1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * SPDX-License-Identifier: MIT
5 */
6
7 #include "aco_builder.h"
8 #include "aco_ir.h"
9
10 #include "common/sid.h"
11
12 #include <map>
13 #include <stack>
14 #include <vector>
15 #include <optional>
16
17 namespace aco {
18
19 namespace {
20
21 /**
22 * The general idea of this pass is:
23 * The CFG is traversed in reverse postorder (forward) and loops are processed
24 * several times until no progress is made.
25 * Per BB two wait_ctx is maintained: an in-context and out-context.
26 * The in-context is the joined out-contexts of the predecessors.
27 * The context contains a map: gpr -> wait_entry
28 * consisting of the information about the cnt values to be waited for.
29 * Note: After merge-nodes, it might occur that for the same register
30 * multiple cnt values are to be waited for.
31 *
32 * The values are updated according to the encountered instructions:
33 * - additional events increment the counter of waits of the same type
34 * - or erase gprs with counters higher than to be waited for.
35 */
36
37 // TODO: do a more clever insertion of wait_cnt (lgkm_cnt)
38 // when there is a load followed by a use of a previous load
39
40 /* Instructions of the same event will finish in-order except for smem
41 * and maybe flat. Instructions of different events may not finish in-order. */
42 enum wait_event : uint32_t {
43 event_smem = 1 << 0,
44 event_lds = 1 << 1,
45 event_gds = 1 << 2,
46 event_vmem = 1 << 3,
47 event_vmem_store = 1 << 4, /* GFX10+ */
48 event_flat = 1 << 5,
49 event_exp_pos = 1 << 6,
50 event_exp_param = 1 << 7,
51 event_exp_mrt_null = 1 << 8,
52 event_gds_gpr_lock = 1 << 9,
53 event_vmem_gpr_lock = 1 << 10,
54 event_sendmsg = 1 << 11,
55 event_ldsdir = 1 << 12,
56 event_vmem_sample = 1 << 13, /* GFX12+ */
57 event_vmem_bvh = 1 << 14, /* GFX12+ */
58 num_events = 15,
59 };
60
61 enum counter_type : uint8_t {
62 counter_exp = 1 << wait_type_exp,
63 counter_lgkm = 1 << wait_type_lgkm,
64 counter_vm = 1 << wait_type_vm,
65 counter_vs = 1 << wait_type_vs,
66 counter_sample = 1 << wait_type_sample,
67 counter_bvh = 1 << wait_type_bvh,
68 counter_km = 1 << wait_type_km,
69 num_counters = wait_type_num,
70 };
71
72 struct wait_entry {
73 wait_imm imm;
74 uint32_t events; /* use wait_event notion */
75 uint8_t counters; /* use counter_type notion */
76 bool wait_on_read : 1;
77 bool logical : 1;
78 uint8_t vmem_types : 4; /* use vmem_type notion. for counter_vm. */
79
wait_entryaco::__anonf400bc060111::wait_entry80 wait_entry(wait_event event_, wait_imm imm_, uint8_t counters_, bool logical_,
81 bool wait_on_read_)
82 : imm(imm_), events(event_), counters(counters_), wait_on_read(wait_on_read_),
83 logical(logical_), vmem_types(0)
84 {}
85
joinaco::__anonf400bc060111::wait_entry86 bool join(const wait_entry& other)
87 {
88 bool changed = (other.events & ~events) || (other.counters & ~counters) ||
89 (other.wait_on_read && !wait_on_read) || (other.vmem_types & !vmem_types) ||
90 (!other.logical && logical);
91 events |= other.events;
92 counters |= other.counters;
93 changed |= imm.combine(other.imm);
94 wait_on_read |= other.wait_on_read;
95 vmem_types |= other.vmem_types;
96 logical &= other.logical;
97 return changed;
98 }
99
remove_waitaco::__anonf400bc060111::wait_entry100 void remove_wait(wait_type type, uint32_t type_events)
101 {
102 counters &= ~(1 << type);
103 imm[type] = wait_imm::unset_counter;
104
105 events &= ~type_events | event_flat;
106 if (!(counters & counter_lgkm) && !(counters & counter_vm))
107 events &= ~(type_events & event_flat);
108
109 if (type == wait_type_vm)
110 vmem_types = 0;
111 }
112
printaco::__anonf400bc060111::wait_entry113 UNUSED void print(FILE* output) const
114 {
115 fprintf(output, "logical: %u\n", logical);
116 imm.print(output);
117 if (events)
118 fprintf(output, "events: %u\n", events);
119 if (counters)
120 fprintf(output, "counters: %u\n", counters);
121 if (!wait_on_read)
122 fprintf(output, "wait_on_read: %u\n", wait_on_read);
123 if (!logical)
124 fprintf(output, "logical: %u\n", logical);
125 if (vmem_types)
126 fprintf(output, "vmem_types: %u\n", vmem_types);
127 }
128 };
129
130 struct target_info {
131 wait_imm max_cnt;
132 uint32_t events[wait_type_num] = {};
133 uint16_t unordered_events;
134
target_infoaco::__anonf400bc060111::target_info135 target_info(enum amd_gfx_level gfx_level)
136 {
137 max_cnt = wait_imm::max(gfx_level);
138 for (unsigned i = 0; i < wait_type_num; i++)
139 max_cnt[i] = max_cnt[i] ? max_cnt[i] - 1 : 0;
140
141 events[wait_type_exp] = event_exp_pos | event_exp_param | event_exp_mrt_null |
142 event_gds_gpr_lock | event_vmem_gpr_lock | event_ldsdir;
143 events[wait_type_lgkm] = event_smem | event_lds | event_gds | event_flat | event_sendmsg;
144 events[wait_type_vm] = event_vmem | event_flat;
145 events[wait_type_vs] = event_vmem_store;
146 if (gfx_level >= GFX12) {
147 events[wait_type_sample] = event_vmem_sample;
148 events[wait_type_bvh] = event_vmem_bvh;
149 events[wait_type_km] = event_smem | event_sendmsg;
150 events[wait_type_lgkm] &= ~events[wait_type_km];
151 }
152
153 for (unsigned i = 0; i < wait_type_num; i++) {
154 u_foreach_bit (j, events[i])
155 counters[j] |= (1 << i);
156 }
157
158 unordered_events = event_smem | (gfx_level < GFX10 ? event_flat : 0);
159 }
160
get_counters_for_eventaco::__anonf400bc060111::target_info161 uint8_t get_counters_for_event(wait_event event) const { return counters[ffs(event) - 1]; }
162
163 private:
164 /* Bitfields of counters affected by each event */
165 uint8_t counters[num_events] = {};
166 };
167
168 struct wait_ctx {
169 Program* program;
170 enum amd_gfx_level gfx_level;
171 const target_info* info;
172
173 uint32_t nonzero = 0;
174 bool pending_flat_lgkm = false;
175 bool pending_flat_vm = false;
176 bool pending_s_buffer_store = false; /* GFX10 workaround */
177
178 wait_imm barrier_imm[storage_count];
179 uint16_t barrier_events[storage_count] = {}; /* use wait_event notion */
180
181 std::map<PhysReg, wait_entry> gpr_map;
182
wait_ctxaco::__anonf400bc060111::wait_ctx183 wait_ctx() {}
wait_ctxaco::__anonf400bc060111::wait_ctx184 wait_ctx(Program* program_, const target_info* info_)
185 : program(program_), gfx_level(program_->gfx_level), info(info_)
186 {}
187
joinaco::__anonf400bc060111::wait_ctx188 bool join(const wait_ctx* other, bool logical)
189 {
190 bool changed = (other->pending_flat_lgkm && !pending_flat_lgkm) ||
191 (other->pending_flat_vm && !pending_flat_vm) || (~nonzero & other->nonzero);
192
193 nonzero |= other->nonzero;
194 pending_flat_lgkm |= other->pending_flat_lgkm;
195 pending_flat_vm |= other->pending_flat_vm;
196 pending_s_buffer_store |= other->pending_s_buffer_store;
197
198 for (const auto& entry : other->gpr_map) {
199 if (entry.second.logical != logical)
200 continue;
201
202 using iterator = std::map<PhysReg, wait_entry>::iterator;
203 const std::pair<iterator, bool> insert_pair = gpr_map.insert(entry);
204 if (insert_pair.second) {
205 changed = true;
206 } else {
207 changed |= insert_pair.first->second.join(entry.second);
208 }
209 }
210
211 for (unsigned i = 0; i < storage_count; i++) {
212 changed |= barrier_imm[i].combine(other->barrier_imm[i]);
213 changed |= (other->barrier_events[i] & ~barrier_events[i]) != 0;
214 barrier_events[i] |= other->barrier_events[i];
215 }
216
217 return changed;
218 }
219
printaco::__anonf400bc060111::wait_ctx220 UNUSED void print(FILE* output) const
221 {
222 for (unsigned i = 0; i < wait_type_num; i++)
223 fprintf(output, "nonzero[%u]: %u\n", i, nonzero & (1 << i) ? 1 : 0);
224 fprintf(output, "pending_flat_lgkm: %u\n", pending_flat_lgkm);
225 fprintf(output, "pending_flat_vm: %u\n", pending_flat_vm);
226 for (const auto& entry : gpr_map) {
227 fprintf(output, "gpr_map[%c%u] = {\n", entry.first.reg() >= 256 ? 'v' : 's',
228 entry.first.reg() & 0xff);
229 entry.second.print(output);
230 fprintf(output, "}\n");
231 }
232
233 for (unsigned i = 0; i < storage_count; i++) {
234 if (!barrier_imm[i].empty() || barrier_events[i]) {
235 fprintf(output, "barriers[%u] = {\n", i);
236 barrier_imm[i].print(output);
237 fprintf(output, "events: %u\n", barrier_events[i]);
238 fprintf(output, "}\n");
239 }
240 }
241 }
242 };
243
244 wait_event
get_vmem_event(wait_ctx & ctx,Instruction * instr,uint8_t type)245 get_vmem_event(wait_ctx& ctx, Instruction* instr, uint8_t type)
246 {
247 if (instr->definitions.empty() && ctx.gfx_level >= GFX10)
248 return event_vmem_store;
249 wait_event ev = event_vmem;
250 if (ctx.gfx_level >= GFX12 && type != vmem_nosampler)
251 ev = type == vmem_bvh ? event_vmem_bvh : event_vmem_sample;
252 return ev;
253 }
254
255 void
check_instr(wait_ctx & ctx,wait_imm & wait,Instruction * instr)256 check_instr(wait_ctx& ctx, wait_imm& wait, Instruction* instr)
257 {
258 for (const Operand op : instr->operands) {
259 if (op.isConstant() || op.isUndefined())
260 continue;
261
262 /* check consecutively read gprs */
263 for (unsigned j = 0; j < op.size(); j++) {
264 std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(PhysReg{op.physReg() + j});
265 if (it != ctx.gpr_map.end() && it->second.wait_on_read)
266 wait.combine(it->second.imm);
267 }
268 }
269
270 for (const Definition& def : instr->definitions) {
271 /* check consecutively written gprs */
272 for (unsigned j = 0; j < def.getTemp().size(); j++) {
273 PhysReg reg{def.physReg() + j};
274
275 std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(reg);
276 if (it == ctx.gpr_map.end())
277 continue;
278
279 wait_imm reg_imm = it->second.imm;
280
281 /* Vector Memory reads and writes return in the order they were issued */
282 uint8_t vmem_type = get_vmem_type(ctx.gfx_level, instr);
283 if (vmem_type) {
284 wait_event event = get_vmem_event(ctx, instr, vmem_type);
285 wait_type type = (wait_type)(ffs(ctx.info->get_counters_for_event(event)) - 1);
286 if ((it->second.events & ctx.info->events[type]) == event &&
287 (type != wait_type_vm || it->second.vmem_types == vmem_type))
288 reg_imm[type] = wait_imm::unset_counter;
289 }
290
291 /* LDS reads and writes return in the order they were issued. same for GDS */
292 if (instr->isDS() && (it->second.events & ctx.info->events[wait_type_lgkm]) ==
293 (instr->ds().gds ? event_gds : event_lds))
294 reg_imm.lgkm = wait_imm::unset_counter;
295
296 wait.combine(reg_imm);
297 }
298 }
299 }
300
301 void
perform_barrier(wait_ctx & ctx,wait_imm & imm,memory_sync_info sync,unsigned semantics)302 perform_barrier(wait_ctx& ctx, wait_imm& imm, memory_sync_info sync, unsigned semantics)
303 {
304 sync_scope subgroup_scope =
305 ctx.program->workgroup_size <= ctx.program->wave_size ? scope_workgroup : scope_subgroup;
306 if ((sync.semantics & semantics) && sync.scope > subgroup_scope) {
307 unsigned storage = sync.storage;
308 while (storage) {
309 unsigned idx = u_bit_scan(&storage);
310
311 /* LDS is private to the workgroup */
312 sync_scope bar_scope_lds = MIN2(sync.scope, scope_workgroup);
313
314 uint16_t events = ctx.barrier_events[idx];
315 if (bar_scope_lds <= subgroup_scope)
316 events &= ~event_lds;
317
318 /* in non-WGP, the L1 (L0 on GFX10+) cache keeps all memory operations
319 * in-order for the same workgroup */
320 if (!ctx.program->wgp_mode && sync.scope <= scope_workgroup)
321 events &= ~(event_vmem | event_vmem_store | event_smem);
322
323 if (events)
324 imm.combine(ctx.barrier_imm[idx]);
325 }
326 }
327 }
328
329 void
force_waitcnt(wait_ctx & ctx,wait_imm & imm)330 force_waitcnt(wait_ctx& ctx, wait_imm& imm)
331 {
332 u_foreach_bit (i, ctx.nonzero)
333 imm[i] = 0;
334 }
335
336 void
kill(wait_imm & imm,Instruction * instr,wait_ctx & ctx,memory_sync_info sync_info)337 kill(wait_imm& imm, Instruction* instr, wait_ctx& ctx, memory_sync_info sync_info)
338 {
339 if (instr->opcode == aco_opcode::s_setpc_b64 || (debug_flags & DEBUG_FORCE_WAITCNT)) {
340 /* Force emitting waitcnt states right after the instruction if there is
341 * something to wait for. This is also applied for s_setpc_b64 to ensure
342 * waitcnt states are inserted before jumping to the PS epilog.
343 */
344 force_waitcnt(ctx, imm);
345 }
346
347 /* Make sure POPS coherent memory accesses have reached the L2 cache before letting the
348 * overlapping waves proceed into the ordered section.
349 */
350 if (ctx.program->has_pops_overlapped_waves_wait &&
351 (ctx.gfx_level >= GFX11 ? instr->isEXP() && instr->exp().done
352 : (instr->opcode == aco_opcode::s_sendmsg &&
353 instr->salu().imm == sendmsg_ordered_ps_done))) {
354 uint8_t c = counter_vm | counter_vs;
355 /* Await SMEM loads too, as it's possible for an application to create them, like using a
356 * scalarization loop - pointless and unoptimal for an inherently divergent address of
357 * per-pixel data, but still can be done at least synthetically and must be handled correctly.
358 */
359 if (ctx.program->has_smem_buffer_or_global_loads)
360 c |= counter_lgkm;
361
362 u_foreach_bit (i, c & ctx.nonzero)
363 imm[i] = 0;
364 }
365
366 check_instr(ctx, imm, instr);
367
368 /* It's required to wait for scalar stores before "writing back" data.
369 * It shouldn't cost anything anyways since we're about to do s_endpgm.
370 */
371 if ((ctx.nonzero & BITFIELD_BIT(wait_type_lgkm)) && instr->opcode == aco_opcode::s_dcache_wb) {
372 assert(ctx.gfx_level >= GFX8);
373 imm.lgkm = 0;
374 }
375
376 if (ctx.gfx_level >= GFX10 && instr->isSMEM()) {
377 /* GFX10: A store followed by a load at the same address causes a problem because
378 * the load doesn't load the correct values unless we wait for the store first.
379 * This is NOT mitigated by an s_nop.
380 *
381 * TODO: Refine this when we have proper alias analysis.
382 */
383 if (ctx.pending_s_buffer_store && !instr->smem().definitions.empty() &&
384 !instr->smem().sync.can_reorder()) {
385 imm.lgkm = 0;
386 }
387 }
388
389 if (instr->opcode == aco_opcode::ds_ordered_count &&
390 ((instr->ds().offset1 | (instr->ds().offset0 >> 8)) & 0x1)) {
391 imm.combine(ctx.barrier_imm[ffs(storage_gds) - 1]);
392 }
393
394 if (instr->opcode == aco_opcode::p_barrier)
395 perform_barrier(ctx, imm, instr->barrier().sync, semantic_acqrel);
396 else
397 perform_barrier(ctx, imm, sync_info, semantic_release);
398
399 if (!imm.empty()) {
400 if (ctx.pending_flat_vm && imm.vm != wait_imm::unset_counter)
401 imm.vm = 0;
402 if (ctx.pending_flat_lgkm && imm.lgkm != wait_imm::unset_counter)
403 imm.lgkm = 0;
404
405 /* reset counters */
406 for (unsigned i = 0; i < wait_type_num; i++)
407 ctx.nonzero &= imm[i] == 0 ? ~BITFIELD_BIT(i) : UINT32_MAX;
408
409 /* update barrier wait imms */
410 for (unsigned i = 0; i < storage_count; i++) {
411 wait_imm& bar = ctx.barrier_imm[i];
412 uint16_t& bar_ev = ctx.barrier_events[i];
413 for (unsigned j = 0; j < wait_type_num; j++) {
414 if (bar[j] != wait_imm::unset_counter && imm[j] <= bar[j]) {
415 bar[j] = wait_imm::unset_counter;
416 bar_ev &= ~ctx.info->events[j] | event_flat;
417 }
418 }
419 if (bar.vm == wait_imm::unset_counter && bar.lgkm == wait_imm::unset_counter)
420 bar_ev &= ~event_flat;
421 }
422
423 /* remove all gprs with higher counter from map */
424 std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.begin();
425 while (it != ctx.gpr_map.end()) {
426 for (unsigned i = 0; i < wait_type_num; i++) {
427 if (imm[i] != wait_imm::unset_counter && imm[i] <= it->second.imm[i])
428 it->second.remove_wait((wait_type)i, ctx.info->events[i]);
429 }
430 if (!it->second.counters)
431 it = ctx.gpr_map.erase(it);
432 else
433 it++;
434 }
435 }
436
437 if (imm.vm == 0)
438 ctx.pending_flat_vm = false;
439 if (imm.lgkm == 0) {
440 ctx.pending_flat_lgkm = false;
441 ctx.pending_s_buffer_store = false;
442 }
443 }
444
445 void
update_barrier_imm(wait_ctx & ctx,uint8_t counters,wait_event event,memory_sync_info sync)446 update_barrier_imm(wait_ctx& ctx, uint8_t counters, wait_event event, memory_sync_info sync)
447 {
448 for (unsigned i = 0; i < storage_count; i++) {
449 wait_imm& bar = ctx.barrier_imm[i];
450 uint16_t& bar_ev = ctx.barrier_events[i];
451 if (sync.storage & (1 << i) && !(sync.semantics & semantic_private)) {
452 bar_ev |= event;
453 u_foreach_bit (j, counters)
454 bar[j] = 0;
455 } else if (!(bar_ev & ctx.info->unordered_events) && !(ctx.info->unordered_events & event)) {
456 u_foreach_bit (j, counters) {
457 if (bar[j] != wait_imm::unset_counter && (bar_ev & ctx.info->events[j]) == event)
458 bar[j] = std::min<uint16_t>(bar[j] + 1, ctx.info->max_cnt[j]);
459 }
460 }
461 }
462 }
463
464 void
update_counters(wait_ctx & ctx,wait_event event,memory_sync_info sync=memory_sync_info ())465 update_counters(wait_ctx& ctx, wait_event event, memory_sync_info sync = memory_sync_info())
466 {
467 uint8_t counters = ctx.info->get_counters_for_event(event);
468
469 ctx.nonzero |= counters;
470
471 update_barrier_imm(ctx, counters, event, sync);
472
473 if (ctx.info->unordered_events & event)
474 return;
475
476 if (ctx.pending_flat_lgkm)
477 counters &= ~counter_lgkm;
478 if (ctx.pending_flat_vm)
479 counters &= ~counter_vm;
480
481 for (std::pair<const PhysReg, wait_entry>& e : ctx.gpr_map) {
482 wait_entry& entry = e.second;
483
484 if (entry.events & ctx.info->unordered_events)
485 continue;
486
487 assert(entry.events);
488
489 u_foreach_bit (i, counters) {
490 if ((entry.events & ctx.info->events[i]) == event)
491 entry.imm[i] = std::min<uint16_t>(entry.imm[i] + 1, ctx.info->max_cnt[i]);
492 }
493 }
494 }
495
496 void
update_counters_for_flat_load(wait_ctx & ctx,memory_sync_info sync=memory_sync_info ())497 update_counters_for_flat_load(wait_ctx& ctx, memory_sync_info sync = memory_sync_info())
498 {
499 assert(ctx.gfx_level < GFX10);
500
501 ctx.nonzero |= BITFIELD_BIT(wait_type_lgkm) | BITFIELD_BIT(wait_type_vm);
502
503 update_barrier_imm(ctx, counter_vm | counter_lgkm, event_flat, sync);
504
505 for (std::pair<PhysReg, wait_entry> e : ctx.gpr_map) {
506 if (e.second.counters & counter_vm)
507 e.second.imm.vm = 0;
508 if (e.second.counters & counter_lgkm)
509 e.second.imm.lgkm = 0;
510 }
511 ctx.pending_flat_lgkm = true;
512 ctx.pending_flat_vm = true;
513 }
514
515 void
insert_wait_entry(wait_ctx & ctx,PhysReg reg,RegClass rc,wait_event event,bool wait_on_read,uint8_t vmem_types=0,bool force_linear=false)516 insert_wait_entry(wait_ctx& ctx, PhysReg reg, RegClass rc, wait_event event, bool wait_on_read,
517 uint8_t vmem_types = 0, bool force_linear = false)
518 {
519 uint16_t counters = ctx.info->get_counters_for_event(event);
520 wait_imm imm;
521 u_foreach_bit (i, counters)
522 imm[i] = 0;
523
524 wait_entry new_entry(event, imm, counters, !rc.is_linear() && !force_linear, wait_on_read);
525 if (counters & counter_vm)
526 new_entry.vmem_types |= vmem_types;
527
528 for (unsigned i = 0; i < rc.size(); i++) {
529 auto it = ctx.gpr_map.emplace(PhysReg{reg.reg() + i}, new_entry);
530 if (!it.second)
531 it.first->second.join(new_entry);
532 }
533 }
534
535 void
insert_wait_entry(wait_ctx & ctx,Operand op,wait_event event,uint8_t vmem_types=0)536 insert_wait_entry(wait_ctx& ctx, Operand op, wait_event event, uint8_t vmem_types = 0)
537 {
538 if (!op.isConstant() && !op.isUndefined())
539 insert_wait_entry(ctx, op.physReg(), op.regClass(), event, false, vmem_types);
540 }
541
542 void
insert_wait_entry(wait_ctx & ctx,Definition def,wait_event event,uint8_t vmem_types=0)543 insert_wait_entry(wait_ctx& ctx, Definition def, wait_event event, uint8_t vmem_types = 0)
544 {
545 /* We can't safely write to unwritten destination VGPR lanes with DS/VMEM on GFX11 without
546 * waiting for the load to finish.
547 */
548 uint32_t ds_vmem_events = event_lds | event_gds | event_vmem | event_flat;
549 bool force_linear = ctx.gfx_level >= GFX11 && (event & ds_vmem_events);
550
551 insert_wait_entry(ctx, def.physReg(), def.regClass(), event, true, vmem_types, force_linear);
552 }
553
554 void
gen(Instruction * instr,wait_ctx & ctx)555 gen(Instruction* instr, wait_ctx& ctx)
556 {
557 switch (instr->format) {
558 case Format::EXP: {
559 Export_instruction& exp_instr = instr->exp();
560
561 wait_event ev;
562 if (exp_instr.dest <= 9)
563 ev = event_exp_mrt_null;
564 else if (exp_instr.dest <= 15)
565 ev = event_exp_pos;
566 else
567 ev = event_exp_param;
568 update_counters(ctx, ev);
569
570 /* insert new entries for exported vgprs */
571 for (unsigned i = 0; i < 4; i++) {
572 if (exp_instr.enabled_mask & (1 << i)) {
573 unsigned idx = exp_instr.compressed ? i >> 1 : i;
574 assert(idx < exp_instr.operands.size());
575 insert_wait_entry(ctx, exp_instr.operands[idx], ev);
576 }
577 }
578 insert_wait_entry(ctx, exec, s2, ev, false);
579 break;
580 }
581 case Format::FLAT: {
582 FLAT_instruction& flat = instr->flat();
583 if (ctx.gfx_level < GFX10 && !instr->definitions.empty())
584 update_counters_for_flat_load(ctx, flat.sync);
585 else
586 update_counters(ctx, event_flat, flat.sync);
587
588 if (!instr->definitions.empty())
589 insert_wait_entry(ctx, instr->definitions[0], event_flat);
590 break;
591 }
592 case Format::SMEM: {
593 SMEM_instruction& smem = instr->smem();
594 update_counters(ctx, event_smem, smem.sync);
595
596 if (!instr->definitions.empty())
597 insert_wait_entry(ctx, instr->definitions[0], event_smem);
598 else if (ctx.gfx_level >= GFX10 && !smem.sync.can_reorder())
599 ctx.pending_s_buffer_store = true;
600
601 break;
602 }
603 case Format::DS: {
604 DS_instruction& ds = instr->ds();
605 update_counters(ctx, ds.gds ? event_gds : event_lds, ds.sync);
606 if (ds.gds)
607 update_counters(ctx, event_gds_gpr_lock);
608
609 if (!instr->definitions.empty())
610 insert_wait_entry(ctx, instr->definitions[0], ds.gds ? event_gds : event_lds);
611
612 if (ds.gds) {
613 for (const Operand& op : instr->operands)
614 insert_wait_entry(ctx, op, event_gds_gpr_lock);
615 insert_wait_entry(ctx, exec, s2, event_gds_gpr_lock, false);
616 }
617 break;
618 }
619 case Format::LDSDIR: {
620 LDSDIR_instruction& ldsdir = instr->ldsdir();
621 update_counters(ctx, event_ldsdir, ldsdir.sync);
622 insert_wait_entry(ctx, instr->definitions[0], event_ldsdir);
623 break;
624 }
625 case Format::MUBUF:
626 case Format::MTBUF:
627 case Format::MIMG:
628 case Format::GLOBAL:
629 case Format::SCRATCH: {
630 uint8_t type = get_vmem_type(ctx.gfx_level, instr);
631 wait_event ev = get_vmem_event(ctx, instr, type);
632
633 update_counters(ctx, ev, get_sync_info(instr));
634
635 if (!instr->definitions.empty())
636 insert_wait_entry(ctx, instr->definitions[0], ev, type);
637
638 if (ctx.gfx_level == GFX6 && instr->format != Format::MIMG && instr->operands.size() == 4) {
639 update_counters(ctx, event_vmem_gpr_lock);
640 insert_wait_entry(ctx, instr->operands[3], event_vmem_gpr_lock);
641 } else if (ctx.gfx_level == GFX6 && instr->isMIMG() && !instr->operands[2].isUndefined()) {
642 update_counters(ctx, event_vmem_gpr_lock);
643 insert_wait_entry(ctx, instr->operands[2], event_vmem_gpr_lock);
644 }
645
646 break;
647 }
648 case Format::SOPP: {
649 if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_sendmsghalt)
650 update_counters(ctx, event_sendmsg);
651 break;
652 }
653 case Format::SOP1: {
654 if (instr->opcode == aco_opcode::s_sendmsg_rtn_b32 ||
655 instr->opcode == aco_opcode::s_sendmsg_rtn_b64) {
656 update_counters(ctx, event_sendmsg);
657 insert_wait_entry(ctx, instr->definitions[0], event_sendmsg);
658 }
659 break;
660 }
661 default: break;
662 }
663 }
664
665 void
emit_waitcnt(wait_ctx & ctx,std::vector<aco_ptr<Instruction>> & instructions,wait_imm & imm)666 emit_waitcnt(wait_ctx& ctx, std::vector<aco_ptr<Instruction>>& instructions, wait_imm& imm)
667 {
668 Builder bld(ctx.program, &instructions);
669
670 if (ctx.gfx_level >= GFX12) {
671 if (imm.vm != wait_imm::unset_counter && imm.lgkm != wait_imm::unset_counter) {
672 bld.sopp(aco_opcode::s_wait_loadcnt_dscnt, (imm.vm << 8) | imm.lgkm);
673 imm.vm = wait_imm::unset_counter;
674 imm.lgkm = wait_imm::unset_counter;
675 }
676
677 if (imm.vs != wait_imm::unset_counter && imm.lgkm != wait_imm::unset_counter) {
678 bld.sopp(aco_opcode::s_wait_storecnt_dscnt, (imm.vs << 8) | imm.lgkm);
679 imm.vs = wait_imm::unset_counter;
680 imm.lgkm = wait_imm::unset_counter;
681 }
682
683 aco_opcode op[wait_type_num];
684 op[wait_type_exp] = aco_opcode::s_wait_expcnt;
685 op[wait_type_lgkm] = aco_opcode::s_wait_dscnt;
686 op[wait_type_vm] = aco_opcode::s_wait_loadcnt;
687 op[wait_type_vs] = aco_opcode::s_wait_storecnt;
688 op[wait_type_sample] = aco_opcode::s_wait_samplecnt;
689 op[wait_type_bvh] = aco_opcode::s_wait_bvhcnt;
690 op[wait_type_km] = aco_opcode::s_wait_kmcnt;
691
692 for (unsigned i = 0; i < wait_type_num; i++) {
693 if (imm[i] != wait_imm::unset_counter)
694 bld.sopp(op[i], imm[i]);
695 }
696 } else {
697 if (imm.vs != wait_imm::unset_counter) {
698 assert(ctx.gfx_level >= GFX10);
699 bld.sopk(aco_opcode::s_waitcnt_vscnt, Operand(sgpr_null, s1), imm.vs);
700 imm.vs = wait_imm::unset_counter;
701 }
702 if (!imm.empty())
703 bld.sopp(aco_opcode::s_waitcnt, imm.pack(ctx.gfx_level));
704 }
705 imm = wait_imm();
706 }
707
708 bool
check_clause_raw(std::bitset<512> & regs_written,Instruction * instr)709 check_clause_raw(std::bitset<512>& regs_written, Instruction* instr)
710 {
711 for (Operand op : instr->operands) {
712 if (op.isConstant())
713 continue;
714 for (unsigned i = 0; i < op.size(); i++) {
715 if (regs_written[op.physReg().reg() + i])
716 return false;
717 }
718 }
719
720 for (Definition def : instr->definitions) {
721 for (unsigned i = 0; i < def.size(); i++)
722 regs_written[def.physReg().reg() + i] = 1;
723 }
724
725 return true;
726 }
727
728 void
handle_block(Program * program,Block & block,wait_ctx & ctx)729 handle_block(Program* program, Block& block, wait_ctx& ctx)
730 {
731 std::vector<aco_ptr<Instruction>> new_instructions;
732
733 wait_imm queued_imm;
734
735 size_t clause_end = 0;
736 for (size_t i = 0; i < block.instructions.size(); i++) {
737 aco_ptr<Instruction>& instr = block.instructions[i];
738
739 bool is_wait = queued_imm.unpack(ctx.gfx_level, instr.get());
740
741 memory_sync_info sync_info = get_sync_info(instr.get());
742 kill(queued_imm, instr.get(), ctx, sync_info);
743
744 /* At the start of a possible clause, also emit waitcnts for each instruction to avoid
745 * splitting the clause.
746 */
747 if (i >= clause_end || !queued_imm.empty()) {
748 std::optional<std::bitset<512>> regs_written;
749 for (clause_end = i + 1; clause_end < block.instructions.size(); clause_end++) {
750 Instruction* next = block.instructions[clause_end].get();
751 if (!should_form_clause(instr.get(), next))
752 break;
753
754 if (!regs_written) {
755 regs_written.emplace();
756 check_clause_raw(*regs_written, instr.get());
757 }
758
759 if (!check_clause_raw(*regs_written, next))
760 break;
761
762 kill(queued_imm, next, ctx, get_sync_info(next));
763 }
764 }
765
766 gen(instr.get(), ctx);
767
768 if (instr->format != Format::PSEUDO_BARRIER && !is_wait) {
769 if (instr->isVINTERP_INREG() && queued_imm.exp != wait_imm::unset_counter) {
770 instr->vinterp_inreg().wait_exp = MIN2(instr->vinterp_inreg().wait_exp, queued_imm.exp);
771 queued_imm.exp = wait_imm::unset_counter;
772 }
773
774 if (!queued_imm.empty())
775 emit_waitcnt(ctx, new_instructions, queued_imm);
776
777 bool is_ordered_count_acquire =
778 instr->opcode == aco_opcode::ds_ordered_count &&
779 !((instr->ds().offset1 | (instr->ds().offset0 >> 8)) & 0x1);
780
781 new_instructions.emplace_back(std::move(instr));
782 perform_barrier(ctx, queued_imm, sync_info, semantic_acquire);
783
784 if (is_ordered_count_acquire)
785 queued_imm.combine(ctx.barrier_imm[ffs(storage_gds) - 1]);
786 }
787 }
788
789 /* For last block of a program which has succeed shader part, wait all memory ops done
790 * before go to next shader part.
791 */
792 if (block.kind & block_kind_end_with_regs)
793 force_waitcnt(ctx, queued_imm);
794
795 if (!queued_imm.empty())
796 emit_waitcnt(ctx, new_instructions, queued_imm);
797
798 block.instructions.swap(new_instructions);
799 }
800
801 } /* end namespace */
802
803 void
insert_waitcnt(Program * program)804 insert_waitcnt(Program* program)
805 {
806 target_info info(program->gfx_level);
807
808 /* per BB ctx */
809 std::vector<bool> done(program->blocks.size());
810 std::vector<wait_ctx> in_ctx(program->blocks.size(), wait_ctx(program, &info));
811 std::vector<wait_ctx> out_ctx(program->blocks.size(), wait_ctx(program, &info));
812
813 std::stack<unsigned, std::vector<unsigned>> loop_header_indices;
814 unsigned loop_progress = 0;
815
816 if (program->pending_lds_access) {
817 update_barrier_imm(in_ctx[0], info.get_counters_for_event(event_lds), event_lds,
818 memory_sync_info(storage_shared));
819 }
820
821 for (Definition def : program->args_pending_vmem) {
822 update_counters(in_ctx[0], event_vmem);
823 insert_wait_entry(in_ctx[0], def, event_vmem);
824 }
825
826 for (unsigned i = 0; i < program->blocks.size();) {
827 Block& current = program->blocks[i++];
828
829 if (current.kind & block_kind_discard_early_exit) {
830 /* Because the jump to the discard early exit block may happen anywhere in a block, it's
831 * not possible to join it with its predecessors this way.
832 * We emit all required waits when emitting the discard block.
833 */
834 continue;
835 }
836
837 wait_ctx ctx = in_ctx[current.index];
838
839 if (current.kind & block_kind_loop_header) {
840 loop_header_indices.push(current.index);
841 } else if (current.kind & block_kind_loop_exit) {
842 bool repeat = false;
843 if (loop_progress == loop_header_indices.size()) {
844 i = loop_header_indices.top();
845 repeat = true;
846 }
847 loop_header_indices.pop();
848 loop_progress = std::min<unsigned>(loop_progress, loop_header_indices.size());
849 if (repeat)
850 continue;
851 }
852
853 bool changed = false;
854 for (unsigned b : current.linear_preds)
855 changed |= ctx.join(&out_ctx[b], false);
856 for (unsigned b : current.logical_preds)
857 changed |= ctx.join(&out_ctx[b], true);
858
859 if (done[current.index] && !changed) {
860 in_ctx[current.index] = std::move(ctx);
861 continue;
862 } else {
863 in_ctx[current.index] = ctx;
864 }
865
866 loop_progress = std::max<unsigned>(loop_progress, current.loop_nest_depth);
867 done[current.index] = true;
868
869 handle_block(program, current, ctx);
870
871 out_ctx[current.index] = std::move(ctx);
872 }
873 }
874
875 } // namespace aco
876