xref: /aosp_15_r20/external/XNNPACK/src/qs8-gemm/gen/1x4c2-xw-minmax-fp32-xop.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Auto-generated file. Do not edit!
2 //   Template: src/qs8-gemm/MRx4c2-sse.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #if defined(__GNUC__) || defined(__clang__)
13   #include <x86intrin.h>
14 #else
15   #include <immintrin.h>
16   #include <ammintrin.h>
17 #endif
18 
19 #include <xnnpack/gemm.h>
20 #include <xnnpack/math.h>
21 #include <xnnpack/unaligned.h>
22 
23 
24 
xnn_qs8_gemm_xw_minmax_fp32_ukernel_1x4c2__xop(size_t mr,size_t nc,size_t kc,const int8_t * restrict a,size_t a_stride,const void * restrict w,int8_t * restrict c,size_t cm_stride,size_t cn_stride,const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS (1)])25 void xnn_qs8_gemm_xw_minmax_fp32_ukernel_1x4c2__xop(
26     size_t mr,
27     size_t nc,
28     size_t kc,
29     const int8_t* restrict a,
30     size_t a_stride,
31     const void* restrict w,
32     int8_t* restrict c,
33     size_t cm_stride,
34     size_t cn_stride,
35     const union xnn_qs8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
36 {
37   assert(mr != 0);
38   assert(mr <= 1);
39   assert(nc != 0);
40   assert(kc != 0);
41   assert(kc % sizeof(int8_t) == 0);
42   assert(a != NULL);
43   assert(w != NULL);
44   assert(c != NULL);
45 
46   kc = round_up_po2(kc, 2 * sizeof(int8_t));
47   const int8_t* a0 = a;
48   int8_t* c0 = c;
49 
50   do {
51     __m128i vacc0x0123 = _mm_loadu_si128((const __m128i*) w);
52     w = (const void*) ((const int32_t*) w + 4);
53 
54     size_t k = kc;
55     while (k >= 8 * sizeof(int8_t)) {
56       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
57       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
58       a0 += 8;
59 
60       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
61 
62       vacc0x0123 = _mm_maddd_epi16(
63         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
64       const __m128i vxb1 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 8));
65 
66       vacc0x0123 = _mm_maddd_epi16(
67         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
68       const __m128i vxb2 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 16));
69 
70       vacc0x0123 = _mm_maddd_epi16(
71         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
72       const __m128i vxb3 = _mm_load_si128((const __m128i*) ((const int16_t*) w + 24));
73 
74       vacc0x0123 = _mm_maddd_epi16(
75         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(3, 3, 3, 3)), vxb3, vacc0x0123);
76 
77       w = (const void*) ((const int16_t*) w + 32);
78       k -= 8 * sizeof(int8_t);
79     }
80     if (k != 0) {
81       const __m128i va0 = _mm_loadl_epi64((const __m128i*) a0);
82       const __m128i vxa0 = _mm_cvtepi8_epi16(va0);
83       a0 = (const int8_t*) ((uintptr_t) a0 + k);
84 
85       const __m128i vxb0 = _mm_load_si128((const __m128i*) w);
86       w = (const void*) ((const int16_t*) w + 8);
87 
88       vacc0x0123 = _mm_maddd_epi16(
89         _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(0, 0, 0, 0)), vxb0, vacc0x0123);
90 
91       if (k > 2 * sizeof(int8_t)) {
92         const __m128i vxb1 = _mm_load_si128((const __m128i*) w);
93         w = (const void*) ((const int16_t*) w + 8);
94 
95         vacc0x0123 = _mm_maddd_epi16(
96           _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(1, 1, 1, 1)), vxb1, vacc0x0123);
97 
98         if (k > 4 * sizeof(int8_t)) {
99           const __m128i vxb2 = _mm_load_si128((const __m128i*) w);
100           w = (const void*) ((const int16_t*) w + 8);
101 
102           vacc0x0123 = _mm_maddd_epi16(
103             _mm_shuffle_epi32(vxa0, _MM_SHUFFLE(2, 2, 2, 2)), vxb2, vacc0x0123);
104         }
105       }
106     }
107 
108     __m128 vscaled0x0123 = _mm_cvtepi32_ps(vacc0x0123);
109 
110     const __m128 vscale = _mm_load_ps(params->fp32_sse4.scale);
111     vscaled0x0123 = _mm_mul_ps(vscaled0x0123, vscale);
112 
113     const __m128 voutput_max_less_zero_point = _mm_load_ps(params->fp32_sse4.output_max_less_zero_point);
114     vscaled0x0123 = _mm_min_ps(vscaled0x0123, voutput_max_less_zero_point);
115 
116     vacc0x0123 = _mm_cvtps_epi32(vscaled0x0123);
117 
118     const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->fp32_sse4.output_zero_point);
119     __m128i vacc00x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc0x0123, vacc0x0123), voutput_zero_point);
120 
121 
122     __m128i vout = _mm_packs_epi16(vacc00x0123, vacc00x0123);
123 
124     vout = _mm_max_epi8(vout, _mm_load_si128((const __m128i*) params->fp32_sse4.output_min));
125 
126     if (nc >= 4) {
127       unaligned_store_u32(c0, (uint32_t) _mm_cvtsi128_si32(vout));
128 
129       c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
130 
131       a0 = (const int8_t*) ((uintptr_t) a0 - kc);
132 
133       nc -= 4;
134     } else {
135       if (nc & 2) {
136         unaligned_store_u16(c0, (uint16_t) _mm_extract_epi16(vout, 0));
137         c0 += 2;
138         vout = _mm_srli_epi32(vout, 16);
139       }
140       if (nc & 1) {
141         *c0 = (int8_t) _mm_extract_epi8(vout, 0);
142       }
143 
144       nc = 0;
145     }
146   } while (nc != 0);
147 }
148