xref: /aosp_15_r20/external/tensorflow/tensorflow/lite/testing/op_tests/tile.py (revision b6fb3261f9314811a0f4371741dbb8839866f948)
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for tile."""
16import tensorflow.compat.v1 as tf
17from tensorflow.lite.testing.zip_test_utils import create_tensor_data
18from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
19from tensorflow.lite.testing.zip_test_utils import register_make_test_function
20
21
22@register_make_test_function()
23def make_tile_tests(options):
24  """Make a set of tests to do tile."""
25  test_parameters = [
26      {
27          "input_dtype": [tf.float32, tf.int32, tf.bool, tf.string],
28          "input_shape": [[3, 2, 1], [2, 2, 2]],
29          "multiplier_dtype": [tf.int32, tf.int64],
30          "multiplier_shape": [[3]]
31      },
32      {
33          "input_dtype": [tf.float32, tf.int32],
34          "input_shape": [[]],
35          "multiplier_dtype": [tf.int32, tf.int64],
36          "multiplier_shape": [[0]]
37      },
38      {
39          "input_dtype": [tf.float32],
40          "input_shape": [[3, 2, 1]],
41          "multiplier_dtype": [tf.int32, tf.int64],
42          "multiplier_shape": [[3]],
43          "fully_quantize": [True],
44          # The input range is used to create representative dataset for both
45          # input and multiplier so it needs to be positive.
46          "input_range": [(1, 10)],
47      }
48  ]
49
50  def build_graph(parameters):
51    """Build the tile op testing graph."""
52    input_value = tf.compat.v1.placeholder(
53        dtype=parameters["input_dtype"],
54        shape=parameters["input_shape"],
55        name="input")
56    multiplier_value = tf.compat.v1.placeholder(
57        dtype=parameters["multiplier_dtype"],
58        shape=parameters["multiplier_shape"],
59        name="multiplier")
60    out = tf.tile(input_value, multiplier_value)
61    return [input_value, multiplier_value], [out]
62
63  def build_inputs(parameters, sess, inputs, outputs):
64    min_value, max_value = parameters.get("input_range", (-10, 10))
65    input_value = create_tensor_data(
66        parameters["input_dtype"],
67        parameters["input_shape"],
68        min_value=min_value,
69        max_value=max_value)
70    multipliers_value = create_tensor_data(
71        parameters["multiplier_dtype"],
72        parameters["multiplier_shape"],
73        min_value=0)
74    return [input_value, multipliers_value], sess.run(
75        outputs,
76        feed_dict={
77            inputs[0]: input_value,
78            inputs[1]: multipliers_value
79        })
80
81  make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
82