1 /*
2 * Copyright 2018 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 #include "src/gpu/ganesh/gradients/GrGradientShader.h"
8
9 #include "include/core/SkAlphaType.h"
10 #include "include/core/SkBitmap.h"
11 #include "include/core/SkColorSpace.h"
12 #include "include/core/SkColorType.h"
13 #include "include/core/SkMatrix.h"
14 #include "include/core/SkRect.h"
15 #include "include/core/SkSamplingOptions.h"
16 #include "include/core/SkString.h"
17 #include "include/core/SkTileMode.h"
18 #include "include/effects/SkGradientShader.h"
19 #include "include/effects/SkRuntimeEffect.h"
20 #include "include/gpu/GpuTypes.h"
21 #include "include/gpu/ganesh/GrBackendSurface.h"
22 #include "include/gpu/ganesh/GrRecordingContext.h"
23 #include "include/gpu/ganesh/GrTypes.h"
24 #include "include/private/SkColorData.h"
25 #include "include/private/base/SkAssert.h"
26 #include "include/private/base/SkDebug.h"
27 #include "include/private/base/SkMath.h"
28 #include "include/private/base/SkOnce.h"
29 #include "include/private/base/SkSpan_impl.h"
30 #include "include/private/base/SkTemplates.h"
31 #include "include/private/gpu/ganesh/GrTypesPriv.h"
32 #include "src/base/SkArenaAlloc.h"
33 #include "src/base/SkMathPriv.h"
34 #include "src/base/SkVx.h"
35 #include "src/core/SkColorSpacePriv.h"
36 #include "src/core/SkRasterPipeline.h"
37 #include "src/core/SkRasterPipelineOpContexts.h"
38 #include "src/core/SkRasterPipelineOpList.h"
39 #include "src/core/SkRuntimeEffectPriv.h"
40 #include "src/gpu/ganesh/GrCaps.h"
41 #include "src/gpu/ganesh/GrColorInfo.h"
42 #include "src/gpu/ganesh/GrColorSpaceXform.h"
43 #include "src/gpu/ganesh/GrFPArgs.h"
44 #include "src/gpu/ganesh/GrFragmentProcessor.h"
45 #include "src/gpu/ganesh/GrRecordingContextPriv.h"
46 #include "src/gpu/ganesh/GrSamplerState.h"
47 #include "src/gpu/ganesh/GrShaderCaps.h"
48 #include "src/gpu/ganesh/SkGr.h"
49 #include "src/gpu/ganesh/effects/GrMatrixEffect.h"
50 #include "src/gpu/ganesh/effects/GrSkSLFP.h"
51 #include "src/gpu/ganesh/effects/GrTextureEffect.h"
52 #include "src/gpu/ganesh/gradients/GrGradientBitmapCache.h"
53 #include "src/shaders/SkShaderBase.h"
54 #include "src/shaders/gradients/SkGradientBaseShader.h"
55
56 #include <algorithm>
57 #include <array>
58 #include <cstddef>
59 #include <tuple>
60 #include <utility>
61
62 struct SkV4;
63
64 #if defined(GPU_TEST_UTILS)
65 #include "src/base/SkRandom.h"
66 #include "src/gpu/ganesh/GrTestUtils.h"
67 #endif
68
69 using namespace skia_private;
70
71 using Vec4 = skvx::Vec<4, float>;
72
73 // Intervals smaller than this (that aren't hard stops) on low-precision-only devices force us to
74 // use the textured gradient
75 static const SkScalar kLowPrecisionIntervalLimit = 0.01f;
76
77 // Each cache entry costs 1K or 2K of RAM. Each bitmap will be 1x256 at either 32bpp or 64bpp.
78 static const int kMaxNumCachedGradientBitmaps = 32;
79 static const int kGradientTextureSize = 256;
80
81 // NOTE: signature takes raw pointers to the color/pos arrays and a count to make it easy for
82 // MakeColorizer to transparently take care of hard stops at the end points of the gradient.
make_textured_colorizer(const SkPMColor4f * colors,const SkScalar * positions,int count,bool colorsAreOpaque,const SkGradientShader::Interpolation & interpolation,const SkColorSpace * intermediateColorSpace,const SkColorSpace * dstColorSpace,const GrFPArgs & args)83 static std::unique_ptr<GrFragmentProcessor> make_textured_colorizer(
84 const SkPMColor4f* colors,
85 const SkScalar* positions,
86 int count,
87 bool colorsAreOpaque,
88 const SkGradientShader::Interpolation& interpolation,
89 const SkColorSpace* intermediateColorSpace,
90 const SkColorSpace* dstColorSpace,
91 const GrFPArgs& args) {
92 static GrGradientBitmapCache gCache(kMaxNumCachedGradientBitmaps, kGradientTextureSize);
93
94 // Use 8888 or F16, depending on the destination config.
95 // TODO: Use 1010102 for opaque gradients, at least if destination is 1010102?
96 SkColorType colorType = kRGBA_8888_SkColorType;
97 if (GrColorTypeIsWiderThan(args.fDstColorInfo->colorType(), 8)) {
98 auto f16Format = args.fContext->priv().caps()->getDefaultBackendFormat(
99 GrColorType::kRGBA_F16, GrRenderable::kNo);
100 if (f16Format.isValid()) {
101 colorType = kRGBA_F16_SkColorType;
102 }
103 }
104 SkAlphaType alphaType = static_cast<bool>(interpolation.fInPremul) ? kPremul_SkAlphaType
105 : kUnpremul_SkAlphaType;
106
107 SkBitmap bitmap;
108 gCache.getGradient(colors,
109 positions,
110 count,
111 colorsAreOpaque,
112 interpolation,
113 intermediateColorSpace,
114 dstColorSpace,
115 colorType,
116 alphaType,
117 &bitmap);
118 SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width()));
119 SkASSERT(bitmap.isImmutable());
120
121 auto view = std::get<0>(GrMakeCachedBitmapProxyView(
122 args.fContext, bitmap, /*label=*/"MakeTexturedColorizer", skgpu::Mipmapped::kNo));
123 if (!view) {
124 SkDebugf("Gradient won't draw. Could not create texture.");
125 return nullptr;
126 }
127
128 auto m = SkMatrix::Scale(view.width(), 1.f);
129 return GrTextureEffect::Make(std::move(view), alphaType, m, GrSamplerState::Filter::kLinear);
130 }
131
make_single_interval_colorizer(const SkPMColor4f & start,const SkPMColor4f & end)132 static std::unique_ptr<GrFragmentProcessor> make_single_interval_colorizer(const SkPMColor4f& start,
133 const SkPMColor4f& end) {
134 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
135 "uniform half4 start;"
136 "uniform half4 end;"
137 "half4 main(float2 coord) {"
138 // Clamping and/or wrapping was already handled by the parent shader so the output
139 // color is a simple lerp.
140 "return mix(start, end, half(coord.x));"
141 "}"
142 );
143 return GrSkSLFP::Make(effect, "SingleIntervalColorizer", /*inputFP=*/nullptr,
144 GrSkSLFP::OptFlags::kNone,
145 "start", start,
146 "end", end);
147 }
148
make_dual_interval_colorizer(const SkPMColor4f & c0,const SkPMColor4f & c1,const SkPMColor4f & c2,const SkPMColor4f & c3,float threshold)149 static std::unique_ptr<GrFragmentProcessor> make_dual_interval_colorizer(const SkPMColor4f& c0,
150 const SkPMColor4f& c1,
151 const SkPMColor4f& c2,
152 const SkPMColor4f& c3,
153 float threshold) {
154 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
155 "uniform float4 scale[2];"
156 "uniform float4 bias[2];"
157 "uniform half threshold;"
158
159 "half4 main(float2 coord) {"
160 "half t = half(coord.x);"
161
162 "float4 s, b;"
163 "if (t < threshold) {"
164 "s = scale[0];"
165 "b = bias[0];"
166 "} else {"
167 "s = scale[1];"
168 "b = bias[1];"
169 "}"
170
171 "return half4(t * s + b);"
172 "}"
173 );
174
175 // Derive scale and biases from the 4 colors and threshold
176 Vec4 vc0 = Vec4::Load(c0.vec());
177 Vec4 vc1 = Vec4::Load(c1.vec());
178 Vec4 vc2 = Vec4::Load(c2.vec());
179 Vec4 vc3 = Vec4::Load(c3.vec());
180
181 const Vec4 scale[2] = {(vc1 - vc0) / threshold,
182 (vc3 - vc2) / (1 - threshold)};
183 const Vec4 bias[2] = {vc0,
184 vc2 - threshold * scale[1]};
185 return GrSkSLFP::Make(effect, "DualIntervalColorizer", /*inputFP=*/nullptr,
186 GrSkSLFP::OptFlags::kNone,
187 "scale", SkSpan(scale),
188 "bias", SkSpan(bias),
189 "threshold", threshold);
190 }
191
192 // The "unrolled" colorizer contains hand-written nested ifs which perform a binary search.
193 // This works on ES2 hardware that doesn't support non-constant array indexes.
194 // However, to keep code size under control, we are limited to a small number of stops.
195 static constexpr int kMaxUnrolledColorCount = 16;
196 static constexpr int kMaxUnrolledIntervalCount = kMaxUnrolledColorCount / 2;
197
make_unrolled_colorizer(int intervalCount,const SkPMColor4f * scale,const SkPMColor4f * bias,SkRect thresholds1_7,SkRect thresholds9_13)198 static std::unique_ptr<GrFragmentProcessor> make_unrolled_colorizer(int intervalCount,
199 const SkPMColor4f* scale,
200 const SkPMColor4f* bias,
201 SkRect thresholds1_7,
202 SkRect thresholds9_13) {
203 SkASSERT(intervalCount >= 1 && intervalCount <= 8);
204
205 static SkOnce once[kMaxUnrolledIntervalCount];
206 static const SkRuntimeEffect* effects[kMaxUnrolledIntervalCount];
207
208 once[intervalCount - 1]([intervalCount] {
209 SkString sksl;
210
211 // The 7 threshold positions that define the boundaries of the 8 intervals (excluding t = 0,
212 // and t = 1) are packed into two half4s instead of having up to 7 separate scalar uniforms.
213 // For low interval counts, the extra components are ignored in the shader, but the uniform
214 // simplification is worth it. It is assumed thresholds are provided in increasing value,
215 // mapped as:
216 // - thresholds1_7.x = boundary between (0,1) and (2,3) -> 1_2
217 // - .y = boundary between (2,3) and (4,5) -> 3_4
218 // - .z = boundary between (4,5) and (6,7) -> 5_6
219 // - .w = boundary between (6,7) and (8,9) -> 7_8
220 // - thresholds9_13.x = boundary between (8,9) and (10,11) -> 9_10
221 // - .y = boundary between (10,11) and (12,13) -> 11_12
222 // - .z = boundary between (12,13) and (14,15) -> 13_14
223 // - .w = unused
224 sksl.append("uniform half4 thresholds1_7, thresholds9_13;");
225
226 // With the current hardstop detection threshold of 0.00024, the maximum scale and bias
227 // values will be on the order of 4k (since they divide by dt). That is well outside the
228 // precision capabilities of half floats, which can lead to inaccurate gradient calculations
229 sksl.appendf("uniform float4 scale[%d];", intervalCount);
230 sksl.appendf("uniform float4 bias[%d];", intervalCount);
231
232 // Explicit binary search for the proper interval that t falls within. The interval
233 // count checks are constant expressions, which are then optimized to the minimal number
234 // of branches for the specific interval count.
235 sksl.appendf(
236 "half4 main(float2 coord) {"
237 "half t = half(coord.x);"
238 "float4 s, b;"
239 // thresholds1_7.w is mid point for intervals (0,7) and (8,15)
240 "if (%d <= 4 || t < thresholds1_7.w) {"
241 // thresholds1_7.y is mid point for intervals (0,3) and (4,7)
242 "if (%d <= 2 || t < thresholds1_7.y) {"
243 // thresholds1_7.x is mid point for intervals (0,1) and (2,3)
244 "if (%d <= 1 || t < thresholds1_7.x) {"
245 "%s" // s = scale[0]; b = bias[0];
246 "} else {"
247 "%s" // s = scale[1]; b = bias[1];
248 "}"
249 "} else {"
250 // thresholds1_7.z is mid point for intervals (4,5) and (6,7)
251 "if (%d <= 3 || t < thresholds1_7.z) {"
252 "%s" // s = scale[2]; b = bias[2];
253 "} else {"
254 "%s" // s = scale[3]; b = bias[3];
255 "}"
256 "}"
257 "} else {"
258 // thresholds9_13.y is mid point for intervals (8,11) and (12,15)
259 "if (%d <= 6 || t < thresholds9_13.y) {"
260 // thresholds9_13.x is mid point for intervals (8,9) and (10,11)
261 "if (%d <= 5 || t < thresholds9_13.x) {"
262 "%s"
263 "} else {"
264 "%s" // s = scale[5]; b = bias[5];
265 "}"
266 "} else {"
267 // thresholds9_13.z is mid point for intervals (12,13) and (14,15)
268 "if (%d <= 7 || t < thresholds9_13.z) {"
269 "%s" // s = scale[6]; b = bias[6];
270 "} else {"
271 "%s" // s = scale[7]; b = bias[7];
272 "}"
273 "}"
274 "}"
275 "return t * s + b;"
276 "}"
277 , intervalCount,
278 intervalCount,
279 intervalCount,
280 (intervalCount <= 0) ? "" : "s = scale[0]; b = bias[0];",
281 (intervalCount <= 1) ? "" : "s = scale[1]; b = bias[1];",
282 intervalCount,
283 (intervalCount <= 2) ? "" : "s = scale[2]; b = bias[2];",
284 (intervalCount <= 3) ? "" : "s = scale[3]; b = bias[3];",
285 intervalCount,
286 intervalCount,
287 (intervalCount <= 4) ? "" : "s = scale[4]; b = bias[4];",
288 (intervalCount <= 5) ? "" : "s = scale[5]; b = bias[5];",
289 intervalCount,
290 (intervalCount <= 6) ? "" : "s = scale[6]; b = bias[6];",
291 (intervalCount <= 7) ? "" : "s = scale[7]; b = bias[7];");
292
293 auto result = SkRuntimeEffect::MakeForShader(std::move(sksl));
294 SkASSERTF(result.effect, "%s", result.errorText.c_str());
295 effects[intervalCount - 1] = result.effect.release();
296 });
297
298 return GrSkSLFP::Make(effects[intervalCount - 1], "UnrolledBinaryColorizer",
299 /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone,
300 "thresholds1_7", thresholds1_7,
301 "thresholds9_13", thresholds9_13,
302 "scale", SkSpan(scale, intervalCount),
303 "bias", SkSpan(bias, intervalCount));
304 }
305
306 // The "looping" colorizer uses a real loop to binary-search the array of gradient stops.
307 static constexpr int kMaxLoopingColorCount = 128;
308 static constexpr int kMaxLoopingIntervalCount = kMaxLoopingColorCount / 2;
309
make_looping_colorizer(int intervalCount,const SkPMColor4f * scale,const SkPMColor4f * bias,const SkScalar * thresholds)310 static std::unique_ptr<GrFragmentProcessor> make_looping_colorizer(int intervalCount,
311 const SkPMColor4f* scale,
312 const SkPMColor4f* bias,
313 const SkScalar* thresholds) {
314 SkASSERT(intervalCount >= 1 && intervalCount <= kMaxLoopingIntervalCount);
315 SkASSERT((intervalCount & 3) == 0); // intervals are required to come in groups of four
316 int intervalChunks = intervalCount / 4;
317 int cacheIndex = (size_t)intervalChunks - 1;
318
319 struct EffectCacheEntry {
320 SkOnce once;
321 const SkRuntimeEffect* effect;
322 };
323
324 static EffectCacheEntry effectCache[kMaxLoopingIntervalCount / 4];
325 SkASSERT(cacheIndex >= 0 && cacheIndex < (int)std::size(effectCache));
326 EffectCacheEntry* cacheEntry = &effectCache[cacheIndex];
327
328 cacheEntry->once([intervalCount, intervalChunks, cacheEntry] {
329 SkString sksl;
330
331 // Binary search for the interval that `t` falls within. We can precalculate the number of
332 // loop iterations we need, and we know `t` will always be in range, so we can just loop a
333 // fixed number of times and can be guaranteed to have found the proper element.
334 //
335 // Threshold values are stored in half4s to keep them compact, so the last two rounds of
336 // binary search are hand-unrolled to allow them to use swizzles.
337 //
338 // Note that this colorizer is also designed to handle the case of exactly 4 intervals (a
339 // single chunk). In this case, the binary search for-loop will optimize away entirely, as
340 // it can be proven to execute zero times. We also optimize away the calculation of `4 *
341 // chunk` near the end via an if statement, as the result will always be in chunk 0.
342 int loopCount = SkNextLog2(intervalChunks);
343 sksl.appendf(
344 "#version 300\n" // important space to separate token.
345 "uniform float4 thresholds[%d];"
346 "uniform float4 scale[%d];"
347 "uniform float4 bias[%d];"
348
349 "half4 main(float2 coord) {"
350 "float t = coord.x;"
351
352 // Choose a chunk from thresholds via binary search in a loop.
353 "int low = 0;"
354 "int high = %d;"
355 "int chunk = %d;"
356 "for (int loop = 0; loop < %d; ++loop) {"
357 "if (t < thresholds[chunk].w) {"
358 "high = chunk;"
359 "} else {"
360 "low = chunk + 1;"
361 "}"
362 "chunk = (low + high) / 2;"
363 "}"
364
365 // Choose the final position via explicit 4-way binary search.
366 "int pos;"
367 "if (t < thresholds[chunk].y) {"
368 "pos = (t < thresholds[chunk].x) ? 0 : 1;"
369 "} else {"
370 "pos = (t < thresholds[chunk].z) ? 2 : 3;"
371 "}"
372 "if (%d > 0) {"
373 "pos += 4 * chunk;"
374 "}"
375 "return t * scale[pos] + bias[pos];"
376 "}"
377 , /* thresholds: */ intervalChunks,
378 /* scale: */ intervalCount,
379 /* bias: */ intervalCount,
380 /* high: */ intervalChunks - 1,
381 /* chunk: */ (intervalChunks - 1) / 2,
382 /* loopCount: */ loopCount,
383 /* if (loopCount > 0): */ loopCount);
384
385 auto result = SkRuntimeEffect::MakeForShader(std::move(sksl));
386 SkASSERTF(result.effect, "%s", result.errorText.c_str());
387 cacheEntry->effect = result.effect.release();
388 });
389
390 return GrSkSLFP::Make(cacheEntry->effect, "LoopingBinaryColorizer",
391 /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone,
392 "thresholds", SkSpan((const SkV4*)thresholds, intervalChunks),
393 "scale", SkSpan(scale, intervalCount),
394 "bias", SkSpan(bias, intervalCount));
395 }
396
397 // Converts an input array of {colors, positions} into an array of {scales, biases, thresholds}.
398 // The length of the result array may differ from the input due to hard-stops or empty intervals.
build_intervals(int inputLength,const SkPMColor4f * inColors,const SkScalar * inPositions,int outputLength,SkPMColor4f * outScales,SkPMColor4f * outBiases,SkScalar * outThresholds)399 int build_intervals(int inputLength,
400 const SkPMColor4f* inColors,
401 const SkScalar* inPositions,
402 int outputLength,
403 SkPMColor4f* outScales,
404 SkPMColor4f* outBiases,
405 SkScalar* outThresholds) {
406 // Depending on how the positions resolve into hard stops or regular stops, the number of
407 // intervals specified by the number of colors/positions can change. For instance, a plain
408 // 3 color gradient is two intervals, but a 4 color gradient with a hard stop is also
409 // two intervals. At the most extreme end, an 8 interval gradient made entirely of hard
410 // stops has 16 colors.
411 int intervalCount = 0;
412 for (int i = 0; i < inputLength - 1; i++) {
413 if (intervalCount >= outputLength) {
414 // Already reached our output limit, and haven't run out of color stops. This gradient
415 // cannot be represented without more intervals.
416 return 0;
417 }
418
419 SkScalar t0 = inPositions[i];
420 SkScalar t1 = inPositions[i + 1];
421 SkScalar dt = t1 - t0;
422 // If the interval is empty, skip to the next interval. This will automatically create
423 // distinct hard stop intervals as needed. It also protects against malformed gradients
424 // that have repeated hard stops at the very beginning that are effectively unreachable.
425 if (SkScalarNearlyZero(dt)) {
426 continue;
427 }
428
429 Vec4 c0 = Vec4::Load(inColors[i].vec());
430 Vec4 c1 = Vec4::Load(inColors[i + 1].vec());
431 Vec4 scale = (c1 - c0) / dt;
432 Vec4 bias = c0 - t0 * scale;
433
434 scale.store(outScales + intervalCount);
435 bias.store(outBiases + intervalCount);
436 outThresholds[intervalCount] = t1;
437 intervalCount++;
438 }
439 return intervalCount;
440 }
441
make_unrolled_binary_colorizer(const SkPMColor4f * colors,const SkScalar * positions,int count)442 static std::unique_ptr<GrFragmentProcessor> make_unrolled_binary_colorizer(
443 const SkPMColor4f* colors, const SkScalar* positions, int count) {
444 if (count > kMaxUnrolledColorCount) {
445 // Definitely cannot represent this gradient configuration
446 return nullptr;
447 }
448
449 SkPMColor4f scales[kMaxUnrolledIntervalCount];
450 SkPMColor4f biases[kMaxUnrolledIntervalCount];
451 SkScalar thresholds[kMaxUnrolledIntervalCount] = {};
452 int intervalCount = build_intervals(count, colors, positions,
453 kMaxUnrolledIntervalCount, scales, biases, thresholds);
454 if (intervalCount <= 0) {
455 return nullptr;
456 }
457
458 SkRect thresholds1_7 = {thresholds[0], thresholds[1], thresholds[2], thresholds[3]},
459 thresholds9_13 = {thresholds[4], thresholds[5], thresholds[6], 0.0};
460
461 return make_unrolled_colorizer(intervalCount, scales, biases, thresholds1_7, thresholds9_13);
462 }
463
make_looping_binary_colorizer(const SkPMColor4f * colors,const SkScalar * positions,int count)464 static std::unique_ptr<GrFragmentProcessor> make_looping_binary_colorizer(const SkPMColor4f* colors,
465 const SkScalar* positions,
466 int count) {
467 if (count > kMaxLoopingColorCount) {
468 // Definitely cannot represent this gradient configuration
469 return nullptr;
470 }
471
472 SkPMColor4f scales[kMaxLoopingIntervalCount];
473 SkPMColor4f biases[kMaxLoopingIntervalCount];
474 SkScalar thresholds[kMaxLoopingIntervalCount] = {};
475 int intervalCount = build_intervals(count, colors, positions,
476 kMaxLoopingIntervalCount, scales, biases, thresholds);
477 if (intervalCount <= 0) {
478 return nullptr;
479 }
480
481 // We round up the number of intervals to the next power of two. This reduces the number of
482 // unique shaders and doesn't require any additional GPU processing power, but this does waste a
483 // handful of uniforms.
484 int roundedSize = std::max(4, SkNextPow2(intervalCount));
485 SkASSERT(roundedSize <= kMaxLoopingIntervalCount);
486 for (; intervalCount < roundedSize; ++intervalCount) {
487 thresholds[intervalCount] = thresholds[intervalCount - 1];
488 scales[intervalCount] = scales[intervalCount - 1];
489 biases[intervalCount] = biases[intervalCount - 1];
490 }
491
492 return make_looping_colorizer(intervalCount, scales, biases, thresholds);
493 }
494
495 // Analyze the shader's color stops and positions and chooses an appropriate colorizer to represent
496 // the gradient.
make_uniform_colorizer(const SkPMColor4f * colors,const SkScalar * positions,int count,bool premul,const GrFPArgs & args)497 static std::unique_ptr<GrFragmentProcessor> make_uniform_colorizer(const SkPMColor4f* colors,
498 const SkScalar* positions,
499 int count,
500 bool premul,
501 const GrFPArgs& args) {
502 // If there are hard stops at the beginning or end, the first and/or last color should be
503 // ignored by the colorizer since it should only be used in a clamped border color. By detecting
504 // and removing these stops at the beginning, it makes optimizing the remaining color stops
505 // simpler.
506
507 // SkGradientBaseShader guarantees that pos[0] == 0 by adding a default value.
508 bool bottomHardStop = SkScalarNearlyEqual(positions[0], positions[1]);
509 // The same is true for pos[end] == 1
510 bool topHardStop = SkScalarNearlyEqual(positions[count - 2], positions[count - 1]);
511
512 if (bottomHardStop) {
513 colors++;
514 positions++;
515 count--;
516 }
517 if (topHardStop) {
518 count--;
519 }
520
521 // Two remaining colors means a single interval from 0 to 1
522 // (but it may have originally been a 3 or 4 color gradient with 1-2 hard stops at the ends)
523 if (count == 2) {
524 return make_single_interval_colorizer(colors[0], colors[1]);
525 }
526
527 const GrShaderCaps* caps = args.fContext->priv().caps()->shaderCaps();
528 auto intervalsExceedPrecisionLimit = [&]() -> bool {
529 // The remaining analytic colorizers use scale*t+bias, and the scale/bias values can become
530 // quite large when thresholds are close (but still outside the hardstop limit). If float
531 // isn't 32-bit, output can be incorrect if the thresholds are too close together. However,
532 // the analytic shaders are higher quality, so they can be used with lower precision
533 // hardware when the thresholds are not ill-conditioned.
534 if (!caps->fFloatIs32Bits) {
535 // Could run into problems. Check if thresholds are close together (with a limit of .01,
536 // so that scales will be less than 100, which leaves 4 decimals of precision on
537 // 16-bit).
538 for (int i = 0; i < count - 1; i++) {
539 SkScalar dt = SkScalarAbs(positions[i] - positions[i + 1]);
540 if (dt <= kLowPrecisionIntervalLimit && dt > SK_ScalarNearlyZero) {
541 return true;
542 }
543 }
544 }
545 return false;
546 };
547
548 auto makeDualIntervalColorizer = [&]() -> std::unique_ptr<GrFragmentProcessor> {
549 // The dual-interval colorizer uses the same principles as the binary-search colorizer, but
550 // is limited to exactly 2 intervals.
551 if (count == 3) {
552 // Must be a dual interval gradient, where the middle point is at 1 and the
553 // two intervals share the middle color stop.
554 return make_dual_interval_colorizer(colors[0], colors[1],
555 colors[1], colors[2],
556 positions[1]);
557 }
558 if (count == 4 && SkScalarNearlyEqual(positions[1], positions[2])) {
559 // Two separate intervals that join at the same threshold position
560 return make_dual_interval_colorizer(colors[0], colors[1],
561 colors[2], colors[3],
562 positions[1]);
563 }
564 // The gradient can't be represented in only two intervals.
565 return nullptr;
566 };
567
568 int binaryColorizerLimit = caps->fNonconstantArrayIndexSupport ? kMaxLoopingColorCount
569 : kMaxUnrolledColorCount;
570 if ((count <= binaryColorizerLimit) && !intervalsExceedPrecisionLimit()) {
571 // The dual-interval colorizer uses the same principles as the binary-search colorizer, but
572 // is limited to exactly 2 intervals.
573 std::unique_ptr<GrFragmentProcessor> colorizer = makeDualIntervalColorizer();
574 if (colorizer) {
575 return colorizer;
576 }
577 // Attempt to create an analytic colorizer that uses a binary-search loop.
578 colorizer = caps->fNonconstantArrayIndexSupport
579 ? make_looping_binary_colorizer(colors, positions, count)
580 : make_unrolled_binary_colorizer(colors, positions, count);
581 if (colorizer) {
582 return colorizer;
583 }
584 }
585
586 // This gradient is too complex for our uniform colorizers. The calling code will fall back to
587 // creating a textured colorizer, instead.
588 return nullptr;
589 }
590
591 // This top-level effect implements clamping on the layout coordinate and requires specifying the
592 // border colors that are used when outside the clamped boundary. Gradients with the
593 // SkTileMode::kClamp should use the colors at their first and last stop (after adding default stops
594 // for t=0,t=1) as the border color. This will automatically replicate the edge color, even when
595 // there is a hard stop.
596 //
597 // The SkTileMode::kDecal can be produced by specifying transparent black as the border colors,
598 // regardless of the gradient's stop colors.
make_clamped_gradient(std::unique_ptr<GrFragmentProcessor> colorizer,std::unique_ptr<GrFragmentProcessor> gradLayout,SkPMColor4f leftBorderColor,SkPMColor4f rightBorderColor,bool colorsAreOpaque)599 static std::unique_ptr<GrFragmentProcessor> make_clamped_gradient(
600 std::unique_ptr<GrFragmentProcessor> colorizer,
601 std::unique_ptr<GrFragmentProcessor> gradLayout,
602 SkPMColor4f leftBorderColor,
603 SkPMColor4f rightBorderColor,
604 bool colorsAreOpaque) {
605 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
606 "uniform shader colorizer;"
607 "uniform shader gradLayout;"
608
609 "uniform half4 leftBorderColor;" // t < 0.0
610 "uniform half4 rightBorderColor;" // t > 1.0
611
612 "uniform int layoutPreservesOpacity;" // specialized
613
614 "half4 main(float2 coord) {"
615 "half4 t = gradLayout.eval(coord);"
616 "half4 outColor;"
617
618 // If t.x is below 0, use the left border color without invoking the child processor.
619 // If any t.x is above 1, use the right border color. Otherwise, t is in the [0, 1]
620 // range assumed by the colorizer FP, so delegate to the child processor.
621 "if (!bool(layoutPreservesOpacity) && t.y < 0) {"
622 // layout has rejected this fragment (rely on sksl to remove this branch if the
623 // layout FP preserves opacity is false)
624 "outColor = half4(0);"
625 "} else if (t.x < 0) {"
626 "outColor = leftBorderColor;"
627 "} else if (t.x > 1.0) {"
628 "outColor = rightBorderColor;"
629 "} else {"
630 // Always sample from (x, 0), discarding y, since the layout FP can use y as a
631 // side-channel.
632 "outColor = colorizer.eval(t.x0);"
633 "}"
634 "return outColor;"
635 "}"
636 );
637
638 // If the layout does not preserve opacity, remove the opaque optimization,
639 // but otherwise respect the provided color opacity state (which should take
640 // into account the opacity of the border colors).
641 bool layoutPreservesOpacity = gradLayout->preservesOpaqueInput();
642 GrSkSLFP::OptFlags optFlags = GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha;
643 if (colorsAreOpaque && layoutPreservesOpacity) {
644 optFlags |= GrSkSLFP::OptFlags::kPreservesOpaqueInput;
645 }
646
647 return GrSkSLFP::Make(effect, "ClampedGradient", /*inputFP=*/nullptr, optFlags,
648 "colorizer", GrSkSLFP::IgnoreOptFlags(std::move(colorizer)),
649 "gradLayout", GrSkSLFP::IgnoreOptFlags(std::move(gradLayout)),
650 "leftBorderColor", leftBorderColor,
651 "rightBorderColor", rightBorderColor,
652 "layoutPreservesOpacity",
653 GrSkSLFP::Specialize<int>(layoutPreservesOpacity));
654 }
655
make_tiled_gradient(const GrFPArgs & args,std::unique_ptr<GrFragmentProcessor> colorizer,std::unique_ptr<GrFragmentProcessor> gradLayout,bool mirror,bool colorsAreOpaque)656 static std::unique_ptr<GrFragmentProcessor> make_tiled_gradient(
657 const GrFPArgs& args,
658 std::unique_ptr<GrFragmentProcessor> colorizer,
659 std::unique_ptr<GrFragmentProcessor> gradLayout,
660 bool mirror,
661 bool colorsAreOpaque) {
662 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
663 "uniform shader colorizer;"
664 "uniform shader gradLayout;"
665
666 "uniform int mirror;" // specialized
667 "uniform int layoutPreservesOpacity;" // specialized
668 "uniform int useFloorAbsWorkaround;" // specialized
669
670 "half4 main(float2 coord) {"
671 "float4 t = gradLayout.eval(coord);"
672
673 "if (!bool(layoutPreservesOpacity) && t.y < 0) {"
674 // layout has rejected this fragment (rely on sksl to remove this branch if the
675 // layout FP preserves opacity is false)
676 "return half4(0);"
677 "} else {"
678 "if (bool(mirror)) {"
679 "float t_1 = t.x - 1;"
680 "float tiled_t = t_1 - 2 * floor(t_1 * 0.5) - 1;"
681 "if (bool(useFloorAbsWorkaround)) {"
682 // At this point the expected value of tiled_t should between -1 and 1, so
683 // this clamp has no effect other than to break up the floor and abs calls
684 // and make sure the compiler doesn't merge them back together.
685 "tiled_t = clamp(tiled_t, -1, 1);"
686 "}"
687 "t.x = abs(tiled_t);"
688 "} else {"
689 // Simple repeat mode
690 "t.x = fract(t.x);"
691 "}"
692
693 // Always sample from (x, 0), discarding y, since the layout FP can use y as a
694 // side-channel.
695 "half4 outColor = colorizer.eval(t.x0);"
696 "return outColor;"
697 "}"
698 "}"
699 );
700
701 // If the layout does not preserve opacity, remove the opaque optimization,
702 // but otherwise respect the provided color opacity state (which should take
703 // into account the opacity of the border colors).
704 bool layoutPreservesOpacity = gradLayout->preservesOpaqueInput();
705 GrSkSLFP::OptFlags optFlags = GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha;
706 if (colorsAreOpaque && layoutPreservesOpacity) {
707 optFlags |= GrSkSLFP::OptFlags::kPreservesOpaqueInput;
708 }
709 const bool useFloorAbsWorkaround =
710 args.fContext->priv().caps()->shaderCaps()->fMustDoOpBetweenFloorAndAbs;
711
712 return GrSkSLFP::Make(effect, "TiledGradient", /*inputFP=*/nullptr, optFlags,
713 "colorizer", GrSkSLFP::IgnoreOptFlags(std::move(colorizer)),
714 "gradLayout", GrSkSLFP::IgnoreOptFlags(std::move(gradLayout)),
715 "mirror", GrSkSLFP::Specialize<int>(mirror),
716 "layoutPreservesOpacity",
717 GrSkSLFP::Specialize<int>(layoutPreservesOpacity),
718 "useFloorAbsWorkaround",
719 GrSkSLFP::Specialize<int>(useFloorAbsWorkaround));
720 }
721
make_interpolated_to_dst(std::unique_ptr<GrFragmentProcessor> gradient,const SkGradientShader::Interpolation & interpolation,SkColorSpace * intermediateColorSpace,const GrColorInfo & dstInfo,bool allOpaque)722 static std::unique_ptr<GrFragmentProcessor> make_interpolated_to_dst(
723 std::unique_ptr<GrFragmentProcessor> gradient,
724 const SkGradientShader::Interpolation& interpolation,
725 SkColorSpace* intermediateColorSpace,
726 const GrColorInfo& dstInfo,
727 bool allOpaque) {
728 using ColorSpace = SkGradientShader::Interpolation::ColorSpace;
729
730 // If these values change, you will need to edit sksl_shared
731 static_assert(static_cast<int>(ColorSpace::kDestination) == 0);
732 static_assert(static_cast<int>(ColorSpace::kSRGBLinear) == 1);
733 static_assert(static_cast<int>(ColorSpace::kLab) == 2);
734 static_assert(static_cast<int>(ColorSpace::kOKLab) == 3);
735 static_assert(static_cast<int>(ColorSpace::kOKLabGamutMap) == 4);
736 static_assert(static_cast<int>(ColorSpace::kLCH) == 5);
737 static_assert(static_cast<int>(ColorSpace::kOKLCH) == 6);
738 static_assert(static_cast<int>(ColorSpace::kOKLCHGamutMap) == 7);
739 static_assert(static_cast<int>(ColorSpace::kSRGB) == 8);
740 static_assert(static_cast<int>(ColorSpace::kHSL) == 9);
741 static_assert(static_cast<int>(ColorSpace::kHWB) == 10);
742
743 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
744 "uniform int colorSpace;" // specialized
745 "uniform int do_unpremul;" // specialized
746
747 "half4 main(half4 color) {"
748 "return $interpolated_to_rgb_unpremul(color, colorSpace, do_unpremul);"
749 "}"
750 );
751
752 // Are we interpreting premul colors? We use this later to decide if we need to inject a final
753 // premultiplication step.
754 bool inputPremul = static_cast<bool>(interpolation.fInPremul);
755
756 switch (interpolation.fColorSpace) {
757 case ColorSpace::kLab:
758 case ColorSpace::kOKLab:
759 case ColorSpace::kOKLabGamutMap:
760 case ColorSpace::kLCH:
761 case ColorSpace::kOKLCH:
762 case ColorSpace::kOKLCHGamutMap:
763 case ColorSpace::kHSL:
764 case ColorSpace::kHWB:
765 // In these exotic spaces, unpremul the colors if necessary (no need to do this if
766 // they're all opaque), and then convert them to the intermediate SkColorSpace
767 gradient = GrSkSLFP::Make(effect, "GradientCS", std::move(gradient),
768 GrSkSLFP::OptFlags::kAll,
769 "colorSpace", GrSkSLFP::Specialize<int>(
770 static_cast<int>(interpolation.fColorSpace)),
771 "do_unpremul", GrSkSLFP::Specialize<int>(
772 inputPremul && !allOpaque));
773 // We just forced the colors back to unpremul. Remember that for below
774 inputPremul = false;
775 break;
776 default:
777 break;
778 }
779
780 // Now transform from intermediate to destination color space. There are two tricky things here:
781 // 1) Normally, we'd pass dstInfo to the transform effect. However, if someone is rendering to
782 // a non-color managed surface (nullptr dst color space), and they chose to interpolate in
783 // any of the exotic spaces, that transform would do nothing, and leave the colors in
784 // whatever intermediate space we chose. That could even be something like XYZ, which will
785 // produce nonsense. So, in this particular case, we break Skia's rules, and treat a null
786 // destination as sRGB.
787 SkColorSpace* dstColorSpace = dstInfo.colorSpace() ? dstInfo.colorSpace() : sk_srgb_singleton();
788
789 // 2) Alpha type: We already tweaked our idea of "inputPremul" above -- if we interpolated in a
790 // non-RGB space, then we had to unpremul the colors to get proper conversion back to RGB.
791 // Our final goal is to emit premul colors, but under certain conditions we don't need to do
792 // anything to achieve that: i.e. its interpolating already premul colors (inputPremul) or
793 // all the colors have a = 1, in which case premul is a no op. Note that this allOpaque check
794 // is more permissive than SkGradientBaseShader's isOpaque(), since we can optimize away the
795 // make-premul op for two point conical gradients (which report false for isOpaque).
796 SkAlphaType intermediateAlphaType = inputPremul ? kPremul_SkAlphaType : kUnpremul_SkAlphaType;
797 SkAlphaType dstAlphaType = kPremul_SkAlphaType;
798
799 // If all the colors were opaque, then we don't need to do any premultiplication. We describe
800 // all the colors as *unpremul*, though. That will eliminate any extra unpremul/premul pair
801 // that would be injected if we have to do a color-space conversion here.
802 if (allOpaque) {
803 intermediateAlphaType = dstAlphaType = kUnpremul_SkAlphaType;
804 }
805
806 return GrColorSpaceXformEffect::Make(std::move(gradient),
807 intermediateColorSpace, intermediateAlphaType,
808 dstColorSpace, dstAlphaType);
809 }
810
811 namespace GrGradientShader {
812
813 /**
814 * Produces an FP that muls its input coords by the inverse of the pending matrix and then
815 * samples the passed FP with those coordinates. 'postInv' is an additional matrix to
816 * post-apply to the inverted pending matrix. If the pending matrix is not invertible the
817 * GrFPResult's bool will be false and the passed FP will be returned to the caller in the
818 * GrFPResult.
819 */
apply_matrix(std::unique_ptr<GrFragmentProcessor> fp,const SkShaders::MatrixRec & rec,const SkMatrix & postInv)820 static GrFPResult apply_matrix(std::unique_ptr<GrFragmentProcessor> fp,
821 const SkShaders::MatrixRec& rec,
822 const SkMatrix& postInv) {
823 auto [total, ok] = rec.applyForFragmentProcessor(postInv);
824 if (!ok) {
825 return {false, std::move(fp)};
826 }
827 // GrMatrixEffect returns 'fp' if total worked out to identity.
828 return {true, GrMatrixEffect::Make(total, std::move(fp))};
829 }
830
831 // Combines the colorizer and layout with an appropriately configured top-level effect based on the
832 // gradient's tile mode
MakeGradientFP(const SkGradientBaseShader & shader,const GrFPArgs & args,const SkShaders::MatrixRec & mRec,std::unique_ptr<GrFragmentProcessor> layout,const SkMatrix * overrideMatrix)833 std::unique_ptr<GrFragmentProcessor> MakeGradientFP(const SkGradientBaseShader& shader,
834 const GrFPArgs& args,
835 const SkShaders::MatrixRec& mRec,
836 std::unique_ptr<GrFragmentProcessor> layout,
837 const SkMatrix* overrideMatrix) {
838 // No shader is possible if a layout couldn't be created, e.g. a layout-specific Make() returned
839 // null.
840 if (layout == nullptr) {
841 return nullptr;
842 }
843
844 // Some two-point conical gradients use a custom matrix here. Otherwise, use
845 // SkGradientBaseShader's matrix;
846 if (!overrideMatrix) {
847 overrideMatrix = &shader.getGradientMatrix();
848 }
849 bool success;
850 std::tie(success, layout) = apply_matrix(std::move(layout), mRec, *overrideMatrix);
851 if (!success) {
852 return nullptr;
853 }
854
855 // Convert all colors into destination space and into SkPMColor4fs, and handle
856 // premul issues depending on the interpolation mode.
857 //
858 // SkGradientShader stores positions implicitly when they are evenly spaced, but the getPos()
859 // implementation performs a branch for every position index. Since the shader conversion
860 // requires lots of position tests, instruct the xformer to calculate all of the positions up
861 // front if needed.
862 SkColor4fXformer xformedColors(
863 &shader, args.fDstColorInfo->colorSpace(), /*forceExplicitPositions=*/true);
864 const SkPMColor4f* colors = xformedColors.fColors.begin();
865 const SkScalar* positions = xformedColors.fPositions;
866 const int colorCount = xformedColors.fColors.size();
867
868 bool allOpaque = true;
869 for (int i = 0; i < colorCount; i++) {
870 if (allOpaque && !SkScalarNearlyEqual(colors[i].fA, 1.0)) {
871 allOpaque = false;
872 }
873 }
874
875 // All gradients are colorized the same way, regardless of layout
876 std::unique_ptr<GrFragmentProcessor> colorizer = make_uniform_colorizer(
877 colors, positions, colorCount, shader.interpolateInPremul(), args);
878
879 if (colorizer) {
880 // If we made a uniform colorizer, wrap it in a conversion from interpolated space to
881 // destination. This also applies any final premultiplication.
882 colorizer = make_interpolated_to_dst(std::move(colorizer),
883 shader.fInterpolation,
884 xformedColors.fIntermediateColorSpace.get(),
885 *args.fDstColorInfo,
886 allOpaque);
887 } else {
888 // If we failed to make a uniform colorizer, we need to rasterize the gradient to a
889 // texture (which can handle arbitrarily complex gradients). This method directly encodes
890 // the result of the interpolated-to-dst into the texture, so we skip the wrapper FP above.
891 //
892 // Also, note that the texture technique has limited sampling resolution, and always blurs
893 // hard-stops.)
894 colorizer = make_textured_colorizer(colors,
895 positions,
896 colorCount,
897 allOpaque,
898 shader.fInterpolation,
899 xformedColors.fIntermediateColorSpace.get(),
900 args.fDstColorInfo->colorSpace(),
901 args);
902 }
903
904 if (colorizer == nullptr) {
905 return nullptr;
906 }
907
908 // If interpolation space is different than destination, wrap the colorizer in a conversion.
909 // This also handles any final premultiplication, etc.
910
911 // All tile modes are supported (unless something was added to SkShader)
912 std::unique_ptr<GrFragmentProcessor> gradient;
913 switch(shader.getTileMode()) {
914 case SkTileMode::kRepeat:
915 gradient = make_tiled_gradient(args, std::move(colorizer), std::move(layout),
916 /* mirror */ false, allOpaque);
917 break;
918 case SkTileMode::kMirror:
919 gradient = make_tiled_gradient(args, std::move(colorizer), std::move(layout),
920 /* mirror */ true, allOpaque);
921 break;
922 case SkTileMode::kClamp: {
923 // For the clamped mode, the border colors are the first and last colors, corresponding
924 // to t=0 and t=1, because SkGradientBaseShader enforces that by adding color stops as
925 // appropriate. If there is a hard stop, this grabs the expected outer colors for the
926 // border.
927
928 // However, we need to finish converting to destination color space. (These are still
929 // in the interpolated color space).
930 SkPMColor4f borderColors[2] = { colors[0], colors[colorCount - 1] };
931 SkArenaAlloc alloc(/*firstHeapAllocation=*/0);
932 SkRasterPipeline p(&alloc);
933 SkRasterPipeline_MemoryCtx ctx = { borderColors, 0 };
934
935 p.append(SkRasterPipelineOp::load_f32, &ctx);
936 SkGradientBaseShader::AppendInterpolatedToDstStages(
937 &p,
938 &alloc,
939 allOpaque,
940 shader.fInterpolation,
941 xformedColors.fIntermediateColorSpace.get(),
942 args.fDstColorInfo->colorSpace());
943 p.append(SkRasterPipelineOp::store_f32, &ctx);
944 p.run(0, 0, 2, 1);
945
946 gradient = make_clamped_gradient(std::move(colorizer), std::move(layout),
947 borderColors[0], borderColors[1], allOpaque);
948 break;
949 }
950 case SkTileMode::kDecal:
951 // Even if the gradient colors are opaque, the decal borders are transparent so
952 // disable that optimization
953 gradient = make_clamped_gradient(std::move(colorizer), std::move(layout),
954 SK_PMColor4fTRANSPARENT, SK_PMColor4fTRANSPARENT,
955 /* colorsAreOpaque */ false);
956 break;
957 }
958
959 return gradient;
960 }
961
MakeLinear(const SkLinearGradient & shader,const GrFPArgs & args,const SkShaders::MatrixRec & mRec)962 std::unique_ptr<GrFragmentProcessor> MakeLinear(const SkLinearGradient& shader,
963 const GrFPArgs& args,
964 const SkShaders::MatrixRec& mRec) {
965 // We add a tiny delta to t. When gradient stops are set up so that a hard stop in a vertically
966 // or horizontally oriented gradient falls exactly at a column or row of pixel centers we can
967 // get slightly different interpolated t values along the column/row. By adding the delta
968 // we will consistently get the color to the "right" of the stop. Of course if the hard stop
969 // falls at X.5 - delta then we still could get inconsistent results, but that is much less
970 // likely. crbug.com/938592
971 // If/when we add filtering of the gradient this can be removed.
972 static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
973 "half4 main(float2 coord) {"
974 "return half4(half(coord.x) + 0.00001, 1, 0, 0);" // y = 1 for always valid
975 "}"
976 );
977 // The linear gradient never rejects a pixel so it doesn't change opacity
978 auto fp = GrSkSLFP::Make(effect, "LinearLayout", /*inputFP=*/nullptr,
979 GrSkSLFP::OptFlags::kPreservesOpaqueInput);
980 return MakeGradientFP(shader, args, mRec, std::move(fp));
981 }
982
983 #if defined(GPU_TEST_UTILS)
RandomParams(SkRandom * random)984 RandomParams::RandomParams(SkRandom* random) {
985 // Set color count to min of 2 so that we don't trigger the const color optimization and make
986 // a non-gradient processor.
987 fColorCount = random->nextRangeU(2, kMaxRandomGradientColors);
988 fUseColors4f = random->nextBool();
989
990 // if one color, omit stops, otherwise randomly decide whether or not to
991 if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) {
992 fStops = nullptr;
993 } else {
994 fStops = fStopStorage;
995 }
996
997 // if using SkColor4f, attach a random (possibly null) color space (with linear gamma)
998 if (fUseColors4f) {
999 fColorSpace = GrTest::TestColorSpace(random);
1000 }
1001
1002 SkScalar stop = 0.f;
1003 for (int i = 0; i < fColorCount; ++i) {
1004 if (fUseColors4f) {
1005 fColors4f[i].fR = random->nextUScalar1();
1006 fColors4f[i].fG = random->nextUScalar1();
1007 fColors4f[i].fB = random->nextUScalar1();
1008 fColors4f[i].fA = random->nextUScalar1();
1009 } else {
1010 fColors[i] = random->nextU();
1011 }
1012 if (fStops) {
1013 fStops[i] = stop;
1014 stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
1015 }
1016 }
1017 fTileMode = static_cast<SkTileMode>(random->nextULessThan(kSkTileModeCount));
1018 }
1019 #endif
1020
1021 } // namespace GrGradientShader
1022