1 #pragma once
2 #include <ATen/core/Tensor.h>
3 #include <ATen/cuda/CUDAContext.h>
4 #include <c10/cuda/CUDAGuard.h>
5 #include <ATen/native/cuda/Loops.cuh>
6 #include <ATen/native/cuda/MemoryAccess.cuh>
7 #include <vector>
8
9 namespace at::native {
10
11 namespace {
12
13 static constexpr int64_t kILP = 4;
14 static constexpr int64_t kChunkSize = 65536;
15 static constexpr int64_t kBlockSize = 512;
16
17 // TODO(crcrpar): Add `n>5` for `low prec params & their higher prec copy`
18 // TensorListMetadata has to be < 4KB - the limit for kernel launch argument
19 static constexpr int depth_to_max_tensors[5] = {110, 64, 48, 36, 30};
20 static constexpr int depth_to_max_blocks[5] = {320, 320, 320, 320, 320};
21 static constexpr int depth_to_max_tensors_scalarlist[5] = {96, 64, 48, 36, 30};
22 static constexpr int depth_to_max_tensors_scalarlist_of_complex_double[2] = {
23 72,
24 60};
25
26 template <typename T>
is_aligned(T * p)27 __device__ __forceinline__ bool is_aligned(T* p) {
28 return ((uint64_t)p) % (kILP * sizeof(T)) == 0;
29 }
30
31 template <typename T>
load_store(T * dst,T * src,int64_t dst_offset,int64_t src_offset)32 __device__ __forceinline__ void load_store(
33 T* dst,
34 T* src,
35 int64_t dst_offset,
36 int64_t src_offset) {
37 using LT = at::native::memory::aligned_vector<T, kILP>;
38 ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
39 }
40
41 template <int n>
42 struct TensorListMetadata {
43 const void* addresses[n][depth_to_max_tensors[n - 1]];
44 int64_t numel_for_tensor[depth_to_max_tensors[n - 1]];
45 unsigned char block_to_tensor[depth_to_max_blocks[n - 1]];
46 int block_to_chunk[depth_to_max_blocks[n - 1]];
47 int start_tensor_this_launch;
48 };
49
50 template <typename scalar_vals_t, int n>
51 struct TensorListScalarListMetadata {
52 const void* addresses[n][depth_to_max_tensors_scalarlist[n - 1]];
53 int64_t numel_for_tensor[depth_to_max_tensors_scalarlist[n - 1]];
54 scalar_vals_t scalar_vals[depth_to_max_tensors_scalarlist[n - 1]];
55 unsigned char block_to_tensor[depth_to_max_blocks[n - 1]];
56 int block_to_chunk[depth_to_max_blocks[n - 1]];
57 };
58
59 // note(mkozuki): `n` of 1&2 violate the limit of cuda kernel argument size of
60 // 4kb with `c10::complex<double>`
61 template <>
62 struct TensorListScalarListMetadata<c10::complex<double>, 1> {
63 const void* addresses[1]
64 [depth_to_max_tensors_scalarlist_of_complex_double[0]];
65 int64_t
66 numel_for_tensor[depth_to_max_tensors_scalarlist_of_complex_double[0]];
67 c10::complex<double>
68 scalar_vals[depth_to_max_tensors_scalarlist_of_complex_double[0]];
69 unsigned char block_to_tensor[depth_to_max_blocks[1 - 1]];
70 int block_to_chunk[depth_to_max_blocks[1 - 1]];
71 };
72
73 template <>
74 struct TensorListScalarListMetadata<c10::complex<double>, 2> {
75 const void* addresses[2]
76 [depth_to_max_tensors_scalarlist_of_complex_double[1]];
77 int64_t
78 numel_for_tensor[depth_to_max_tensors_scalarlist_of_complex_double[1]];
79 c10::complex<double>
80 scalar_vals[depth_to_max_tensors_scalarlist_of_complex_double[1]];
81 unsigned char block_to_tensor[depth_to_max_blocks[2 - 1]];
82 int block_to_chunk[depth_to_max_blocks[2 - 1]];
83 };
84
85 // NOTE(crcrpar): This is a conservative resolution to handle `state_steps`
86 // whose each element is `at::Tensor` of 1 element representing the number of
87 // `step`s called so far.
88 template <int n>
89 struct FusedOptimizerTensorListMetadata {
90 const void* addresses[n][depth_to_max_tensors[n - 1]];
91 int64_t numel_for_tensor[depth_to_max_tensors[n - 1]];
92 const void* state_steps_addresses[depth_to_max_tensors_scalarlist[n - 1]];
93 unsigned char block_to_tensor[depth_to_max_blocks[n - 1]];
94 int block_to_chunk[depth_to_max_blocks[n - 1]];
95 int start_tensor_this_launch;
96 };
97
98 template <typename T, typename U, typename... ArgTypes>
C10_LAUNCH_BOUNDS_1(kBlockSize)99 C10_LAUNCH_BOUNDS_1(kBlockSize)
100 __global__ void multi_tensor_apply_kernel(
101 T tensorListMeta,
102 U callable,
103 ArgTypes... args) {
104 // Hand the chunk information to the user-supplied functor to process however
105 // it likes.
106 callable(kChunkSize, tensorListMeta, args...);
107 }
108
109 } // namespace
110
111 // multi_tensor_apply enables horizontal fusion across lists of tensors.
112 // For example, whereas you once had a for-loop of a + b = c, where a, b,
113 // and c are individual tensors in lists as, bs, and cs, you can now with
114 // fewer kernel launches compute as + bs = cs.
115 //
116 // You can also imagine bs to be a scalar list vs a tensor list.
117 //
118 // The function below takes in tensor lists, scalars, and a callable and
119 // chunks up the computation to launch as few kernels as possible by iterating
120 // through every "chunk" in every tensor (thus the nested for loops). In the
121 // simplest case, everything gets bundled into just one kernel launch, but
122 // due to blocksize constraints, we may need to launch multiple kernels.
123 // Each kernel launch is defined by one tensorListMeta construct, which we
124 // use to track and reset the necessary metadata for each launch.
125 template <int depth, typename scalar_T, typename T, typename... ArgTypes>
multi_tensor_apply(std::vector<std::vector<at::Tensor>> & tensor_lists,at::ArrayRef<Scalar> scalars,T callable,ArgTypes...args)126 void multi_tensor_apply(
127 std::vector<std::vector<at::Tensor>>& tensor_lists,
128 at::ArrayRef<Scalar> scalars,
129 T callable,
130 ArgTypes... args) {
131 TORCH_CHECK(
132 tensor_lists.size() == depth,
133 "Number of tensor lists has to match the depth.");
134 const size_t n_tensors = tensor_lists[0].size();
135 using scalar_vals_t = typename T::opmath_t;
136 TensorListScalarListMetadata<scalar_vals_t, depth> tensorListMeta;
137
138 int loc_block_info = 0;
139 int loc_tensor_info = 0;
140 for (size_t t = 0; t < n_tensors; t++) {
141 // short-circuit to avoid adding empty tensors to tensorListMeta
142 if (tensor_lists[0][t].numel() == 0) {
143 continue;
144 }
145 tensorListMeta.scalar_vals[loc_tensor_info] = scalars[t].to<scalar_T>();
146 tensorListMeta.numel_for_tensor[loc_tensor_info] =
147 tensor_lists[0][t].numel();
148 for (int d = 0; d < depth; d++) {
149 tensorListMeta.addresses[d][loc_tensor_info] =
150 tensor_lists[d][t].const_data_ptr();
151 }
152 loc_tensor_info++;
153
154 // now we enter [chunking territory].
155 // we will launch a kernel when EITHER the blocks get filled up OR
156 // the tensors get filled up. There will always be at least one block
157 // per tensor since the zero-sized ones will not enter the loop, so
158 // the nested forloop within represents iterating through the chunks
159 // of a single tensor.
160 const auto numel = tensor_lists[0][t].numel();
161 const auto chunks = numel / kChunkSize + (numel % kChunkSize != 0);
162 for (auto chunk = 0; chunk < chunks; chunk++) {
163 tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
164 tensorListMeta.block_to_chunk[loc_block_info] = chunk;
165 loc_block_info++;
166
167 // a tensor is not considered full unless all its chunks have been
168 // processed
169 const bool tensors_full =
170 (loc_tensor_info == depth_to_max_tensors_scalarlist[depth - 1] &&
171 chunk == chunks - 1);
172 const bool blocks_full =
173 (loc_block_info == depth_to_max_blocks[depth - 1]);
174
175 if (tensors_full || blocks_full) {
176 multi_tensor_apply_kernel<<<
177 loc_block_info,
178 kBlockSize,
179 0,
180 at::cuda::getCurrentCUDAStream()>>>(
181 tensorListMeta, callable, args...);
182 C10_CUDA_KERNEL_LAUNCH_CHECK();
183
184 // Reset.
185 loc_block_info = 0;
186 // all chunks have already been handled in the kernel
187 if (chunk == chunks - 1) {
188 loc_tensor_info = 0;
189 } else { // blocks were full and tensor chunks remain
190 tensorListMeta.numel_for_tensor[0] =
191 tensorListMeta.numel_for_tensor[loc_tensor_info - 1];
192 tensorListMeta.scalar_vals[0] =
193 tensorListMeta.scalar_vals[loc_tensor_info - 1];
194 for (int d = 0; d < depth; d++) {
195 tensorListMeta.addresses[d][0] =
196 tensorListMeta.addresses[d][loc_tensor_info - 1];
197 }
198 loc_tensor_info = 1;
199 }
200 }
201 }
202 }
203
204 // note: [finishing what we started]
205 // if there's remaining work to be done but the tensors/blocks aren't full
206 // yet we are at the end, submit the kernel to do the work!
207 if (loc_block_info != 0) {
208 multi_tensor_apply_kernel<<<
209 loc_block_info,
210 kBlockSize,
211 0,
212 at::cuda::getCurrentCUDAStream()>>>(tensorListMeta, callable, args...);
213 C10_CUDA_KERNEL_LAUNCH_CHECK();
214 }
215 }
216
217 template <int depth, typename T, typename... ArgTypes>
multi_tensor_apply(std::vector<std::vector<at::Tensor>> & tensor_lists,T callable,ArgTypes...args)218 void multi_tensor_apply(
219 std::vector<std::vector<at::Tensor>>& tensor_lists,
220 T callable,
221 ArgTypes... args) {
222 TORCH_CHECK(
223 tensor_lists.size() == depth,
224 "Number of tensor lists has to match the depth.");
225 const size_t n_tensors = tensor_lists[0].size();
226 TensorListMetadata<depth> tensorListMeta;
227 tensorListMeta.start_tensor_this_launch = 0;
228
229 int loc_block_info = 0;
230 int loc_tensor_info = 0;
231 for (size_t t = 0; t < n_tensors; t++) {
232 // short-circuit to avoid adding empty tensors to tensorListMeta
233 if (tensor_lists[0][t].numel() == 0) {
234 continue;
235 }
236 tensorListMeta.numel_for_tensor[loc_tensor_info] =
237 tensor_lists[0][t].numel();
238 for (int d = 0; d < depth; d++) {
239 tensorListMeta.addresses[d][loc_tensor_info] =
240 tensor_lists[d][t].const_data_ptr();
241 }
242 loc_tensor_info++;
243
244 // see note: [chunking territory].
245 const auto numel = tensor_lists[0][t].numel();
246 const auto chunks = numel / kChunkSize + (numel % kChunkSize != 0);
247 for (auto chunk = 0; chunk < chunks; chunk++) {
248 tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
249 tensorListMeta.block_to_chunk[loc_block_info] = chunk;
250 loc_block_info++;
251
252 const bool tensors_full =
253 (loc_tensor_info == depth_to_max_tensors[depth - 1] &&
254 chunk == chunks - 1);
255 const bool blocks_full =
256 (loc_block_info == depth_to_max_blocks[depth - 1]);
257
258 if (tensors_full || blocks_full) {
259 multi_tensor_apply_kernel<<<
260 loc_block_info,
261 kBlockSize,
262 0,
263 at::cuda::getCurrentCUDAStream()>>>(
264 tensorListMeta, callable, args...);
265 C10_CUDA_KERNEL_LAUNCH_CHECK();
266
267 // Reset.
268 loc_block_info = 0;
269 if (chunk == chunks - 1) {
270 loc_tensor_info = 0;
271 tensorListMeta.start_tensor_this_launch = t + 1;
272 } else {
273 tensorListMeta.numel_for_tensor[0] =
274 tensorListMeta.numel_for_tensor[loc_tensor_info - 1];
275 for (int d = 0; d < depth; d++) {
276 tensorListMeta.addresses[d][0] =
277 tensorListMeta.addresses[d][loc_tensor_info - 1];
278 }
279 loc_tensor_info = 1;
280 tensorListMeta.start_tensor_this_launch = t;
281 }
282 }
283 }
284 }
285
286 // see note: [finishing what we started]
287 if (loc_block_info != 0) {
288 multi_tensor_apply_kernel<<<
289 loc_block_info,
290 kBlockSize,
291 0,
292 at::cuda::getCurrentCUDAStream()>>>(tensorListMeta, callable, args...);
293 C10_CUDA_KERNEL_LAUNCH_CHECK();
294 }
295 }
296
297 template <int depth, typename T, typename... ArgTypes>
multi_tensor_apply_for_fused_optimizer(std::vector<std::vector<at::Tensor>> & tensor_lists,at::TensorList state_steps,T callable,ArgTypes...args)298 void multi_tensor_apply_for_fused_optimizer(
299 std::vector<std::vector<at::Tensor>>& tensor_lists,
300 at::TensorList state_steps,
301 T callable,
302 ArgTypes... args) {
303 TORCH_CHECK(
304 tensor_lists.size() == depth,
305 "Number of tensor lists has to match the depth");
306 const auto num_tensors = tensor_lists[0].size();
307 FusedOptimizerTensorListMetadata<depth> tensorListMeta;
308
309 int loc_block_info = 0;
310 int loc_tensor_info = 0;
311 for (const auto& tensor_index : c10::irange(num_tensors)) {
312 // short-circuit to avoid adding empty tensors to tensorListMeta
313 if (tensor_lists[0][tensor_index].numel() == 0) {
314 continue;
315 }
316 tensorListMeta.state_steps_addresses[loc_tensor_info] =
317 state_steps[tensor_index].const_data_ptr();
318 tensorListMeta.numel_for_tensor[loc_tensor_info] =
319 tensor_lists[0][tensor_index].numel();
320 for (const auto& d : c10::irange(depth)) {
321 tensorListMeta.addresses[d][loc_tensor_info] =
322 tensor_lists[d][tensor_index].const_data_ptr();
323 }
324 loc_tensor_info++;
325
326 // see above note: [chunking territory]
327 const auto numel = tensor_lists[0][tensor_index].numel();
328 const auto chunks = numel / kChunkSize + (numel % kChunkSize != 0);
329 TORCH_CHECK(chunks > -1);
330 for (const auto& chunk : c10::irange(chunks)) {
331 tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
332 tensorListMeta.block_to_chunk[loc_block_info] = chunk;
333 loc_block_info++;
334
335 const auto tensor_full =
336 (loc_tensor_info == depth_to_max_tensors[depth - 1] &&
337 chunk == chunks - 1);
338 const auto blocks_full = loc_block_info == depth_to_max_blocks[depth - 1];
339
340 if (tensor_full || blocks_full) {
341 multi_tensor_apply_kernel<<<
342 loc_block_info,
343 kBlockSize,
344 0,
345 at::cuda::getCurrentCUDAStream()>>>(
346 tensorListMeta, callable, args...);
347 C10_CUDA_KERNEL_LAUNCH_CHECK();
348
349 // Reset.
350 loc_block_info = 0;
351 if (chunk == chunks - 1) {
352 loc_tensor_info = 0;
353 } else {
354 tensorListMeta.numel_for_tensor[0] =
355 tensorListMeta.numel_for_tensor[loc_tensor_info - 1];
356 tensorListMeta.state_steps_addresses[0] =
357 tensorListMeta.state_steps_addresses[loc_tensor_info - 1];
358 for (const auto& d : c10::irange(depth)) {
359 tensorListMeta.addresses[d][0] =
360 tensorListMeta.addresses[d][loc_tensor_info - 1];
361 }
362 loc_tensor_info = 1;
363 }
364 }
365 }
366 }
367
368 // see above note: [finishing what we've started]
369 if (loc_block_info != 0) {
370 multi_tensor_apply_kernel<<<
371 loc_block_info,
372 kBlockSize,
373 0,
374 at::cuda::getCurrentCUDAStream()>>>(tensorListMeta, callable, args...);
375 C10_CUDA_KERNEL_LAUNCH_CHECK();
376 }
377 }
378
379 } // namespace at::native
380