xref: /aosp_15_r20/external/zucchini/abs32_utils_unittest.cc (revision a03ca8b91e029cd15055c20c78c2e087c84792e4)
1 // Copyright 2017 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "components/zucchini/abs32_utils.h"
6 
7 #include <stdint.h>
8 
9 #include <algorithm>
10 #include <string>
11 #include <utility>
12 
13 #include "base/numerics/safe_conversions.h"
14 #include "components/zucchini/address_translator.h"
15 #include "components/zucchini/image_utils.h"
16 #include "components/zucchini/test_utils.h"
17 #include "testing/gtest/include/gtest/gtest.h"
18 
19 namespace zucchini {
20 
21 namespace {
22 
23 // A trivial AddressTranslator that applies constant shift.
24 class TestAddressTranslator : public AddressTranslator {
25  public:
TestAddressTranslator(size_t image_size,rva_t rva_begin)26   TestAddressTranslator(size_t image_size, rva_t rva_begin) {
27     DCHECK_GE(rva_begin, 0U);
28     CHECK_EQ(AddressTranslator::kSuccess,
29              Initialize({{0, base::checked_cast<offset_t>(image_size),
30                           rva_begin, base::checked_cast<rva_t>(image_size)}}));
31   }
32 };
33 
34 // Helper to translate address |value| to RVA. May return |kInvalidRva|.
AddrValueToRva(uint64_t value,AbsoluteAddress * addr)35 rva_t AddrValueToRva(uint64_t value, AbsoluteAddress* addr) {
36   *addr->mutable_value() = value;
37   return addr->ToRva();
38 }
39 
40 }  // namespace
41 
TEST(Abs32UtilsTest,AbsoluteAddress32)42 TEST(Abs32UtilsTest, AbsoluteAddress32) {
43   std::vector<uint8_t> data32 = ParseHexString(
44       "00 00 32 00  21 43 65 4A  00 00 00 00  FF FF FF FF  FF FF 31 00");
45   ConstBufferView image32(data32.data(), data32.size());
46   MutableBufferView mutable_image32(data32.data(), data32.size());
47 
48   AbsoluteAddress addr32(kBit32, 0x00320000U);
49   EXPECT_TRUE(addr32.Read(0x0U, image32));
50   EXPECT_EQ(0x00000000U, addr32.ToRva());
51   EXPECT_TRUE(addr32.Read(0x4U, image32));
52   EXPECT_EQ(0x4A334321U, addr32.ToRva());
53   EXPECT_TRUE(addr32.Read(0x8U, image32));
54   EXPECT_EQ(kInvalidRva, addr32.ToRva());  // Underflow.
55   EXPECT_TRUE(addr32.Read(0xCU, image32));
56   EXPECT_EQ(kInvalidRva, addr32.ToRva());  // Translated RVA would be too large.
57   EXPECT_TRUE(addr32.Read(0x10U, image32));
58   EXPECT_EQ(kInvalidRva, addr32.ToRva());  // Underflow (boundary case).
59 
60   EXPECT_FALSE(addr32.Read(0x11U, image32));
61   EXPECT_FALSE(addr32.Read(0x14U, image32));
62   EXPECT_FALSE(addr32.Read(0x100000U, image32));
63   EXPECT_FALSE(addr32.Read(0x80000000U, image32));
64   EXPECT_FALSE(addr32.Read(0xFFFFFFFFU, image32));
65 
66   EXPECT_TRUE(addr32.FromRva(0x11223344U));
67   EXPECT_TRUE(addr32.Write(0x2U, &mutable_image32));
68   EXPECT_TRUE(addr32.Write(0x10U, &mutable_image32));
69   std::vector<uint8_t> expected_data32 = ParseHexString(
70       "00 00  44 33 54 11  65 4A 00 00 00 00 FF FF FF FF  44 33 54 11");
71   EXPECT_EQ(expected_data32, data32);
72   EXPECT_FALSE(addr32.Write(0x11U, &mutable_image32));
73   EXPECT_FALSE(addr32.Write(0xFFFFFFFFU, &mutable_image32));
74   EXPECT_EQ(expected_data32, data32);
75 }
76 
TEST(Abs32UtilsTest,AbsoluteAddress32Overflow)77 TEST(Abs32UtilsTest, AbsoluteAddress32Overflow) {
78   AbsoluteAddress addr32(kBit32, 0xC0000000U);
79   EXPECT_TRUE(addr32.FromRva(0x00000000U));
80   EXPECT_TRUE(addr32.FromRva(0x11223344U));
81   EXPECT_TRUE(addr32.FromRva(0x3FFFFFFFU));
82   EXPECT_FALSE(addr32.FromRva(0x40000000U));
83   EXPECT_FALSE(addr32.FromRva(0x40000001U));
84   EXPECT_FALSE(addr32.FromRva(0x80000000U));
85   EXPECT_FALSE(addr32.FromRva(0xFFFFFFFFU));
86 
87   EXPECT_EQ(0x00000000U, AddrValueToRva(0xC0000000U, &addr32));
88   EXPECT_EQ(kInvalidRva, AddrValueToRva(0xBFFFFFFFU, &addr32));
89   EXPECT_EQ(kInvalidRva, AddrValueToRva(0x00000000U, &addr32));
90   EXPECT_EQ(0x3FFFFFFFU, AddrValueToRva(0xFFFFFFFFU, &addr32));
91 }
92 
TEST(Abs32UtilsTest,AbsoluteAddress64)93 TEST(Abs32UtilsTest, AbsoluteAddress64) {
94   std::vector<uint8_t> data64 = ParseHexString(
95       "00 00 00 00 64 00 00 00  21 43 65 4A 64 00 00 00 "
96       "00 00 00 00 00 00 00 00  FF FF FF FF FF FF FF FF "
97       "00 00 00 00 64 00 00 80  FF FF FF FF 63 00 00 00");
98   ConstBufferView image64(data64.data(), data64.size());
99   MutableBufferView mutable_image64(data64.data(), data64.size());
100 
101   AbsoluteAddress addr64(kBit64, 0x0000006400000000ULL);
102   EXPECT_TRUE(addr64.Read(0x0U, image64));
103   EXPECT_EQ(0x00000000U, addr64.ToRva());
104   EXPECT_TRUE(addr64.Read(0x8U, image64));
105   EXPECT_EQ(0x4A654321U, addr64.ToRva());
106   EXPECT_TRUE(addr64.Read(0x10U, image64));  // Succeeds, in spite of value.
107   EXPECT_EQ(kInvalidRva, addr64.ToRva());    // Underflow.
108   EXPECT_TRUE(addr64.Read(0x18U, image64));
109   EXPECT_EQ(kInvalidRva, addr64.ToRva());  // Translated RVA too large.
110   EXPECT_TRUE(addr64.Read(0x20U, image64));
111   EXPECT_EQ(kInvalidRva, addr64.ToRva());  // Translated RVA toolarge.
112   EXPECT_TRUE(addr64.Read(0x28U, image64));
113   EXPECT_EQ(kInvalidRva, addr64.ToRva());  // Underflow.
114 
115   EXPECT_FALSE(addr64.Read(0x29U, image64));  // Extends outside.
116   EXPECT_FALSE(addr64.Read(0x30U, image64));  // Entirely outside (note: hex).
117   EXPECT_FALSE(addr64.Read(0x100000U, image64));
118   EXPECT_FALSE(addr64.Read(0x80000000U, image64));
119   EXPECT_FALSE(addr64.Read(0xFFFFFFFFU, image64));
120 
121   EXPECT_TRUE(addr64.FromRva(0x11223344U));
122   EXPECT_TRUE(addr64.Write(0x13U, &mutable_image64));
123   EXPECT_TRUE(addr64.Write(0x20U, &mutable_image64));
124   std::vector<uint8_t> expected_data64 = ParseHexString(
125       "00 00 00 00 64 00 00 00  21 43 65 4A 64 00 00 00 "
126       "00 00 00 44 33 22 11 64  00 00 00 FF FF FF FF FF "
127       "44 33 22 11 64 00 00 00  FF FF FF FF 63 00 00 00");
128   EXPECT_EQ(expected_data64, data64);
129   EXPECT_FALSE(addr64.Write(0x29U, &mutable_image64));
130   EXPECT_FALSE(addr64.Write(0x30U, &mutable_image64));
131   EXPECT_FALSE(addr64.Write(0xFFFFFFFFU, &mutable_image64));
132   EXPECT_EQ(expected_data64, data64);
133 
134   EXPECT_FALSE(addr64.FromRva(0xFFFFFFFFU));
135 }
136 
TEST(Abs32UtilsTest,AbsoluteAddress64Overflow)137 TEST(Abs32UtilsTest, AbsoluteAddress64Overflow) {
138   {
139     // Counterpart to AbsoluteAddress632verflow test.
140     AbsoluteAddress addr64(kBit64, 0xFFFFFFFFC0000000ULL);
141     EXPECT_TRUE(addr64.FromRva(0x00000000U));
142     EXPECT_TRUE(addr64.FromRva(0x11223344U));
143     EXPECT_TRUE(addr64.FromRva(0x3FFFFFFFU));
144     EXPECT_FALSE(addr64.FromRva(0x40000000U));
145     EXPECT_FALSE(addr64.FromRva(0x40000001U));
146     EXPECT_FALSE(addr64.FromRva(0x80000000U));
147     EXPECT_FALSE(addr64.FromRva(0xFFFFFFFFU));
148 
149     EXPECT_EQ(0x00000000U, AddrValueToRva(0xFFFFFFFFC0000000U, &addr64));
150     EXPECT_EQ(kInvalidRva, AddrValueToRva(0xFFFFFFFFBFFFFFFFU, &addr64));
151     EXPECT_EQ(kInvalidRva, AddrValueToRva(0x0000000000000000U, &addr64));
152     EXPECT_EQ(kInvalidRva, AddrValueToRva(0xFFFFFFFF00000000U, &addr64));
153     EXPECT_EQ(0x3FFFFFFFU, AddrValueToRva(0xFFFFFFFFFFFFFFFFU, &addr64));
154   }
155   {
156     // Pseudo-counterpart to AbsoluteAddress632verflow test: Some now pass.
157     AbsoluteAddress addr64(kBit64, 0xC0000000U);
158     EXPECT_TRUE(addr64.FromRva(0x00000000U));
159     EXPECT_TRUE(addr64.FromRva(0x11223344U));
160     EXPECT_TRUE(addr64.FromRva(0x3FFFFFFFU));
161     EXPECT_TRUE(addr64.FromRva(0x40000000U));
162     EXPECT_TRUE(addr64.FromRva(0x40000001U));
163     EXPECT_FALSE(addr64.FromRva(0x80000000U));
164     EXPECT_FALSE(addr64.FromRva(0xFFFFFFFFU));
165 
166     // ToRva() still fail though.
167     EXPECT_EQ(0x00000000U, AddrValueToRva(0xC0000000U, &addr64));
168     EXPECT_EQ(kInvalidRva, AddrValueToRva(0xBFFFFFFFU, &addr64));
169     EXPECT_EQ(kInvalidRva, AddrValueToRva(0x00000000U, &addr64));
170     EXPECT_EQ(0x3FFFFFFFU, AddrValueToRva(0xFFFFFFFFU, &addr64));
171   }
172   {
173     AbsoluteAddress addr64(kBit64, 0xC000000000000000ULL);
174     EXPECT_TRUE(addr64.FromRva(0x00000000ULL));
175     EXPECT_TRUE(addr64.FromRva(0x11223344ULL));
176     EXPECT_TRUE(addr64.FromRva(0x3FFFFFFFULL));
177     EXPECT_TRUE(addr64.FromRva(0x40000000ULL));
178     EXPECT_TRUE(addr64.FromRva(0x40000001ULL));
179     EXPECT_FALSE(addr64.FromRva(0x80000000ULL));
180     EXPECT_FALSE(addr64.FromRva(0xFFFFFFFFULL));
181 
182     EXPECT_EQ(0x00000000U, AddrValueToRva(0xC000000000000000ULL, &addr64));
183     EXPECT_EQ(kInvalidRva, AddrValueToRva(0xBFFFFFFFFFFFFFFFULL, &addr64));
184     EXPECT_EQ(kInvalidRva, AddrValueToRva(0x0000000000000000ULL, &addr64));
185     EXPECT_EQ(0x3FFFFFFFU, AddrValueToRva(0xC00000003FFFFFFFULL, &addr64));
186     EXPECT_EQ(kInvalidRva, AddrValueToRva(0xFFFFFFFFFFFFFFFFULL, &addr64));
187   }
188 }
189 
TEST(Abs32UtilsTest,Win32Read32)190 TEST(Abs32UtilsTest, Win32Read32) {
191   constexpr uint32_t kImageBase = 0xA0000000U;
192   constexpr uint32_t kRvaBegin = 0x00C00000U;
193   struct {
194     std::vector<uint8_t> data32;
195     std::vector<offset_t> abs32_locations;  // Assumtion: Sorted.
196     offset_t lo;  // Assumption: In range, does not straddle |abs32_location|.
197     offset_t hi;  // Assumption: Also >= |lo|.
198     std::vector<Reference> expected_refs;
199   } test_cases[] = {
200       // Targets at beginning and end.
201       {ParseHexString("FF FF FF FF 0F 00 C0 A0 00 00 C0 A0 FF FF FF FF"),
202        {0x4U, 0x8U},
203        0x0U,
204        0x10U,
205        {{0x4U, 0xFU}, {0x8U, 0x0U}}},
206       // Targets at beginning and end are out of bound: Rejected.
207       {ParseHexString("FF FF FF FF 10 00 C0 A0 FF FF BF A0 FF FF FF FF"),
208        {0x4U, 0x8U},
209        0x0U,
210        0x10U,
211        std::vector<Reference>()},
212       // Same with more extreme target values: Rejected.
213       {ParseHexString("FF FF FF FF FF FF FF FF 00 00 00 00 FF FF FF FF"),
214        {0x4U, 0x8U},
215        0x0U,
216        0x10U,
217        std::vector<Reference>()},
218       // Locations at beginning and end, plus invalid locations.
219       {ParseHexString("08 00 C0 A0 FF FF FF FF FF FF FF FF 04 00 C0 A0"),
220        {0x0U, 0xCU, 0x10U, 0x1000U, 0x80000000U, 0xFFFFFFFFU},
221        0x0U,
222        0x10U,
223        {{0x0U, 0x8U}, {0xCU, 0x4U}}},
224       // Odd size, location, target.
225       {ParseHexString("FF FF FF 09 00 C0 A0 FF FF FF FF FF FF FF FF FF "
226                       "FF FF FF"),
227        {0x3U},
228        0x0U,
229        0x13U,
230        {{0x3U, 0x9U}}},
231       // No location given.
232       {ParseHexString("FF FF FF FF 0C 00 C0 A0 00 00 C0 A0 FF FF FF FF"),
233        std::vector<offset_t>(), 0x0U, 0x10U, std::vector<Reference>()},
234       // Simple alternation.
235       {ParseHexString("04 00 C0 A0 FF FF FF FF 0C 00 C0 A0 FF FF FF FF "
236                       "14 00 C0 A0 FF FF FF FF 1C 00 C0 A0 FF FF FF FF"),
237        {0x0U, 0x8U, 0x10U, 0x18U},
238        0x0U,
239        0x20U,
240        {{0x0U, 0x4U}, {0x8U, 0xCU}, {0x10U, 0x14U}, {0x18U, 0x1CU}}},
241       // Same, with locations limited by |lo| and |hi|. By assumption these must
242       // not cut accross Reference body.
243       {ParseHexString("04 00 C0 A0 FF FF FF FF 0C 00 C0 A0 FF FF FF FF "
244                       "14 00 C0 A0 FF FF FF FF 1C 00 C0 A0 FF FF FF FF"),
245        {0x0U, 0x8U, 0x10U, 0x18U},
246        0x04U,
247        0x17U,
248        {{0x8U, 0xCU}, {0x10U, 0x14U}}},
249       // Same, with very limiting |lo| and |hi|.
250       {ParseHexString("04 00 C0 A0 FF FF FF FF 0C 00 C0 A0 FF FF FF FF "
251                       "14 00 C0 A0 FF FF FF FF 1C 00 C0 A0 FF FF FF FF"),
252        {0x0U, 0x8U, 0x10U, 0x18U},
253        0x0CU,
254        0x10U,
255        std::vector<Reference>()},
256       // Same, |lo| == |hi|.
257       {ParseHexString("04 00 C0 A0 FF FF FF FF 0C 00 C0 A0 FF FF FF FF "
258                       "14 00 C0 A0 FF FF FF FF 1C 00 C0 A0 FF FF FF FF"),
259        {0x0U, 0x8U, 0x10U, 0x18U},
260        0x14U,
261        0x14U,
262        std::vector<Reference>()},
263       // Same, |lo| and |hi| at end.
264       {ParseHexString("04 00 C0 A0 FF FF FF FF 0C 00 C0 A0 FF FF FF FF "
265                       "14 00 C0 A0 FF FF FF FF 1C 00 C0 A0 FF FF FF FF"),
266        {0x0U, 0x8U, 0x10U, 0x18U},
267        0x20U,
268        0x20U,
269        std::vector<Reference>()},
270       // Mix. Note that targets can overlap.
271       {ParseHexString("FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF "
272                       "06 00 C0 A0 2C 00 C0 A0 FF FF C0 A0 2B 00 C0 A0 "
273                       "FF 06 00 C0 A0 00 00 C0 A0 FF FF FF FF FF FF FF"),
274        {0x10U, 0x14U, 0x18U, 0x1CU, 0x21U, 0x25U, 0xAAAAU},
275        0x07U,
276        0x25U,
277        {{0x10U, 0x6U}, {0x14U, 0x2CU}, {0x1CU, 0x2BU}, {0x21, 0x6U}}},
278   };
279 
280   for (const auto& test_case : test_cases) {
281     ConstBufferView image32(test_case.data32.data(), test_case.data32.size());
282     Abs32RvaExtractorWin32 extractor(image32, {kBit32, kImageBase},
283                                      test_case.abs32_locations, test_case.lo,
284                                      test_case.hi);
285 
286     TestAddressTranslator translator(test_case.data32.size(), kRvaBegin);
287     Abs32ReaderWin32 reader(std::move(extractor), translator);
288 
289     // Loop over |expected_ref| to check element-by-element.
290     std::optional<Reference> ref;
291     for (const auto& expected_ref : test_case.expected_refs) {
292       ref = reader.GetNext();
293       EXPECT_TRUE(ref.has_value());
294       EXPECT_EQ(expected_ref, ref.value());
295     }
296     // Check that nothing is left.
297     ref = reader.GetNext();
298     EXPECT_FALSE(ref.has_value());
299   }
300 }
301 
TEST(Abs32UtilsTest,Win32Read64)302 TEST(Abs32UtilsTest, Win32Read64) {
303   constexpr uint64_t kImageBase = 0x31415926A0000000U;
304   constexpr uint32_t kRvaBegin = 0x00C00000U;
305   // For simplicity, just test mixed case.
306   std::vector<uint8_t> data64 = ParseHexString(
307       "FF FF FF FF FF FF FF FF 00 00 C0 A0 26 59 41 31 "
308       "06 00 C0 A0 26 59 41 31 02 00 C0 A0 26 59 41 31 "
309       "FF FF FF BF 26 59 41 31 FF FF FF FF FF FF FF FF "
310       "02 00 C0 A0 26 59 41 31 07 00 C0 A0 26 59 41 31");
311   std::vector<offset_t> abs32_locations = {0x8U,  0x10U, 0x18U, 0x20U,
312                                            0x28U, 0x30U, 0x38U, 0x40U};
313   offset_t lo = 0x10U;
314   offset_t hi = 0x38U;
315   std::vector<Reference> expected_refs = {
316       {0x10U, 0x06U}, {0x18U, 0x02U}, {0x30U, 0x02U}};
317 
318   ConstBufferView image64(data64.data(), data64.size());
319   Abs32RvaExtractorWin32 extractor(image64, {kBit64, kImageBase},
320                                    abs32_locations, lo, hi);
321   TestAddressTranslator translator(data64.size(), kRvaBegin);
322   Abs32ReaderWin32 reader(std::move(extractor), translator);
323 
324   std::vector<Reference> refs;
325   std::optional<Reference> ref;
326   for (ref = reader.GetNext(); ref.has_value(); ref = reader.GetNext())
327     refs.push_back(ref.value());
328   EXPECT_EQ(expected_refs, refs);
329 }
330 
TEST(Abs32UtilsTest,Win32ReadFail)331 TEST(Abs32UtilsTest, Win32ReadFail) {
332   // Make |bitness| a state to reduce repetition.
333   Bitness bitness = kBit32;
334 
335   constexpr uint32_t kImageBase = 0xA0000000U;  // Shared for 32-bit and 64-bit.
336   std::vector<uint8_t> data(32U, 0xFFU);
337   ConstBufferView image(data.data(), data.size());
338 
339   auto try_make = [&](std::vector<offset_t>&& abs32_locations, offset_t lo,
340                       offset_t hi) {
341     Abs32RvaExtractorWin32 extractor(image, {bitness, kImageBase},
342                                      abs32_locations, lo, hi);
343     extractor.GetNext();  // Dummy call so |extractor| gets used.
344   };
345 
346   // 32-bit tests.
347   bitness = kBit32;
348   try_make({8U, 24U}, 0U, 32U);
349   EXPECT_DEATH(try_make({4U, 24U}, 32U, 0U), "");  // |lo| > |hi|.
350   try_make({8U, 24U}, 0U, 12U);
351   try_make({8U, 24U}, 0U, 28U);
352   try_make({8U, 24U}, 8U, 32U);
353   try_make({8U, 24U}, 24U, 32U);
354   EXPECT_DEATH(try_make({8U, 24U}, 0U, 11U), "");   // |hi| straddles.
355   EXPECT_DEATH(try_make({8U, 24U}, 26U, 32U), "");  // |lo| straddles.
356   try_make({8U, 24U}, 12U, 24U);
357 
358   // 64-bit tests.
359   bitness = kBit64;
360   try_make({6U, 22U}, 0U, 32U);
361   // |lo| > |hi|.
362   EXPECT_DEATH(try_make(std::vector<offset_t>(), 32U, 31U), "");
363   try_make({6U, 22U}, 0U, 14U);
364   try_make({6U, 22U}, 0U, 30U);
365   try_make({6U, 22U}, 6U, 32U);
366   try_make({6U, 22U}, 22U, 32U);
367   EXPECT_DEATH(try_make({6U, 22U}, 0U, 29U), "");  // |hi| straddles.
368   EXPECT_DEATH(try_make({6U, 22U}, 7U, 32U), "");  // |lo| straddles.
369   try_make({6U, 22U}, 14U, 20U);
370   try_make({16U}, 16U, 24U);
371   EXPECT_DEATH(try_make({16U}, 18U, 18U), "");  // |lo|, |hi| straddle.
372 }
373 
TEST(Abs32UtilsTest,Win32Write32)374 TEST(Abs32UtilsTest, Win32Write32) {
375   constexpr uint32_t kImageBase = 0xA0000000U;
376   constexpr uint32_t kRvaBegin = 0x00C00000U;
377   std::vector<uint8_t> data32(0x30, 0xFFU);
378   MutableBufferView image32(data32.data(), data32.size());
379   AbsoluteAddress addr(kBit32, kImageBase);
380   TestAddressTranslator translator(data32.size(), kRvaBegin);
381   Abs32WriterWin32 writer(image32, std::move(addr), translator);
382 
383   // Successful writes.
384   writer.PutNext({0x02U, 0x10U});
385   writer.PutNext({0x0BU, 0x21U});
386   writer.PutNext({0x16U, 0x10U});
387   writer.PutNext({0x2CU, 0x00U});
388 
389   // Invalid data: For simplicity, Abs32WriterWin32 simply ignores bad writes.
390   // Invalid location.
391   writer.PutNext({0x2DU, 0x20U});
392   writer.PutNext({0x80000000U, 0x20U});
393   writer.PutNext({0xFFFFFFFFU, 0x20U});
394   // Invalid target.
395   writer.PutNext({0x1CU, 0x00001111U});
396   writer.PutNext({0x10U, 0xFFFFFF00U});
397 
398   std::vector<uint8_t> expected_data32 = ParseHexString(
399       "FF FF 10 00 C0 A0 FF FF FF FF FF 21 00 C0 A0 FF "
400       "FF FF FF FF FF FF 10 00 C0 A0 FF FF FF FF FF FF "
401       "FF FF FF FF FF FF FF FF FF FF FF FF 00 00 C0 A0");
402   EXPECT_EQ(expected_data32, data32);
403 }
404 
TEST(Abs32UtilsTest,Win32Write64)405 TEST(Abs32UtilsTest, Win32Write64) {
406   constexpr uint64_t kImageBase = 0x31415926A0000000U;
407   constexpr uint32_t kRvaBegin = 0x00C00000U;
408   std::vector<uint8_t> data64(0x30, 0xFFU);
409   MutableBufferView image32(data64.data(), data64.size());
410   AbsoluteAddress addr(kBit64, kImageBase);
411   TestAddressTranslator translator(data64.size(), kRvaBegin);
412   Abs32WriterWin32 writer(image32, std::move(addr), translator);
413 
414   // Successful writes.
415   writer.PutNext({0x02U, 0x10U});
416   writer.PutNext({0x0BU, 0x21U});
417   writer.PutNext({0x16U, 0x10U});
418   writer.PutNext({0x28U, 0x00U});
419 
420   // Invalid data: For simplicity, Abs32WriterWin32 simply ignores bad writes.
421   // Invalid location.
422   writer.PutNext({0x29U, 0x20U});
423   writer.PutNext({0x80000000U, 0x20U});
424   writer.PutNext({0xFFFFFFFFU, 0x20U});
425   // Invalid target.
426   writer.PutNext({0x1CU, 0x00001111U});
427   writer.PutNext({0x10U, 0xFFFFFF00U});
428 
429   std::vector<uint8_t> expected_data64 = ParseHexString(
430       "FF FF 10 00 C0 A0 26 59 41 31 FF 21 00 C0 A0 26 "
431       "59 41 31 FF FF FF 10 00 C0 A0 26 59 41 31 FF FF "
432       "FF FF FF FF FF FF FF FF 00 00 C0 A0 26 59 41 31");
433   EXPECT_EQ(expected_data64, data64);
434 }
435 
TEST(Abs32UtilsTest,RemoveUntranslatableAbs32)436 TEST(Abs32UtilsTest, RemoveUntranslatableAbs32) {
437   Bitness kBitness = kBit32;
438   uint64_t kImageBase = 0x2BCD0000;
439 
440   // Valid RVAs: [0x00001A00, 0x00001A28) and [0x00003A00, 0x00004000).
441   // Valid AVAs: [0x2BCD1A00, 0x2BCD1A28) and [0x2BCD3A00, 0x2BCD4000).
442   // Notice that the second section has has dangling RVA.
443   AddressTranslator translator;
444   ASSERT_EQ(AddressTranslator::kSuccess,
445             translator.Initialize(
446                 {{0x04, +0x28, 0x1A00, +0x28}, {0x30, +0x30, 0x3A00, +0x600}}));
447 
448   std::vector<uint8_t> data = ParseHexString(
449       "FF FF FF FF  0B 3A CD 2B  00 00 00  04 3A CD 2B  00 "
450       "FC 3F CD 2B  14 1A CD 2B  44 00 00 00  CC 00 00 00 "
451       "00 00 55 00  00 00  1E 1A CD 2B  00 99  FF FF FF FF "
452       "10 3A CD 2B  22 00 00 00  00 00 00 11  00 00 00 00 "
453       "66 00 00 00  28 1A CD 2B  00 00 CD 2B  27 1A CD 2B "
454       "FF 39 CD 2B  00 00 00 00  18 1A CD 2B  00 00 00 00 "
455       "FF FF FF FF  FF FF FF FF");
456   MutableBufferView image(data.data(), data.size());
457 
458   const offset_t kAbs1 = 0x04;  // a:2BCD3A0B = r:3A0B = o:3B
459   const offset_t kAbs2 = 0x0B;  // a:2BCD3A04 = r:3A04 = o:34
460   const offset_t kAbs3 = 0x10;  // a:2BCD3FFF = r:3FFF (dangling)
461   const offset_t kAbs4 = 0x14;  // a:2BCD1A14 = r:1A14 = o:18
462   const offset_t kAbs5 = 0x26;  // a:2BCD1A1E = r:1A1E = o:22
463   const offset_t kAbs6 = 0x30;  // a:2BCD3A10 = r:3A10 = 0x40
464   const offset_t kAbs7 = 0x44;  // a:2BCD1A28 = r:1A28 (bad: sentinel)
465   const offset_t kAbs8 = 0x48;  // a:2BCD0000 = r:0000 (bad: not covered)
466   const offset_t kAbs9 = 0x4C;  // a:2BCD1A27 = r:1A27 = 0x2B
467   const offset_t kAbsA = 0x50;  // a:2BCD39FF (bad: not covered)
468   const offset_t kAbsB = 0x54;  // a:00000000 (bad: underflow)
469   const offset_t kAbsC = 0x58;  // a:2BCD1A18 = r:1A18 = 0x1C
470 
471   std::vector<offset_t> locations = {kAbs1, kAbs2, kAbs3, kAbs4, kAbs5, kAbs6,
472                                      kAbs7, kAbs8, kAbs9, kAbsA, kAbsB, kAbsC};
473   std::vector<offset_t> exp_locations = {kAbs1, kAbs2, kAbs3, kAbs4,
474                                          kAbs5, kAbs6, kAbs9, kAbsC};
475   size_t exp_num_removed = locations.size() - exp_locations.size();
476   size_t num_removed = RemoveUntranslatableAbs32(image, {kBitness, kImageBase},
477                                                  translator, &locations);
478   EXPECT_EQ(exp_num_removed, num_removed);
479   EXPECT_EQ(exp_locations, locations);
480 }
481 
TEST(Abs32UtilsTest,RemoveOverlappingAbs32Locations)482 TEST(Abs32UtilsTest, RemoveOverlappingAbs32Locations) {
483   // Make |width| a state to reduce repetition.
484   uint32_t width = WidthOf(kBit32);
485 
486   auto run_test = [&width](const std::vector<offset_t>& expected_locations,
487                            std::vector<offset_t>&& locations) {
488     ASSERT_TRUE(std::is_sorted(locations.begin(), locations.end()));
489     size_t expected_removals = locations.size() - expected_locations.size();
490     size_t removals = RemoveOverlappingAbs32Locations(width, &locations);
491     EXPECT_EQ(expected_removals, removals);
492     EXPECT_EQ(expected_locations, locations);
493   };
494 
495   // 32-bit tests.
496   width = WidthOf(kBit32);
497   run_test(std::vector<offset_t>(), std::vector<offset_t>());
498   run_test({4U}, {4U});
499   run_test({4U, 10U}, {4U, 10U});
500   run_test({4U, 8U}, {4U, 8U});
501   run_test({4U}, {4U, 7U});
502   run_test({4U}, {4U, 4U});
503   run_test({4U, 8U}, {4U, 7U, 8U});
504   run_test({4U, 10U}, {4U, 7U, 10U});
505   run_test({4U, 9U}, {4U, 9U, 10U});
506   run_test({3U}, {3U, 5U, 6U});
507   run_test({3U, 7U}, {3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U});
508   run_test({3U, 7U, 11U}, {3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U});
509   run_test({4U, 8U, 12U}, {4U, 6U, 8U, 10U, 12U});
510   run_test({4U, 8U, 12U, 16U}, {4U, 8U, 12U, 16U});
511   run_test({4U, 8U, 12U}, {4U, 8U, 9U, 12U});
512   run_test({4U}, {4U, 4U, 4U, 4U, 4U, 4U});
513   run_test({3U}, {3U, 4U, 4U, 4U, 5U, 5U});
514   run_test({3U, 7U}, {3U, 4U, 4U, 4U, 7U, 7U, 8U});
515   run_test({10U, 20U, 30U, 40U}, {10U, 20U, 22U, 22U, 30U, 40U});
516   run_test({1000000U, 1000004U}, {1000000U, 1000004U});
517   run_test({1000000U}, {1000000U, 1000002U});
518 
519   // 64-bit tests.
520   width = WidthOf(kBit64);
521   run_test(std::vector<offset_t>(), std::vector<offset_t>());
522   run_test({4U}, {4U});
523   run_test({4U, 20U}, {4U, 20U});
524   run_test({4U, 12U}, {4U, 12U});
525   run_test({4U}, {4U, 11U});
526   run_test({4U}, {4U, 5U});
527   run_test({4U}, {4U, 4U});
528   run_test({4U, 12U, 20U}, {4U, 12U, 20U});
529   run_test({1U, 9U, 17U}, {1U, 9U, 17U});
530   run_test({1U, 17U}, {1U, 8U, 17U});
531   run_test({1U, 10U}, {1U, 10U, 17U});
532   run_test({3U, 11U}, {3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U});
533   run_test({4U, 12U}, {4U, 6U, 8U, 10U, 12U});
534   run_test({4U, 12U}, {4U, 12U, 16U});
535   run_test({4U, 12U, 20U, 28U}, {4U, 12U, 20U, 28U});
536   run_test({4U}, {4U, 4U, 4U, 4U, 5U, 5U});
537   run_test({3U, 11U}, {3U, 4U, 4U, 4U, 11U, 11U, 12U});
538   run_test({10U, 20U, 30U, 40U}, {10U, 20U, 22U, 22U, 30U, 40U});
539   run_test({1000000U, 1000008U}, {1000000U, 1000008U});
540   run_test({1000000U}, {1000000U, 1000004U});
541 }
542 
543 }  // namespace zucchini
544