xref: /aosp_15_r20/external/XNNPACK/src/qs8-gemm/gen/2x4c2-xw-minmax-fp32-xop.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #if defined(__GNUC__) || defined(__clang__)
13   #include <x86intrin.h>
14 #else
15   #include <immintrin.h>
16   #include <ammintrin.h>
17 #endif
18 
19 #include <xnnpack/gemm.h>
20 #include <xnnpack/math.h>
21 #include <xnnpack/unaligned.h>
22 
23 
24 
xnn_qs8_gemm_xw_minmax_fp32_ukernel_2x4c2__xop(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])25 void xnn_qs8_gemm_xw_minmax_fp32_ukernel_2x4c2__xop(
26     size_t mr,
27     size_t nc,
28     size_t kc,
29     const int8_t* restrict a,
30     size_t a_stride,
31     const void* restrict w,
32     int8_t* restrict c,
33     size_t cm_stride,
34     size_t cn_stride,
35     const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
36 {
37   assert(mr != 0);
38   assert(mr <= 2);
39   assert(nc != 0);
40   assert(kc != 0);
41   assert(kc % sizeof(int8_t) == 0);
42   assert(a != NULL);
43   assert(w != NULL);
44   assert(c != NULL);
45 
46   kc = round_up_po2(kc, 2 * sizeof(int8_t));
47   const int8_t* a0 = a;
48   int8_t* c0 = c;
49   const int8_t* a1 = (const int8_t*) ((uintptr_t) a0 + a_stride);
50   int8_t* c1 = (int8_t*) ((uintptr_t) c0 + cm_stride);
51   if XNN_UNPREDICTABLE(mr != 2) {
52     a1 = a0;
53     c1 = c0;
54   }
55 
56   do {
57     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
58     __m128i vacc1x0123 = vacc0x0123;
59     w = (const void*) ((const int32_t*) w + 4);
60 
61     size_t k = kc;
62     while (k >= 8 * sizeof(int8_t)) {
63       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
64       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
65       a0 += 8;
66       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
67       const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
68       a1 += 8;
69 
70       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
71 
72       vacc0x0123 = _mm_maddd_epi16(
73         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
74       vacc1x0123 = _mm_maddd_epi16(
75         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc1x0123);
76       const __m128i vxb1 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 8));
77 
78       vacc0x0123 = _mm_maddd_epi16(
79         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
80       vacc1x0123 = _mm_maddd_epi16(
81         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc1x0123);
82       const __m128i vxb2 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 16));
83 
84       vacc0x0123 = _mm_maddd_epi16(
85         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
86       vacc1x0123 = _mm_maddd_epi16(
87         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc1x0123);
88       const __m128i vxb3 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 24));
89 
90       vacc0x0123 = _mm_maddd_epi16(
91         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3, vacc0x0123);
92       vacc1x0123 = _mm_maddd_epi16(
93         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(3, 3, 3, 3)), vxb3, vacc1x0123);
94 
95       w = (const void*) ((const int16_t*) w + 32);
96       k -= 8 * sizeof(int8_t);
97     }
98     if (k != 0) {
99       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
100       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
101       a0 = (const int8_t*) ((uintptr_t) a0 + k);
102       const __m128i va1 = _mm_loadl_epi64((const __m128i*) a1);
103       const __m128i vxa1 = _mm_cvtepi8_epi16(va1);
104       a1 = (const int8_t*) ((uintptr_t) a1 + k);
105 
106       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
107       w = (const void*) ((const int16_t*) w + 8);
108 
109       vacc0x0123 = _mm_maddd_epi16(
110         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
111       vacc1x0123 = _mm_maddd_epi16(
112         _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc1x0123);
113 
114       if (k > 2 * sizeof(int8_t)) {
115         const __m128i vxb1 = _mm_load_si128((const __m128i*) w);
116         w = (const void*) ((const int16_t*) w + 8);
117 
118         vacc0x0123 = _mm_maddd_epi16(
119           _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
120         vacc1x0123 = _mm_maddd_epi16(
121           _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc1x0123);
122 
123         if (k > 4 * sizeof(int8_t)) {
124           const __m128i vxb2 = _mm_load_si128((const __m128i*) w);
125           w = (const void*) ((const int16_t*) w + 8);
126 
127           vacc0x0123 = _mm_maddd_epi16(
128             _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
129           vacc1x0123 = _mm_maddd_epi16(
130             _mm_shuffle_epi32(vxa1, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc1x0123);
131         }
132       }
133     }
134 
135     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
136     __m128 vscaled1x0123 = _mm_cvtepi32_ps(vacc1x0123);
137 
138     const __m128 vscale = _mm_load_ps(params->fp32_sse4.scale);
139     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
140     vscaled1x0123 = _mm_mul_ps(vscaled1x0123, vscale);
141 
142     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse4.output_max_less_zero_point);
143     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
144     vscaled1x0123 = _mm_min_ps(vscaled1x0123, voutput_max_less_zero_point);
145 
146     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
147     vacc1x0123 = _mm_cvtps_epi32(vscaled1x0123);
148 
149     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse4.output_zero_point);
150     __m128i vacc01x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc1x0123), voutput_zero_point);
151 
152 
153     __m128i vout = _mm_packs_epi16(vacc01x0123, vacc01x0123);
154 
155     vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->fp32_sse4.output_min));
156 
157     if (nc >= 4) {
158       unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
159       unaligned_store_u32(c1, (uint32_t) _mm_extract_epi32(vout, 1));
160 
161       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
162       c1 = (int8_t*) ((uintptr_t) c1 + cn_stride);
163 
164       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
165       a1 = (const int8_t*) ((uintptr_t) a1 - kc);
166 
167       nc -= 4;
168     } else {
169       if (nc & 2) {
170         unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
171         c0 += 2;
172         unaligned_store_u16(c1, (uint16_t) _mm_extract_epi16(vout, 2));
173         c1 += 2;
174         vout = _mm_srli_epi32(vout, 16);
175       }
176       if (nc & 1) {
177         *c0 = (int8_t) _mm_extract_epi8(vout, 0);
178         *c1 = (int8_t) _mm_extract_epi8(vout, 4);
179       }
180 
181       nc = 0;
182     }
183   } while (nc != 0);
184 }
185