1279     srcRegFilt7 =
1280         _mm_maddubs_epi16(srcRegFilt7, _mm256_castsi256_si128(forthFilters));
1281 
1282     // add and saturate the results together
1283     srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
1284     srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7);
1285 
1286     // multiply 2 adjacent elements with the filter and add the result
1287     srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11),
1288                                     _mm256_castsi256_si128(secondFilters));
1289     srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3),
1290                                     _mm256_castsi256_si128(secondFilters));
1291 
1292     // multiply 2 adjacent elements with the filter and add the result
1293     srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2),
1294                                     _mm256_castsi256_si128(thirdFilters));
1295     srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5),
1296                                     _mm256_castsi256_si128(thirdFilters));
1297 
1298     // add and saturate the results together
1299     srcRegFilt1 =
1300         _mm_adds_epi16(srcRegFilt1, _mm_adds_epi16(srcRegFilt4, srcRegFilt6));
1301     srcRegFilt3 =
1302         _mm_adds_epi16(srcRegFilt3, _mm_adds_epi16(srcRegFilt5, srcRegFilt7));
1303 
1304     // shift by 6 bit each 16 bit
1305     srcRegFilt1 =
1306         _mm_adds_epi16(srcRegFilt1, _mm256_castsi256_si128(addFilterReg32));
1307     srcRegFilt3 =
1308         _mm_adds_epi16(srcRegFilt3, _mm256_castsi256_si128(addFilterReg32));
1309     srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 6);
1310     srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 6);
1311 
1312     // shrink to 8 bit each 16 bits, the first lane contain the first
1313     // convolve result and the second lane contain the second convolve
1314     // result
1315     srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3);
1316 
1317     // save 16 bytes
1318     _mm_store_si128((__m128i *)output_ptr, srcRegFilt1);
1319   }
1320 }
1321 
aom_filter_block1d4_v4_avx2(const uint8_t * src_ptr,ptrdiff_t src_pitch,uint8_t * output_ptr,ptrdiff_t out_pitch,uint32_t output_height,const int16_t * filter)1322 static void aom_filter_block1d4_v4_avx2(
1323     const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
1324     ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
1325   __m128i filtersReg;
1326   __m256i filtersReg32, addFilterReg32;
1327   __m256i srcReg23, srcReg4x, srcReg34, srcReg5x, srcReg45, srcReg6x, srcReg56;
1328   __m256i srcReg23_34_lo, srcReg45_56_lo;
1329   __m256i srcReg2345_3456_lo;
1330   __m256i resReglo, resReg;
1331   __m256i firstFilters;
1332   unsigned int i;
1333   ptrdiff_t src_stride, dst_stride;
1334 
1335   addFilterReg32 = _mm256_set1_epi16(32);
1336   filtersReg = _mm_loadu_si128((const __m128i *)filter);
1337   // converting the 16 bit (short) to  8 bit (byte) and have the
1338   // same data in both lanes of 128 bit register.
1339   filtersReg = _mm_srai_epi16(filtersReg, 1);
1340   filtersReg = _mm_packs_epi16(filtersReg, filtersReg);
1341   // have the same data in both lanes of a 256 bit register
1342   filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
1343 
1344   firstFilters =
1345       _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi32(0x5040302u));
1346 
1347   // multiple the size of the source and destination stride by two
1348   src_stride = src_pitch << 1;
1349   dst_stride = out_pitch << 1;
1350 
1351   srcReg23 = xx_loadu2_epi64(src_ptr + src_pitch * 3, src_ptr + src_pitch * 2);
1352   srcReg4x = _mm256_castsi128_si256(
1353       _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)));
1354 
1355   // have consecutive loads on the same 256 register
1356   srcReg34 = _mm256_permute2x128_si256(srcReg23, srcReg4x, 0x21);
1357 
1358   srcReg23_34_lo = _mm256_unpacklo_epi8(srcReg23, srcReg34);
1359 
1360   for (i = output_height; i > 1; i -= 2) {
1361     // load the last 2 loads of 16 bytes and have every two
1362     // consecutive loads in the same 256 bit register
1363     srcReg5x = _mm256_castsi128_si256(
1364         _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)));
1365     srcReg45 =
1366         _mm256_inserti128_si256(srcReg4x, _mm256_castsi256_si128(srcReg5x), 1);
1367 
1368     srcReg6x = _mm256_castsi128_si256(
1369         _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)));
1370     srcReg56 =
1371         _mm256_inserti128_si256(srcReg5x, _mm256_castsi256_si128(srcReg6x), 1);
1372 
1373     // merge every two consecutive registers
1374     srcReg45_56_lo = _mm256_unpacklo_epi8(srcReg45, srcReg56);
1375 
1376     srcReg2345_3456_lo = _mm256_unpacklo_epi16(srcReg23_34_lo, srcReg45_56_lo);
1377 
1378     // multiply 2 adjacent elements with the filter and add the result
1379     resReglo = _mm256_maddubs_epi16(srcReg2345_3456_lo, firstFilters);
1380 
1381     resReglo = _mm256_hadds_epi16(resReglo, _mm256_setzero_si256());
1382 
1383     // shift by 6 bit each 16 bit
1384     resReglo = _mm256_adds_epi16(resReglo, addFilterReg32);
1385     resReglo = _mm256_srai_epi16(resReglo, 6);
1386 
1387     // shrink to 8 bit each 16 bits, the first lane contain the first
1388     // convolve result and the second lane contain the second convolve
1389     // result
1390     resReg = _mm256_packus_epi16(resReglo, resReglo);
1391 
1392     src_ptr += src_stride;
1393 
1394     xx_storeu2_epi32(output_ptr, out_pitch, &resReg);
1395 
1396     output_ptr += dst_stride;
1397 
1398     // save part of the registers for next strides
1399     srcReg23_34_lo = srcReg45_56_lo;
1400     srcReg4x = srcReg6x;
1401   }
1402 }
1403 
1404 #if HAVE_AVX2 && HAVE_SSSE3
1405 filter8_1dfunction aom_filter_block1d4_v8_ssse3;
1406 filter8_1dfunction aom_filter_block1d16_v2_ssse3;
1407 filter8_1dfunction aom_filter_block1d16_h2_ssse3;
1408 filter8_1dfunction aom_filter_block1d8_v2_ssse3;
1409 filter8_1dfunction aom_filter_block1d8_h2_ssse3;
1410 filter8_1dfunction aom_filter_block1d4_v2_ssse3;
1411 filter8_1dfunction aom_filter_block1d4_h2_ssse3;
1412 #define aom_filter_block1d4_v8_avx2 aom_filter_block1d4_v8_ssse3
1413 #define aom_filter_block1d16_v2_avx2 aom_filter_block1d16_v2_ssse3
1414 #define aom_filter_block1d16_h2_avx2 aom_filter_block1d16_h2_ssse3
1415 #define aom_filter_block1d8_v2_avx2 aom_filter_block1d8_v2_ssse3
1416 #define aom_filter_block1d8_h2_avx2 aom_filter_block1d8_h2_ssse3
1417 #define aom_filter_block1d4_v2_avx2 aom_filter_block1d4_v2_ssse3
1418 #define aom_filter_block1d4_h2_avx2 aom_filter_block1d4_h2_ssse3
1419 // void aom_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride,
1420 //                                uint8_t *dst, ptrdiff_t dst_stride,
1421 //                                const int16_t *filter_x, int x_step_q4,
1422 //                                const int16_t *filter_y, int y_step_q4,
1423 //                                int w, int h);
1424 // void aom_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride,
1425 //                               uint8_t *dst, ptrdiff_t dst_stride,
1426 //                               const int16_t *filter_x, int x_step_q4,
1427 //                               const int16_t *filter_y, int y_step_q4,
1428 //                               int w, int h);
1429 FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , avx2)
1430 FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , avx2)
1431 
1432 #endif  // HAVE_AX2 && HAVE_SSSE3
1433