xref: /aosp_15_r20/external/pytorch/aten/src/ATen/templates/TensorBody.h (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1 #pragma once
2 
3 #ifdef TORCH_ASSERT_NO_OPERATORS
4 #error This change adds a dependency on native_functions.yaml,            \
5   meaning the file will need to be re-compiled every time an operator     \
6   is changed or added. Consider if your change would be better placed in  \
7   another file, or if a more specific header might achieve the same goal. \
8   See NOTE: [Tensor vs. TensorBase]
9 #endif
10 
11 #include <c10/core/Device.h>
12 #include <c10/core/Layout.h>
13 #include <c10/core/MemoryFormat.h>
14 #include <c10/core/QScheme.h>
15 #include <c10/core/Stream.h>
16 #include <c10/core/Scalar.h>
17 #include <c10/core/ScalarType.h>
18 #include <c10/core/ScalarTypeToTypeMeta.h>
19 #include <c10/core/Storage.h>
20 #include <c10/core/TensorImpl.h>
21 #include <c10/core/UndefinedTensorImpl.h>
22 #include <c10/core/WrapDimMinimal.h>
23 #include <c10/util/Exception.h>
24 #include <c10/util/ExclusivelyOwned.h>
25 #include <c10/util/Deprecated.h>
26 #include <c10/util/MaybeOwned.h>
27 #include <optional>
28 #include <c10/util/OptionalArrayRef.h>
29 #include <c10/util/intrusive_ptr.h>
30 #include <c10/macros/Export.h>
31 #include <ATen/core/CheckMemoryFormat.h>
32 #include <ATen/core/DeprecatedTypePropertiesRegistry.h>
33 #include <ATen/core/DeprecatedTypeProperties.h>
34 #include <ATen/core/NamedTensor.h>
35 #include <ATen/core/QuantizerBase.h>
36 #include <c10/core/SymInt.h>
37 #include <ATen/core/TensorAccessor.h>
38 #include <ATen/core/TensorBase.h>
39 
40 
41 #include <ATen/MethodOperators.h>
42 
43 namespace c10{
44 template<class T> class List;
45 template<class T> class IListRef;
46 }
47 namespace at {
48 struct Generator;
49 struct Type;
50 class DeprecatedTypeProperties;
51 class Tensor;
52 } // namespace at
53 namespace at {
54 namespace indexing {
55 struct TensorIndex;
56 } // namespace indexing
57 } // namespace at
58 
59 namespace torch { namespace autograd {
60 
61 struct Node;
62 
63 }} // namespace torch::autograd
64 
65 namespace at {
66 
67 class OptionalTensorRef;
68 class TensorRef;
69 class Tensor;
70 using TensorList = ArrayRef<Tensor>;
71 using ITensorList = c10::IListRef<Tensor>;
72 
73 using Stream = c10::Stream;
74 
75 // Tensor is a "generic" object holding a pointer to the underlying TensorImpl object, which
76 // has an embedded reference count. In this way, Tensor is similar to boost::intrusive_ptr.
77 //
78 // For example:
79 //
80 // void func(Tensor a) {
81 //   Tensor b = a;
82 //   ...
83 // }
84 //
85 // In this example, when we say Tensor b = a, we are creating a new object that points to the
86 // same underlying TensorImpl, and bumps its reference count. When b goes out of scope, the
87 // destructor decrements the reference count by calling release() on the TensorImpl it points to.
88 // The existing constructors, operator overloads, etc. take care to implement the correct semantics.
89 //
90 // Note that Tensor can also be NULL, i.e. it is not associated with any underlying TensorImpl, and
91 // special care must be taken to handle this.
92 class TORCH_API Tensor: public TensorBase {
93  protected:
94   // Create a Tensor with a +0 reference count. Special care must be
95   // taken to avoid decrementing this reference count at destruction
96   // time. Intended to support MaybeOwnedTraits<Tensor>.
Tensor(unsafe_borrow_t,const TensorBase & rhs)97   explicit Tensor(unsafe_borrow_t, const TensorBase& rhs): TensorBase(unsafe_borrow_t{}, rhs) {}
98   friend MaybeOwnedTraits<Tensor>;
99   friend OptionalTensorRef;
100   friend TensorRef;
101 
102  public:
103   Tensor() = default;
104   // This constructor should not be used by end users and is an implementation
105   // detail invoked by autogenerated code.
Tensor(c10::intrusive_ptr<TensorImpl,UndefinedTensorImpl> tensor_impl)106   explicit Tensor(
107       c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl)
108       : TensorBase(std::move(tensor_impl)) {}
109   Tensor(const Tensor &tensor) = default;
110   Tensor(Tensor &&tensor) = default;
111 
112   // Implicitly move-constructible from TensorBase, but must be explicit to increase refcount
Tensor(const TensorBase & base)113   explicit Tensor(const TensorBase &base): TensorBase(base) {}
Tensor(TensorBase && base)114   /*implicit*/ Tensor(TensorBase &&base): TensorBase(std::move(base)) {}
115 
116   // Creates a new wrapper from TensorImpl. Intentionally a free method because
117   // it should be used with care. Checks necessary invariants
wrap_tensor_impl(c10::intrusive_ptr<TensorImpl,UndefinedTensorImpl> tensor_impl)118   static Tensor wrap_tensor_impl(
119       c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl) {
120     return TensorBase::wrap_tensor_impl(std::move(tensor_impl));
121   }
122 
123   Tensor contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) const {
124     return TensorBase::contiguous(memory_format);
125   }
126 
conj()127   Tensor conj() const {
128     if (!this->is_complex()) {
129       return *this;
130     }
131 
132     switch (this->layout()) {
133       case at::kSparse:
134       case at::kSparseCsr:
135       case at::kSparseCsc:
136       case at::kSparseBsr:
137       case at::kSparseBsc:
138         return this->conj_physical();
139       default:
140         return this->_conj();
141     }
142   }
143 
144   // Aliased by Dimname overloads, so need explicit using
145   using TensorBase::size;
146   using TensorBase::sym_size;
147   using TensorBase::stride;
148 
149   /// Should be used if *this can reasonably be expected to be contiguous and
150   /// performance is important.
151   /// Compared to contiguous, it saves a reference count
152   /// increment/decrement if *this is already contiguous, at the cost
153   /// in all cases of an extra pointer of stack usage, an extra branch
154   /// to access, and an extra branch at destruction time.
155   c10::MaybeOwned<Tensor> expect_contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) const &;
156 
157   // Use .contiguous() instead. Trying to borrow from a prvalue Tensor
158   // will only lead to trouble and dangling references.
159   c10::MaybeOwned<Tensor> expect_contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) && = delete;
160 
161   // The following overloads are very intruiging.  Consider the following
162   // program:
163   //
164   //    x[1] = 3;
165   //
166   // We would expect that the first entry of x is written to 3.  But how can we
167   // actually achieve this?  x[1] evaluates to a tensor...
168   //
169   // The answer is, using a ref-qualifier.  x[1] is an rvalue, which cannot be
170   // (profitably) assigned to in the traditional sense, so we overload
171   // assignment to mean, "Actually, copy 3 into the tensor data."  This is done
172   // with an rvalue-reference ref-qualified overload (the methods with && at the
173   // end of their type.)
174   //
175   // There's one more fly in the ointment: We also want
176   //
177   //    Tensor x = y;
178   //
179   // to work, and we want it NOT to copy.  So we need a traditional operator=
180   // overload.  But we MUST specify a mutable lvalue ref-qualifier, to
181   // disambiguate the traditional overload from the rvalue-reference
182   // ref-qualified overload.  Otherwise, it will be ambiguous, because
183   // a non ref-qualified method is eligible for all situations.
184 
185   // Unfortunately, we have to write these constructors out manually
186   // to work around an MSVC bug:
187   //    error C2580: 'at::Tensor &at::Tensor::operator =(const at::Tensor &) &':
188   //    multiple versions of a defaulted special member functions are not allowed
189   // Tensor& operator=(const Tensor&) & = default;
190   // Tensor& operator=(Tensor&&) & = default;
191 
192   // Also MSVC will wrongly issue the following warning with the aforementioned fix
193   //    warning C4522: 'at::Tensor': multiple assignment operators specified
194   // Let's just skip the warning.
195   //
196   // TODO: temporarily disabled
197 
198   Tensor& operator=(const TensorBase& x) & {
199     impl_ = x.getIntrusivePtr();
200     return *this;
201   }
202   Tensor& operator=(TensorBase&& x) & noexcept {
203     impl_ = x.unsafeReleaseIntrusivePtr();
204     return *this;
205   }
206 
207   Tensor& operator=(const Tensor &x) & {
208     return operator=(static_cast<const TensorBase&>(x));
209   }
210   Tensor& operator=(Tensor &&x) & noexcept {
211     return operator=(static_cast<TensorBase&&>(x));
212   }
213 
214   Tensor& operator=(const Scalar &v) && {
215     return fill_(v);
216   }
217   Tensor& operator=(const Tensor &rhs) && {
218     return copy_(rhs);
219   }
220   Tensor& operator=(Tensor&& rhs) && {
221     return copy_(rhs);
222   }
223 
224   C10_DEPRECATED_MESSAGE("Tensor.type() is deprecated. Instead use Tensor.options(), which in many cases (e.g. in a constructor) is a drop-in replacement. If you were using data from type(), that is now available from Tensor itself, so instead of tensor.type().scalar_type(), use tensor.scalar_type() instead and instead of tensor.type().backend() use tensor.device().")
type()225   DeprecatedTypeProperties & type() const {
226     return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
227         dispatchKeyToBackend(legacyExtractDispatchKey(key_set())),
228         scalar_type());
229   }
230 
toType(ScalarType t)231   Tensor toType(ScalarType t) const {
232     return to(options().dtype(t), /*non_blocking*/ false, /*copy*/ false);
233   }
234 
235   // TODO: Deprecate me
toBackend(Backend b)236   Tensor toBackend(Backend b) const {
237     return to(options().device(backendToDeviceType(b)).layout(layout_from_backend(b)), /*non_blocking*/ false, /*copy*/ false);
238   }
239 
240   C10_DEPRECATED_MESSAGE("Tensor.is_variable() is deprecated; everything is a variable now. (If you want to assert that variable has been appropriately handled already, use at::impl::variable_excluded_from_dispatch())")
is_variable()241   bool is_variable() const noexcept {
242     return !at::impl::variable_excluded_from_dispatch();
243   }
244 
245   template<typename T>
246   C10_DEPRECATED_MESSAGE("Tensor.data<T>() is deprecated. Please use Tensor.data_ptr<T>() instead.")
data()247   T * data() const {
248     return data_ptr<T>();
249   }
250 
251   template <typename T>
252   T item() const;
253 
254   template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
255   C10_DEPRECATED_MESSAGE("packed_accessor is deprecated, use packed_accessor32 or packed_accessor64 instead")
packed_accessor()256   GenericPackedTensorAccessor<T,N,PtrTraits,index_t> packed_accessor() const & {
257     return generic_packed_accessor<T,N,PtrTraits,index_t>();
258   }
259   template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
260   C10_DEPRECATED_MESSAGE("packed_accessor is deprecated, use packed_accessor32 or packed_accessor64 instead")
261   GenericPackedTensorAccessor<T,N,PtrTraits,index_t> packed_accessor() && = delete;
262 
263   Tensor operator~() const {
264     return bitwise_not();
265   }
266   Tensor operator-() const {
267     return neg();
268   }
269   Tensor& operator+=(const Tensor & other) {
270     return add_(other);
271   }
272   Tensor& operator+=(const Scalar & other) {
273     return add_(other);
274   }
275   Tensor& operator-=(const Tensor & other) {
276     return sub_(other);
277   }
278   Tensor& operator-=(const Scalar & other) {
279     return sub_(other);
280   }
281   Tensor& operator*=(const Tensor & other) {
282     return mul_(other);
283   }
284   Tensor& operator*=(const Scalar & other) {
285     return mul_(other);
286   }
287   Tensor& operator/=(const Tensor & other) {
288     return div_(other);
289   }
290   Tensor& operator/=(const Scalar & other) {
291     return div_(other);
292   }
293   Tensor& operator&=(const Tensor & other) {
294     return bitwise_and_(other);
295   }
296   Tensor& operator|=(const Tensor & other) {
297     return bitwise_or_(other);
298   }
299   Tensor& operator^=(const Tensor & other) {
300     return bitwise_xor_(other);
301   }
302   Tensor operator[](const Scalar & index) const {
303     if (!index.isIntegral(false)) {
304       TORCH_CHECK_INDEX(false, "Can only index tensors with integral scalars");
305     }
306     return this->operator[](index.toLong());
307   }
308   Tensor operator[](const Tensor & index) const {
309     // These properties are checked in the Scalar constructor, but we already
310     // check them here to provide more useful diagnostics for the user.
311     if (!index.defined()) {
312       TORCH_CHECK_INDEX(false, "Can only index with tensors that are defined");
313     }
314     if (index.dim() != 0) {
315       TORCH_CHECK_INDEX(false,
316                         "Can only index with tensors that are scalars (zero-dim)");
317     }
318     // The Scalar(Tensor) constructor is explicit, so we need to call it.
319     return this->operator[](index.item());
320   }
321   Tensor operator[](int64_t index) const {
322     return select(0, index);
323   }
324 
325   Tensor index(ArrayRef<at::indexing::TensorIndex> indices) const;
326   Tensor index(std::initializer_list<at::indexing::TensorIndex> indices) const;
327 
328   Tensor & index_put_(ArrayRef<at::indexing::TensorIndex> indices, Tensor const & rhs);
329   Tensor & index_put_(ArrayRef<at::indexing::TensorIndex> indices, const Scalar& v);
330   Tensor & index_put_(std::initializer_list<at::indexing::TensorIndex> indices, Tensor const & rhs);
331   Tensor & index_put_(std::initializer_list<at::indexing::TensorIndex> indices, const Scalar& v);
332 
cpu()333   Tensor cpu() const {
334     return to(options().device(c10::DeviceType::CPU), /*non_blocking*/ false, /*copy*/ false);
335   }
336 
337   // TODO: The Python version also accepts arguments
cuda()338   Tensor cuda() const {
339     return to(options().device(c10::DeviceType::CUDA), /*non_blocking*/ false, /*copy*/ false);
340   }
341 
hip()342   Tensor hip() const {
343     return to(options().device(c10::DeviceType::HIP), /*non_blocking*/ false, /*copy*/ false);
344   }
345 
ve()346   Tensor ve() const {
347     return to(options().device(c10::DeviceType::VE), /*non_blocking*/ false, /*copy*/ false);
348   }
349 
vulkan()350   Tensor vulkan() const {
351     return to(options().device(c10::DeviceType::Vulkan), /*non_blocking*/ false, /*copy*/ false);
352   }
353 
metal()354   Tensor metal() const {
355     return to(options().device(c10::DeviceType::Metal), /*non_blocking*/ false, /*copy*/ false);
356   }
357 
meta()358   Tensor meta() const {
359     return to(options().device(c10::DeviceType::Meta), /*non_blocking*/ false, /*copy*/ false);
360   }
361 
362   // ~~~~~ Autograd API ~~~~~
363 
364   /// \fn bool is_leaf() const;
365   ///
366   /// All Tensors that have `requires_grad()` which is ``false`` will be leaf Tensors by convention.
367   ///
368   /// For Tensors that have `requires_grad()` which is ``true``, they will be leaf Tensors if they were
369   /// created by the user. This means that they are not the result of an operation and so
370   /// `grad_fn()` is `nullptr`.
371   ///
372   /// Only leaf Tensors will have their `grad()` populated during a call to `backward()`.
373   /// To get `grad()` populated for non-leaf Tensors, you can use `retain_grad()`.
374   ///
375   /// Example:
376   /// @code
377   /// auto a = torch::rand(10, torch::requires_grad());
378   /// std::cout << a.is_leaf() << std::endl; // prints `true`
379   ///
380   /// auto b = torch::rand(10, torch::requires_grad()).to(torch::kCUDA);
381   /// std::cout << b.is_leaf() << std::endl; // prints `false`
382   /// // b was created by the operation that cast a cpu Tensor into a cuda Tensor
383   ///
384   /// auto c = torch::rand(10, torch::requires_grad()) + 2;
385   /// std::cout << c.is_leaf() << std::endl; // prints `false`
386   /// // c was created by the addition operation
387   ///
388   /// auto d = torch::rand(10).cuda();
389   /// std::cout << d.is_leaf() << std::endl; // prints `true`
390   /// // d does not require gradients and so has no operation creating it (that is tracked by the autograd engine)
391   ///
392   /// auto e = torch::rand(10).cuda().requires_grad_();
393   /// std::cout << e.is_leaf() << std::endl; // prints `true`
394   /// // e requires gradients and has no operations creating it
395   ///
396   /// auto f = torch::rand(10, torch::device(torch::kCUDA).requires_grad(true));
397   /// std::cout << f.is_leaf() << std::endl; // prints `true`
398   /// // f requires grad, has no operation creating it
399   /// @endcode
400 
401   /// \fn void backward(const Tensor & gradient={}, std::optional<bool> retain_graph=std::nullopt, bool create_graph=false, std::optional<TensorList> inputs=std::nullopt) const;
402   ///
403   /// Computes the gradient of current tensor with respect to graph leaves.
404   ///
405   /// The graph is differentiated using the chain rule. If the tensor is
406   /// non-scalar (i.e. its data has more than one element) and requires
407   /// gradient, the function additionally requires specifying ``gradient``.
408   /// It should be a tensor of matching type and location, that contains
409   /// the gradient of the differentiated function w.r.t. this Tensor.
410   ///
411   /// This function accumulates gradients in the leaves - you might need to
412   /// zero them before calling it.
413   ///
414   /// \param gradient Gradient w.r.t. the
415   ///     tensor. If it is a tensor, it will be automatically converted
416   ///     to a Tensor that does not require grad unless ``create_graph`` is True.
417   ///     None values can be specified for scalar Tensors or ones that
418   ///     don't require grad. If a None value would be acceptable then
419   ///     this argument is optional.
420   /// \param retain_graph If ``false``, the graph used to compute
421   ///     the grads will be freed. Note that in nearly all cases setting
422   ///     this option to True is not needed and often can be worked around
423   ///     in a much more efficient way. Defaults to the value of
424   ///     ``create_graph``.
425   /// \param create_graph If ``true``, graph of the derivative will
426   ///     be constructed, allowing to compute higher order derivative
427   ///     products. Defaults to ``false``.
428   /// \param inputs Inputs w.r.t. which the gradient will be accumulated into
429   ///     ``at::Tensor::grad``. All other Tensors will be ignored. If not
430   ///     provided, the gradient is accumulated into all the leaf Tensors
431   ///     that were used to compute the current tensor.
432   ///     When inputs are provided and a given input is not a leaf,
433   ///     the current implementation will call its grad_fn (even though it is not strictly needed to get this gradients).
434   ///     It is an implementation detail on which the user should not rely.
435   ///     See https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details.
436   void backward(const Tensor & gradient={}, std::optional<bool> retain_graph=std::nullopt, bool create_graph=false, std::optional<TensorList> inputs=std::nullopt) const {
437     // NB: Adding this wrapper to _backward here because we'd like our
438     // 'backwards' api to accept the 'inputs' argument optionally. Since code gen
439     // currently does not support optional of TensorList our approach is to replace
440     // backward in native_functions.yaml with _backward and call it here instead.
441     if (inputs.has_value()) {
442       TORCH_CHECK(inputs.value().size() > 0, "'inputs' argument to backward cannot be empty")
443       this->_backward(inputs.value(), gradient, retain_graph, create_graph);
444     } else {
445       this->_backward({}, gradient, retain_graph, create_graph);
446     }
447   }
448 
449   /// \fn Tensor detach() const;
450   ///
451   /// Returns a new Tensor, detached from the current graph.
452   /// The result will never require gradient.
453 
454   /// \fn Tensor & detach_() const;
455   ///
456   /// Detaches the Tensor from the graph that created it, making it a leaf.
457   /// Views cannot be detached in-place.
458 
459   /// \fn void retain_grad() const;
460   ///
461   /// Enables this Tensor to have their :attr:`grad` populated during
462   /// :func:`backward`. This is a no-op for leaf tensors.
463 
464   /// \fn bool retains_grad() const;
465   ///
466   /// Is ``true`` if this Tensor is non-leaf and its :attr:`grad` is enabled to be
467   /// populated during :func:`backward`, ``false`` otherwise.
468 
set_requires_grad(bool requires_grad)469   const Tensor& set_requires_grad(bool requires_grad) const {
470     TensorBase::set_requires_grad(requires_grad);
471     return *this;
472   }
473 
474   /// Return a mutable reference to the gradient. This is conventionally
475   /// used as `t.grad() = x` to set a gradient to a completely new tensor.
476   /// Note that this function work with a non-const Tensor and is not
477   /// thread safe.
mutable_grad()478   Tensor& mutable_grad() const {
479     return impl_->mutable_grad();
480   }
481 
482   /// This function returns an undefined tensor by default and returns a defined tensor
483   /// the first time a call to `backward()` computes gradients for this Tensor.
484   /// The attribute will then contain the gradients computed and future calls
485   /// to `backward()` will accumulate (add) gradients into it.
grad()486   const Tensor& grad() const {
487     const Tensor& maybe_grad = impl_->grad();
488     if (!is_leaf() && !retains_grad() && !maybe_grad.defined()) {
489       TORCH_WARN(
490         "The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad "
491         "attribute won't be populated during autograd.backward(). If you indeed want the .grad "
492         "field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. "
493         "If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor "
494         "instead. See github.com/pytorch/pytorch/pull/30531 for more informations.");
495     }
496     return maybe_grad;
497   }
498 
499   // The Forward AD API functions below are low level and are not to be used by end
500   // users who should use the API provided in torch/csrc/autograd.h
501 
502   /// This function returns the forward gradient for this Tensor at the given level.
_fw_grad(uint64_t level)503   const Tensor& _fw_grad(uint64_t level) const {
504     return impl_->_fw_grad(level, *this);
505   }
506 
507   /// This function can be used to set the value of the forward grad.
508   /// Note that the given new_grad might not be used directly if it has different
509   /// metadata (size/stride/storage offset) compared to this Tensor. In that case,
510   /// new_grad content will be copied into a new Tensor
_set_fw_grad(const TensorBase & new_grad,uint64_t level,bool is_inplace_op)511   void _set_fw_grad(const TensorBase& new_grad, uint64_t level, bool is_inplace_op) const {
512     impl_->_set_fw_grad(new_grad, *this, level, is_inplace_op);
513   }
514 
515 
516   // STOP.  Thinking of adding a method here, which only makes use
517   // of other ATen methods?  Define it in native_functions.yaml.
518 
519   //example
520   //Tensor * add(Tensor & b);
521   ${tensor_method_declarations}
522 
523   // Special C++ only overloads for std()-like functions (See gh-40287)
524   // These are needed because int -> bool conversion takes precedence over int -> IntArrayRef
525   // So, for example std(0) would select the std(unbiased=False) overload
526 
var(int dim)527   Tensor var(int dim) const {
528     return var(IntArrayRef{dim});
529   }
530 
std(int dim)531   Tensor std(int dim) const {
532     return std(IntArrayRef{dim});
533   }
534 
535   // We changed .dtype() to return a TypeMeta in #12766. Ideally, we want the
536   // at::kDouble and its friends to be TypeMeta's, but that hasn't happened yet.
537   // Before that change, we make this method to maintain BC for C++ usage like
538   // `x.to(y.dtype)`.
539   // TODO: remove following two after at::kDouble and its friends are TypeMeta's.
540   inline Tensor to(caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
541     return this->to(/*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
542   }
543   inline Tensor to(Device device, caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
544     return this->to(device, /*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
545   }
546 
547   template <typename F, typename... Args>
decltype(auto)548   decltype(auto) m(F func, Args&&... params) const {
549     return func(*this, std::forward<Args>(params)...);
550   }
551 
552   /// NOTE: This is similar to the legacy `.data()` function on `Variable`, and is intended
553   /// to be used from functions that need to access the `Variable`'s equivalent `Tensor`
554   /// (i.e. `Tensor` that shares the same storage and tensor metadata with the `Variable`).
555   ///
556   /// One notable difference with the legacy `.data()` function is that changes to the
557   /// returned `Tensor`'s tensor metadata (e.g. sizes / strides / storage / storage_offset)
558   /// will not update the original `Variable`, due to the fact that this function
559   /// shallow-copies the `Variable`'s underlying TensorImpl.
tensor_data()560   at::Tensor tensor_data() const {
561     return TensorBase::tensor_data();
562   }
563 
564   /// NOTE: `var.variable_data()` in C++ has the same semantics as `tensor.data`
565   /// in Python, which create a new `Variable` that shares the same storage and
566   /// tensor metadata with the original `Variable`, but with a completely new
567   /// autograd history.
568   ///
569   /// NOTE: If we change the tensor metadata (e.g. sizes / strides /
570   /// storage / storage_offset) of a variable created from `var.variable_data()`, those
571   /// changes will not update the original variable `var`. In `.variable_data()`, we set
572   /// `allow_tensor_metadata_change_` to false to make such changes explicitly illegal,
573   /// in order to prevent users from changing metadata of `var.variable_data()`
574   /// and expecting the original variable `var` to also be updated.
variable_data()575   at::Tensor variable_data() const {
576     return TensorBase::variable_data();
577   }
578 
579   // Hooks
580   //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
581 
582   template <typename T>
583   using hook_return_void_t = std::enable_if_t<std::is_void<typename std::invoke_result_t<T&, Tensor>>::value, unsigned>;
584   template <typename T>
585   using hook_return_var_t = std::enable_if_t<std::is_same<typename std::invoke_result_t<T&, Tensor>, Tensor>::value, unsigned>;
586 
587   /// Registers a backward hook.
588   ///
589   /// The hook will be called every time a gradient with respect to the Tensor is computed.
590   /// The hook should have one of the following signature:
591   /// ```
592   /// hook(Tensor grad) -> Tensor
593   /// ```
594   /// ```
595   /// hook(Tensor grad) -> void
596   /// ```
597   /// The hook should not modify its argument, but it can optionally return a new gradient
598   /// which will be used in place of `grad`.
599   ///
600   /// This function returns the index of the hook in the list which can be used to remove hook.
601   ///
602   /// Example:
603   /// @code
604   /// auto v = torch::tensor({0., 0., 0.}, torch::requires_grad());
605   /// auto h = v.register_hook([](torch::Tensor grad){ return grad * 2; }); // double the gradient
606   /// v.backward(torch::tensor({1., 2., 3.}));
607   /// // This prints:
608   /// // ```
609   /// //  2
610   /// //  4
611   /// //  6
612   /// // [ CPUFloatType{3} ]
613   /// // ```
614   /// std::cout << v.grad() << std::endl;
615   /// v.remove_hook(h);  // removes the hook
616   /// @endcode
617   template <typename T>
618   hook_return_void_t<T> register_hook(T&& hook) const;
619   template <typename T>
620   hook_return_var_t<T> register_hook(T&& hook) const;
621 
622   // Variable methods
623   //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
624 
data()625   Tensor data() const {
626     return TensorBase::data();
627   }
628 
629   void _backward(TensorList inputs, const std::optional<Tensor>& gradient, std::optional<bool> keep_graph, bool create_graph) const;
630 
631   const Tensor& requires_grad_(bool _requires_grad=true) const {
632     TensorBase::requires_grad_(_requires_grad);
633     return *this;
634   }
635 };
636 
637 namespace detail {
638 // Helper creator for Tensor class which doesn't requires the users to pass
639 // in an intrusive_ptr instead it just converts the argument passed to
640 // requested intrusive_ptr type.
641 template <typename T, typename... Args>
make_tensor(Args &&...args)642 Tensor make_tensor(Args&&... args) {
643   return Tensor(c10::make_intrusive<T>(std::forward<Args>(args)...));
644 }
645 
646 } // namespace detail
647 
648 } // namespace at
649 
650 
651 namespace at {
652 ${tensor_method_definitions}
653 } // namespace at
654 
655 
656 namespace c10 {
657 template <>
658 struct MaybeOwnedTraits<at::Tensor> {
659   using owned_type = at::Tensor;
660   using borrow_type = at::Tensor;
661 
662   static borrow_type createBorrow(const owned_type& from) {
663     // NOTE: this can be implemented without the special
664     // unsafe_borrow_t Tensor constructor as
665     //
666     // return borrow_type(c10::intrusive_ptr<at::TensorImpl, at::UndefinedTensorImpl>::reclaim(from.unsafeGetTensorImpl()));
667     //
668     // but that hurts inlining due to the nullptr check in the
669     // Tensor(c10::intrusive_ptr<...>) constructor. We already know
670     // that from.impl_ isn't null because from is a valid Tensor, so
671     // we needn't do the check again. (using __builtin_assume can
672     // avoid this, but wouldn't be portable to MSVC.)
673     return borrow_type(borrow_type::unsafe_borrow_t{}, from);
674   }
675 
676   static void assignBorrow(borrow_type& lhs, const borrow_type& rhs) {
677     lhs.unsafeReleaseTensorImpl();
678     // See above note: this can be implemented with public API
679     // similarly to createBorrow(), but that would hurt inlining.
680     lhs = borrow_type(borrow_type::unsafe_borrow_t{}, rhs);
681   }
682 
683   static void destroyBorrow(borrow_type& toDestroy) {
684     toDestroy.unsafeReleaseTensorImpl(); // "leak" it, but it was already +0.
685   }
686 
687   static const owned_type& referenceFromBorrow(const borrow_type& borrow) {
688     return borrow;
689   }
690 
691   static const owned_type* pointerFromBorrow(const borrow_type& borrow) {
692     return &borrow;
693   }
694 
695   static bool debugBorrowIsValid(const borrow_type& /*borrow*/) {
696     return true;
697   }
698 };
699 
700 template <>
701 struct ExclusivelyOwnedTraits<at::Tensor> {
702   using repr_type = at::Tensor;
703   using pointer_type = at::Tensor*;
704   using const_pointer_type = const at::Tensor*;
705 
706   static repr_type nullRepr() {
707     return at::Tensor();
708   }
709 
710   template <class... Args>
711   static repr_type createInPlace(Args&&... args) {
712     return at::Tensor(std::forward<Args>(args)...);
713   }
714 
715   static repr_type moveToRepr(at::Tensor&& x) {
716     return std::move(x);
717   }
718 
719   static void destroyOwned(at::Tensor& x) {
720     return ExclusivelyOwnedTraits<at::TensorBase>::destroyOwned(x);
721   }
722 
723   static at::Tensor take(at::Tensor& x) {
724     return std::move(x);
725   }
726 
727   static pointer_type getImpl(repr_type& x) {
728     return &x;
729   }
730 
731   static const_pointer_type getImpl(const repr_type& x) {
732     return &x;
733   }
734 };
735 } // namespace c10
736 
737 namespace at {
738 
739 inline c10::MaybeOwned<Tensor> borrow_from_optional_tensor(
740     const std::optional<Tensor>& opt) {
741   return opt.has_value()
742     ? c10::MaybeOwned<Tensor>::borrowed(*opt)
743     : c10::MaybeOwned<Tensor>::owned(std::in_place);
744 }
745 
746 inline c10::MaybeOwned<Tensor> Tensor::expect_contiguous(MemoryFormat memory_format) const & {
747   if (is_contiguous(memory_format)) {
748     return c10::MaybeOwned<Tensor>::borrowed(*this);
749   } else {
750     return c10::MaybeOwned<Tensor>::owned(__dispatch_contiguous(memory_format));
751   }
752 }
753 } // namespace at
754