xref: /aosp_15_r20/external/ComputeLibrary/src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyNativeKernel.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2019-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyNativeKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/CLKernelLibrary.h"
28 #include "arm_compute/core/CL/ICLTensor.h"
29 #include "arm_compute/core/CL/OpenCL.h"
30 #include "arm_compute/core/Helpers.h"
31 #include "arm_compute/core/TensorInfo.h"
32 #include "arm_compute/core/Utils.h"
33 #include "arm_compute/core/Validate.h"
34 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
35 
36 #include "src/core/AccessWindowStatic.h"
37 #include "src/core/helpers/AutoConfiguration.h"
38 #include "src/core/helpers/WindowHelpers.h"
39 
40 #include "support/Cast.h"
41 #include "support/StringSupport.h"
42 
43 namespace arm_compute
44 {
45 namespace opencl
46 {
47 namespace kernels
48 {
49 namespace
50 {
51 using ElementsProcessed = Steps;
52 
validate_arguments(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * dst,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info)53 Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
54                           const GEMMReshapeInfo &gemm_info)
55 {
56     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
57     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
58     if(src0->data_type() == DataType::QASYMM8)
59     {
60         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1);
61     }
62     else
63     {
64         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 1, DataType::QASYMM8, DataType::QSYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL);
65     }
66     ARM_COMPUTE_RETURN_ERROR_ON_MSG(src0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
67     ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
68     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.k0 != rhs_info.k0);
69     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((lhs_info.k0 & (lhs_info.k0 - 1)) && lhs_info.k0 != 3), "Only 2,3,4,8,16 are supported for k0");
70     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.k0 > 16);
71     ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.m0 < 1 || lhs_info.m0 > 8);
72     ARM_COMPUTE_RETURN_ERROR_ON_MSG(((rhs_info.n0 & (rhs_info.n0 - 1)) && rhs_info.n0 != 3), "Only 2,3,4,8,16 are supported for n0");
73     ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.export_to_cl_image, "Export to CLImage not supported for quantized GEMM");
74 
75     const int m = gemm_info.m();
76     const int n = gemm_info.n();
77     const int k = gemm_info.k();
78 
79     ARM_COMPUTE_UNUSED(m);
80     ARM_COMPUTE_UNUSED(n);
81     ARM_COMPUTE_UNUSED(k);
82 
83     ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(0) != static_cast<unsigned int>(k));
84     ARM_COMPUTE_RETURN_ERROR_ON(src1->dimension(0) != static_cast<unsigned int>(n));
85     ARM_COMPUTE_RETURN_ERROR_ON(src1->dimension(1) != static_cast<unsigned int>(k));
86     if(gemm_info.reinterpret_input_as_3d())
87     {
88         ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) * src0->dimension(2) != static_cast<unsigned int>(m));
89     }
90     else
91     {
92         ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) != static_cast<unsigned int>(m));
93     }
94 
95     if(dst->total_size() != 0)
96     {
97         const TensorInfo tensor_info_dst = dst->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info));
98         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst);
99         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
100     }
101 
102     return Status{};
103 }
104 
validate_and_configure_window(const ITensorInfo * src0,ITensorInfo * src1,ITensorInfo * dst,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info,ElementsProcessed & num_elements_processed)105 std::pair<Status, Window> validate_and_configure_window(const ITensorInfo *src0, ITensorInfo *src1, ITensorInfo *dst, const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info,
106                                                         const GEMMReshapeInfo &gemm_info, ElementsProcessed &num_elements_processed)
107 {
108     unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
109     unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
110     bool          reinterpret_input_as_3d             = gemm_info.reinterpret_input_as_3d();
111     bool          reinterpret_dst_as_3d               = (gemm_info.depth_output_gemm3d() != 0);
112 
113     Window win{};
114     bool   window_changed = false;
115 
116     // In case both input and dst have to be reinterpreted as 3D tensors,
117     // force reinterpret_dst_as_3d to be false.
118     if(reinterpret_input_as_3d == reinterpret_dst_as_3d)
119     {
120         reinterpret_dst_as_3d = false;
121     }
122 
123     // dst tensor auto initialization if not yet initialized
124     auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(misc::shape_calculator::compute_mm_shape(*src0, *src1, gemm_info)).set_data_type(DataType::S32));
125 
126     TensorInfo tmp_info(*dst);
127 
128     if(reinterpret_dst_as_3d)
129     {
130         // Since the dst tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
131         // the window needs to be constructed on the 2D collapsed version of the tensor
132         TensorShape tmp_shape(dst->tensor_shape());
133         tmp_shape.collapse(2U, 1U);
134         tmp_info.set_tensor_shape(tmp_shape);
135     }
136 
137     // Configure kernel window
138     num_elems_processed_per_iteration_x = rhs_info.n0;
139     num_elems_processed_per_iteration_y = lhs_info.m0;
140 
141     win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
142 
143     // RHS matrix still needs padding on the X
144     AccessWindowStatic src1_access(src1, 0, 0,
145                                    ceil_to_multiple(src1->dimension(0), num_elems_processed_per_iteration_x),
146                                    src1->dimension(1));
147 
148     window_changed = update_window_and_padding(win, src1_access); // window used by the execute_window_loop
149 
150     // Collapse along the Z direction
151     // This collapse needs to be here in order to tune the Z dimension of LWS
152     Window             collapsed             = win;
153     const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(dst->num_dimensions()), 2u);
154     collapsed                                = win.collapse(win, dimension_to_collapse);
155 
156     Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
157     return std::make_pair(err, collapsed);
158 }
159 } // namespace
160 
ClGemmLowpMatrixMultiplyNativeKernel()161 ClGemmLowpMatrixMultiplyNativeKernel::ClGemmLowpMatrixMultiplyNativeKernel()
162 {
163     _type = CLKernelType::GEMM;
164 }
165 
configure(const CLCompileContext & compile_context,const ITensorInfo * src0,ITensorInfo * src1,ITensorInfo * dst,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info)166 void ClGemmLowpMatrixMultiplyNativeKernel::configure(const CLCompileContext &compile_context, const ITensorInfo *src0, ITensorInfo *src1, ITensorInfo *dst,
167                                                      const GEMMLHSMatrixInfo &lhs_info, const GEMMRHSMatrixInfo &rhs_info, const GEMMReshapeInfo &gemm_info)
168 {
169     ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
170 
171     ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, dst, lhs_info, rhs_info, gemm_info));
172 
173     _reinterpret_input_as_3d  = gemm_info.reinterpret_input_as_3d();
174     _reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d() != 0);
175     _use_dummy_work_items     = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device());
176 
177     // We still need padding on the X dimension for the RHS matrix
178     auto padding_info = get_padding_info({ src0, dst });
179 
180     // In case both input and dst have to be reinterpreted as 3D tensors,
181     // force reinterpret_input_as_3d and reinterpret_dst_as_3d to be false.
182     if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
183     {
184         _reinterpret_input_as_3d  = false;
185         _reinterpret_output_as_3d = false;
186     }
187 
188     // Check if we need to slide the matrix B
189     const unsigned int num_dimensions_src0 = src0->num_dimensions();
190     _slide_matrix_b                        = (src1->num_dimensions() >= num_dimensions_src0);
191 
192     ElementsProcessed num_elements_processed{};
193 
194     // Configure kernel window
195     auto win_config = validate_and_configure_window(src0, src1, dst, lhs_info, rhs_info, gemm_info, num_elements_processed);
196     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
197     ICLKernel::configure_internal(win_config.second);
198 
199     // If _reinterpret_input_as_3d = _reinterpret_output_as_3d = true,
200     // we will dispatch a batched-GEMM to reduce the complexity of the address calculation within the OpenCL kernel.
201     // This means that the actual m used by the kernel is given by dst->info()->dimension(1) and not by gemm_info.m
202     const unsigned int internal_m = _reinterpret_output_as_3d ? gemm_info.m() : dst->dimension(1);
203     // Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
204     const unsigned int partial_store_m0 = internal_m % lhs_info.m0;
205     const unsigned int partial_store_n0 = gemm_info.n() % rhs_info.n0;
206 
207     // Shrink M0 to be always <= M (internal_m) to prevent out-of-bounds reads.
208     // NOTE: This might have implications on heuristics and performance
209     const unsigned int internal_m0 = std::min(internal_m, lhs_info.m0);
210 
211     // Create build options
212     CLBuildOptions build_opts;
213     build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
214     build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
215     build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(dst->dimension(1)));
216     build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(dst->dimension(2)));
217     build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(src1->dimension(2)));
218     build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
219     build_opts.add_option("-DM=" + support::cpp11::to_string(src0->dimension(1)));
220     build_opts.add_option("-DN=" + support::cpp11::to_string(gemm_info.n()));
221     build_opts.add_option("-DK=" + support::cpp11::to_string(gemm_info.k()));
222     build_opts.add_option("-DM0=" + support::cpp11::to_string(internal_m0));
223     build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
224     build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
225     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src0->data_type()));
226     build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_dot8_acc_type_from_data_type(src0->data_type()));
227     build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
228     build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
229     std::string kernel_name("gemmlowp_mm_native");
230 
231     // A macro guard to compile ONLY the kernel of interest
232     build_opts.add_option("-D" + upper_string(kernel_name));
233 
234     // Create kernel
235     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
236 
237     // Set config_id for enabling LWS tuning
238     _config_id = kernel_name;
239     _config_id += "_";
240     _config_id += dot8_supported(CLKernelLibrary::get().get_device()) ? "_dot8" : "";
241     _config_id += "_";
242     _config_id += (_reinterpret_input_as_3d ? "3di_" : "");
243     _config_id += (_reinterpret_output_as_3d ? "3do_" : "");
244     _config_id += support::cpp11::to_string(dst->dimension(1));
245     _config_id += "_";
246     _config_id += support::cpp11::to_string(dst->dimension(0));
247     _config_id += "_";
248     _config_id += support::cpp11::to_string(gemm_info.k());
249     _config_id += "_";
250     _config_id += support::cpp11::to_string(dst->dimension(2));
251     _config_id += "_";
252     _config_id += support::cpp11::to_string(lhs_info.m0);
253     _config_id += "_";
254     _config_id += support::cpp11::to_string(rhs_info.n0);
255     _config_id += "_";
256     _config_id += support::cpp11::to_string(lhs_info.k0);
257 
258     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
259 }
260 
validate(const ITensorInfo * src0,const ITensorInfo * src1,const ITensorInfo * dst,const GEMMLHSMatrixInfo & lhs_info,const GEMMRHSMatrixInfo & rhs_info,const GEMMReshapeInfo & gemm_info)261 Status ClGemmLowpMatrixMultiplyNativeKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, const GEMMLHSMatrixInfo &lhs_info,
262                                                       const GEMMRHSMatrixInfo &rhs_info, const GEMMReshapeInfo &gemm_info)
263 {
264     ElementsProcessed num_elements_processed{};
265     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, dst, lhs_info, rhs_info, gemm_info));
266     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src0->clone().get(),
267                                                               src1->clone().get(),
268                                                               dst->clone().get(),
269                                                               lhs_info,
270                                                               rhs_info,
271                                                               gemm_info,
272                                                               num_elements_processed)
273                                 .first);
274 
275     return Status{};
276 }
277 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)278 void ClGemmLowpMatrixMultiplyNativeKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
279 {
280     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
281     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
282 
283     const auto src0 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
284     const auto src1 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
285     auto       dst  = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
286 
287     if(src1->info()->num_dimensions() < 3)
288     {
289         // The stride_z for matrix B must be zero if we do not slice
290         ARM_COMPUTE_ERROR_ON(src1->info()->strides_in_bytes()[3] != 0);
291     }
292 
293     Window slice          = window.first_slice_window_3D();
294     Window slice_matrix_b = slice;
295 
296     slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
297     slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
298 
299     if(_reinterpret_input_as_3d)
300     {
301         // Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
302         const unsigned int idx0                  = 3 * num_arguments_per_2D_tensor() + 3;
303         const unsigned int total_cross_plane_pad = src0->info()->padding().top + src0->info()->padding().bottom;
304         _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
305     }
306 
307     if(_reinterpret_output_as_3d)
308     {
309         // Pass bottom paddings to the kernel if the output has to be reinterpreted as 3D tensor
310         const unsigned int idx0                  = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0);
311         const unsigned int total_cross_plane_pad = dst->info()->padding().top + dst->info()->padding().bottom;
312         _kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
313     }
314 
315     do
316     {
317         Window slice_b = slice;
318         // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
319         // This scenario can happen when the matrix multiplication is used to perform a convolution operation
320         if(!_slide_matrix_b)
321         {
322             slice_b = slice_matrix_b;
323         }
324 
325         unsigned int idx = 0;
326         add_2D_tensor_argument(idx, src0, slice);
327         add_2D_tensor_argument(idx, src1, slice_b);
328         add_2D_tensor_argument(idx, dst, slice);
329         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src0->info()->strides_in_bytes()[2]));
330         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src1->info()->strides_in_bytes()[2]));
331         _kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(dst->info()->strides_in_bytes()[2]));
332         enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
333     }
334     while(window.slide_window_slice_3D(slice));
335 }
336 } // namespace kernels
337 } // namespace opencl
338 } // namespace arm_compute
339