xref: /aosp_15_r20/external/armnn/docs/02_operator_list.dox (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1/// Copyright (c) 2021 ARM Limited and Contributors. All rights reserved.
2///
3/// SPDX-License-Identifier: MIT
4///
5
6namespace armnn
7{
8/**
9@page operator_list Arm NN Operators
10
11@tableofcontents
12
13@section S5_1_operator_list Arm NN Operators
14
15Arm NN supports operators that are listed in below table.
16
17Arm NN supports a wide list of data-types.
18The main data-types that the Machine Learning functions support are the following:
19  <ul>
20    <li><b>BFLOAT16:</b> 16-bit non-standard brain floating point
21    <li><b>QASYMMU8:</b> 8-bit unsigned asymmetric quantized
22    <li><b>QASYMMS8:</b> 8-bit signed asymmetric quantized
23    <li><b>QUANTIZEDSYMM8PERAXIS:</b> 8-bit signed symmetric quantized
24    <li><b>QSYMMS8:</b> 8-bit signed symmetric quantized
25    <li><b>QSYMMS16:</b> 16-bit signed symmetric quantized
26    <li><b>FLOAT32:</b> 32-bit single precision floating point
27    <li><b>FLOAT16:</b> 16-bit half precision floating point
28    <li><b>SIGNED32:</b> 32-bit signed integer
29    <li><b>BOOLEAN:</b> 8-bit unsigned char
30    <li><b>All:</b> Agnostic to any specific data type
31  </ul>
32
33Arm NN supports the following data layouts (fast changing dimension from right to left):
34  <ul>
35    <li><b>NHWC:</b> Layout where channels are in the fastest changing dimension
36    <li><b>NCHW:</b> Layout where width is in the fastest changing dimension
37    <li><b>All:</b> Agnostic to any specific data layout
38  </ul>
39where N = batches, C = channels, H = height, W = width
40
41<table>
42<caption id="multi_row"></caption>
43<tr>
44  <th>Operator
45  <th>Description
46  <th>Equivalent Android NNAPI Operator
47  <th>Backends
48  <th>Data Layouts
49  <th>Data Types
50<tr>
51  <td rowspan="3">AbsLayer
52  <td rowspan="3"> Layer to perform absolute operation.
53  <td rowspan="3">
54      <ul>
55       <li>ANEURALNETWORKS_ABS
56      </ul>
57   <td>CpuRef
58     <td>
59         <ul>
60          <li>All
61         </ul>
62     <td>
63      <table>
64       <tr><th>
65       <tr><td>BFLOAT16
66       <tr><td>FLOAT16
67       <tr><td>FLOAT32
68       <tr><td>QASYMMS8
69       <tr><td>QASYMMU8
70       <tr><td>QSYMMS16
71       <tr><td>SIGNED32
72      </table>
73<tr>
74  <td>CpuAcc
75  <td>
76      <ul>
77       <li>All
78      </ul>
79  <td>
80    <table>
81       <tr><th>
82       <tr><td>FLOAT16
83       <tr><td>FLOAT32
84       <tr><td>SIGNED32
85    </table>
86<tr>
87  <td>GpuAcc
88  <td>
89      <ul>
90       <li>All
91      </ul>
92  <td>
93    <table>
94       <tr><th>
95       <tr><td>FLOAT16
96       <tr><td>FLOAT32
97    </table>
98<tr>
99  <td rowspan="3">ActivationLayer
100  <td rowspan="3" style="width:200px;"> Layer to simulate an activation layer with the specified activation function.
101  <td rowspan="3">
102      <ul>
103       <li>ANEURALNETWORKS_ABS
104       <li>ANEURALNETWORKS_ELU
105       <li>ANEURALNETWORKS_HARD_SWISH
106       <li>ANEURALNETWORKS_LOGISTIC
107       <li>ANEURALNETWORKS_PRELU
108       <li>ANEURALNETWORKS_RELU
109       <li>ANEURALNETWORKS_RELU1
110       <li>ANEURALNETWORKS_RELU6
111       <li>ANEURALNETWORKS_SQRT
112       <li>ANEURALNETWORKS_TANH
113      </ul>
114   <td>CpuRef
115     <td>
116         <ul>
117          <li>All
118         </ul>
119     <td>
120      <table>
121         <tr><th>
122       <tr><td>BFLOAT16
123       <tr><td>FLOAT16
124       <tr><td>FLOAT32
125       <tr><td>QASYMMS8
126       <tr><td>QASYMMU8
127       <tr><td>QSYMMS16
128      </table>
129<tr>
130  <td>CpuAcc
131  <td>
132    <ul>
133      <li>All
134    </ul>
135  <td>
136    <table>
137      <tr><th>
138      <tr><td>QASYMMU8
139      <tr><td>QASYMMS8
140      <tr><td>QSYMMS16
141      <tr><td>FLOAT16
142      <tr><td>FLOAT32
143    </table>
144<tr>
145  <td>GpuAcc
146  <td>
147      <ul>
148       <li>All
149      </ul>
150  <td>
151    <table>
152      <tr><th>
153      <tr><td>QASYMMU8
154      <tr><td>QASYMMS8
155      <tr><td>QSYMMS16
156      <tr><td>FLOAT16
157      <tr><td>FLOAT32
158    </table>
159<tr>
160  <td rowspan="3">AdditionLayer
161  <td rowspan="3" style="width:200px;"> Layer to add 2 tensors.
162  <td rowspan="3">
163      <ul>
164       <li>ANEURALNETWORKS_ADD
165      </ul>
166   <td>CpuRef
167     <td>
168         <ul>
169          <li>All
170         </ul>
171     <td>
172      <table>
173         <tr><th>
174       <tr><td>BFLOAT16
175       <tr><td>FLOAT16
176       <tr><td>FLOAT32
177       <tr><td>QASYMMS8
178       <tr><td>QASYMMU8
179       <tr><td>QSYMMS16
180       <tr><td>SIGNED32
181      </table>
182<tr>
183  <td>CpuAcc
184  <td>
185      <ul>
186       <li>All
187      </ul>
188  <td>
189    <table>
190    <tr><th>
191    <tr><td>QASYMMU8
192    <tr><td>QASYMMS8
193    <tr><td>QSYMMS16
194    <tr><td>SIGNED32
195    <tr><td>FLOAT16
196    <tr><td>FLOAT32
197    </table>
198<tr>
199  <td>GpuAcc
200  <td>
201      <ul>
202       <li>All
203      </ul>
204  <td>
205    <table>
206    <tr><th>
207    <tr><td>QASYMMU8
208    <tr><td>QASYMMS8
209    <tr><td>QSYMMS16
210    <tr><td>SIGNED32
211    <tr><td>FLOAT16
212    <tr><td>FLOAT32
213    </table>
214<tr>
215  <td rowspan="3">ArgMinMaxLayer
216  <td rowspan="3" style="width:200px;"> Layer to calculate the index of the minimum or maximum values in a tensor
217  based on an axis.
218  <td rowspan="3">
219      <ul>
220       <li>ANEURALNETWORKS_ARGMAX
221       <li>ANEURALNETWORKS_ARGMIN
222      </ul>
223   <td>CpuRef
224     <td>
225         <ul>
226          <li>All
227         </ul>
228     <td>
229      <table>
230         <tr><th>
231       <tr><td>BFLOAT16
232       <tr><td>FLOAT16
233       <tr><td>FLOAT32
234       <tr><td>QASYMMS8
235       <tr><td>QASYMMU8
236       <tr><td>QSYMMS16
237       <tr><td>SIGNED32
238       <tr><td>SIGNED64
239      </table>
240<tr>
241  <td>CpuAcc
242  <td>
243      <ul>
244       <li>All
245      </ul>
246  <td>
247    <table>
248    <tr><th>
249    <tr><td>QASYMMU8
250    <tr><td>QASYMMS8
251    <tr><td>SIGNED32
252    <tr><td>FLOAT16
253    <tr><td>FLOAT32
254    </table>
255<tr>
256  <td>GpuAcc
257  <td>
258      <ul>
259       <li>All
260      </ul>
261  <td>
262    <table>
263    <tr><th>
264    <tr><td>QASYMMU8
265    <tr><td>QASYMMS8
266    <tr><td>SIGNED32
267    <tr><td>FLOAT16
268    <tr><td>FLOAT32
269    </table>
270<tr>
271  <td rowspan="3">BatchMatMulLayer
272  <td rowspan="3" style="width:200px;"> Layer to perform batch matrix multiplication.
273  <td rowspan="3">
274      <ul>
275       <li>N/A
276      </ul>
277   <td>CpuRef
278     <td>
279         <ul>
280          <li>All
281         </ul>
282     <td>
283      <table>
284       <tr><th>
285       <tr><td>BFLOAT16
286       <tr><td>FLOAT16
287       <tr><td>FLOAT32
288       <tr><td>QASYMMS8
289       <tr><td>QASYMMU8
290       <tr><td>QSYMMS16
291      </table>
292<tr>
293  <td>CpuAcc
294  <td>
295      <ul>
296       <li>All
297      </ul>
298  <td>
299      <table>
300       <tr><th>
301       <tr><td>FLOAT32
302      </table>
303<tr>
304  <td>GpuAcc
305  <td>
306      <ul>
307       <li>All
308      </ul>
309  <td>
310      <table>
311       <tr><th>
312       <tr><td>FLOAT32
313      </table>
314<tr>
315  <td rowspan="3">BatchNormalizationLayer
316  <td rowspan="3" style="width:200px;"> Layer to perform batch normalization.
317  <td rowspan="3">
318      <ul>
319       <li>N/A
320      </ul>
321   <td>CpuRef
322     <td>
323         <ul>
324          <li>All
325         </ul>
326     <td>
327      <table>
328         <tr><th>
329       <tr><td>BFLOAT16
330       <tr><td>FLOAT16
331       <tr><td>FLOAT32
332       <tr><td>QASYMMS8
333       <tr><td>QASYMMU8
334       <tr><td>QSYMMS16
335      </table>
336<tr>
337  <td>CpuAcc
338  <td>
339      <ul>
340       <li>NHWC
341       <li>NCHW
342      </ul>
343  <td>
344    <table>
345    <tr><th>
346    <tr><td>FLOAT32
347    <tr><td>FLOAT16
348    </table>
349<tr>
350  <td>GpuAcc
351  <td>
352      <ul>
353       <li>NHWC
354       <li>NCHW
355      </ul>
356  <td>
357    <table>
358    <tr><th>
359    <tr><td>FLOAT32
360    <tr><td>FLOAT16
361    </table>
362<tr>
363  <td rowspan="3">BatchToSpaceNdLayer
364  <td rowspan="3" style="width:200px;"> Layer to perform a batch to space transformation.
365  <td rowspan="3">
366      <ul>
367       <li>ANEURALNETWORKS_BATCH_TO_SPACE_ND
368      </ul>
369   <td>CpuRef
370     <td>
371         <ul>
372          <li>All
373         </ul>
374     <td>
375      <table>
376         <tr><th>
377       <tr><td>BFLOAT16
378       <tr><td>FLOAT16
379       <tr><td>FLOAT32
380       <tr><td>QASYMMS8
381       <tr><td>QASYMMU8
382       <tr><td>QSYMMS16
383      </table>
384<tr>
385  <td>CpuAcc
386  <td>
387      <ul>
388       <li>NHWC
389       <li>NCHW
390      </ul>
391  <td>
392    <table>
393    <tr><th>
394    <tr><td>All
395    </table>
396<tr>
397  <td>GpuAcc
398  <td>
399      <ul>
400       <li>NHWC
401       <li>NCHW
402      </ul>
403  <td>
404    <table>
405    <tr><th>
406    <tr><td>All
407    </table>
408<tr>
409  <td rowspan="3">CastLayer
410  <td rowspan="3" style="width:200px;"> Layer to cast a tensor to a type.
411  <td rowspan="3">
412      <ul>
413       <li>ANEURALNETWORKS_CAST
414      </ul>
415   <td>CpuRef
416     <td>
417         <ul>
418          <li>All
419         </ul>
420     <td>
421      <table>
422         <tr><th>
423       <tr><td>BFLOAT16
424       <tr><td>FLOAT16
425       <tr><td>FLOAT32
426       <tr><td>QSYMMS8
427       <tr><td>QASYMMS8
428       <tr><td>QASYMMU8
429       <tr><td>QSYMMS16
430       <tr><td>SIGNED32
431      </table>
432<tr>
433  <td>CpuAcc
434  <td>
435      <ul>
436       <li>All
437      </ul>
438  <td>
439    <table>
440    <tr><th>
441    <tr><td>QASYMMS8
442    <tr><td>QASYMMU8
443    <tr><td>FLOAT16
444    <tr><td>SIGNED32
445    <tr><td>FLOAT32
446    </table>
447<tr>
448  <td>GpuAcc
449  <td>
450      <ul>
451       <li>All
452      </ul>
453  <td>
454    <table>
455    <tr><th>
456    <tr><td>QASYMMS8
457    <tr><td>QASYMMU8
458    <tr><td>SIGNED32
459    <tr><td>FLOAT16
460    <tr><td>FLOAT32
461    </table>
462<tr>
463  <td rowspan="3">ChannelShuffleLayer
464  <td rowspan="3" style="width:200px;"> Layer to reorganize the channels of a tensor.
465  <td rowspan="3">
466      <ul>
467       <li>ANEURALNETWORKS_CHANNEL_SHUFFLE
468      </ul>
469   <td>CpuRef
470     <td>
471         <ul>
472          <li>All
473         </ul>
474     <td>
475      <table>
476         <tr><th>
477       <tr><td>FLOAT16
478       <tr><td>FLOAT32
479       <tr><td>QSYMMS8
480       <tr><td>QASYMMS8
481       <tr><td>QASYMMU8
482      </table>
483<tr>
484  <td>CpuAcc
485  <td>
486      <ul>
487       <li>All
488      </ul>
489  <td>
490    <table>
491    <tr><th>
492    <tr><td>QASYMMS8
493    <tr><td>QASYMMU8
494    <tr><td>FLOAT16
495    <tr><td>FLOAT32
496    </table>
497<tr>
498  <td>GpuAcc
499  <td>
500      <ul>
501       <li>All
502      </ul>
503  <td>
504    <table>
505    <tr><th>
506    <tr><td>QASYMMS8
507    <tr><td>QASYMMU8
508    <tr><td>FLOAT16
509    <tr><td>FLOAT32
510    </table>
511<tr>
512  <td rowspan="3">ComparisonLayer
513  <td rowspan="3" style="width:200px;"> Layer to compare 2 tensors.
514  <td rowspan="3">
515      <ul>
516       <li>ANEURALNETWORKS_EQUAL
517       <li>ANEURALNETWORKS_GREATER
518       <li>ANEURALNETWORKS_GREATER_EQUAL
519       <li>ANEURALNETWORKS_LESS
520       <li>ANEURALNETWORKS_LESS_EQUAL
521       <li>ANEURALNETWORKS_NOT_EQUAL
522      </ul>
523   <td>CpuRef
524     <td>
525         <ul>
526          <li>All
527         </ul>
528     <td>
529      <table>
530         <tr><th>
531       <tr><td>BFLOAT16
532       <tr><td>FLOAT16
533       <tr><td>FLOAT32
534       <tr><td>BOOLEAN
535       <tr><td>QASYMMS8
536       <tr><td>QASYMMU8
537       <tr><td>QSYMMS16
538       <tr><td>SIGNED32
539      </table>
540<tr>
541   <td>CpuAcc
542     <td>
543         <ul>
544          <li>All
545         </ul>
546     <td>
547      <table>
548         <tr><th>
549         <tr><td>All
550      </table>
551<tr>
552  <td>GpuAcc
553  <td>
554      <ul>
555       <li>All
556      </ul>
557  <td>
558    <table>
559    <tr><th>
560    <tr><td>All
561    </table>
562<tr>
563  <td rowspan="3">ConcatLayer
564  <td rowspan="3" style="width:200px;"> Layer to concatenate tensors along a given axis.
565  <td rowspan="3">
566      <ul>
567       <li>ANEURALNETWORKS_CONCATENATION
568      </ul>
569   <td>CpuRef
570     <td>
571         <ul>
572          <li>All
573         </ul>
574     <td>
575      <table>
576         <tr><th>
577       <tr><td>BFLOAT16
578       <tr><td>FLOAT16
579       <tr><td>FLOAT32
580       <tr><td>QASYMMS8
581       <tr><td>QASYMMU8
582       <tr><td>QSYMMS16
583      </table>
584<tr>
585  <td>CpuAcc
586  <td>
587      <ul>
588       <li>All
589      </ul>
590  <td>
591    <table>
592    <tr><th>
593    <tr><td>QASYMMU8
594    <tr><td>QASYMMS8
595    <tr><td>FLOAT16
596    <tr><td>FLOAT32
597    </table>
598<tr>
599  <td>GpuAcc
600  <td>
601      <ul>
602       <li>All
603      </ul>
604  <td>
605    <table>
606    <tr><th>
607    <tr><td>QASYMMU8
608    <tr><td>QASYMMS8
609    <tr><td>FLOAT16
610    <tr><td>FLOAT32
611    </table>
612<tr>
613  <td rowspan="3">ConstantLayer
614  <td rowspan="3" style="width:200px;"> Layer to provide a constant tensor.
615  <td rowspan="3">
616      <ul>
617       <li>N/A
618      </ul>
619   <td>CpuRef
620     <td>
621         <ul>
622          <li>All
623         </ul>
624     <td>
625      <table>
626         <tr><th>
627       <tr><td>BFLOAT16
628       <tr><td>FLOAT16
629       <tr><td>FLOAT32
630       <tr><td>QASYMMS8
631       <tr><td>QASYMMU8
632       <tr><td>QSYMMS8
633       <tr><td>QSYMMS16
634       <tr><td>SIGNED32
635      </table>
636<tr>
637  <td>CpuAcc
638  <td>
639      <ul>
640       <li>All
641      </ul>
642  <td>
643    <table>
644    <tr><th>
645    <tr><td>All
646    </table>
647<tr>
648  <td>GpuAcc
649  <td>
650      <ul>
651       <li>All
652      </ul>
653  <td>
654    <table>
655    <tr><th>
656    <tr><td>All
657    </table>
658<tr>
659  <td rowspan="3">ConvertFp16ToFp32Layer
660  <td rowspan="3" style="width:200px;"> Layer to convert Float16 tensor to Float32 tensor.
661  <td rowspan="3">
662      <ul>
663       <li>N/A
664      </ul>
665   <td>CpuRef
666     <td>
667         <ul>
668          <li>All
669         </ul>
670     <td>
671      <table>
672         <tr><th>
673         <tr><td>FLOAT16
674         <tr><td>FLOAT32
675      </table>
676<tr>
677  <td>CpuAcc
678  <td>
679      <ul>
680       <li>All
681      </ul>
682  <td>
683    <table>
684         <tr><th>
685         <tr><td>FLOAT16
686         <tr><td>FLOAT32
687    </table>
688<tr>
689  <td>GpuAcc
690  <td>
691      <ul>
692       <li>All
693      </ul>
694  <td>
695    <table>
696         <tr><th>
697         <tr><td>FLOAT16
698         <tr><td>FLOAT32
699    </table>
700<tr>
701  <td rowspan="3">ConvertFp32ToFp16Layer
702  <td rowspan="3" style="width:200px;"> Layer to convert Float32 tensor to Float16 tensor.
703  <td rowspan="3">
704      <ul>
705       <li>N/A
706      </ul>
707   <td>CpuRef
708     <td>
709         <ul>
710          <li>All
711         </ul>
712     <td>
713      <table>
714         <tr><th>
715         <tr><td>FLOAT16
716         <tr><td>FLOAT32
717      </table>
718<tr>
719  <td>CpuAcc
720  <td>
721      <ul>
722       <li>All
723      </ul>
724  <td>
725    <table>
726         <tr><th>
727         <tr><td>FLOAT16
728         <tr><td>FLOAT32
729    </table>
730<tr>
731  <td>GpuAcc
732  <td>
733      <ul>
734       <li>All
735      </ul>
736  <td>
737    <table>
738         <tr><th>
739         <tr><td>FLOAT16
740         <tr><td>FLOAT32
741    </table>
742<tr>
743  <td rowspan="3">Convolution2dLayer
744  <td rowspan="3" style="width:200px;"> Layer to compute a convolution operation.
745  <td rowspan="3">
746      <ul>
747       <li>ANEURALNETWORKS_CONV_2D
748       <li>ANEURALNETWORKS_GROUPED_CONV_2D
749      </ul>
750   <td>CpuRef
751     <td>
752         <ul>
753          <li>All
754         </ul>
755     <td>
756      <table>
757       <tr><th>
758       <tr><td>BFLOAT16
759       <tr><td>FLOAT16
760       <tr><td>FLOAT32
761       <tr><td>QASYMMS8
762       <tr><td>QASYMMU8
763       <tr><td>QSYMMS16
764      </table>
765<tr>
766  <td>CpuAcc
767  <td>
768      <ul>
769       <li>NHWC
770       <li>NCHW
771      </ul>
772  <td>
773    <table>
774    <tr><th>
775    <tr><td>SIGNED32
776    <tr><td>FLOAT16
777    <tr><td>FLOAT32
778    <tr><td>QASYMMU8
779    <tr><td>QASYMMS8
780    <tr><td>QUANTIZEDSYMM8PERAXIS
781    </table>
782<tr>
783  <td>GpuAcc
784  <td>
785      <ul>
786       <li>NHWC
787       <li>NCHW
788      </ul>
789  <td>
790    <table>
791    <tr><th>
792    <tr><td>SIGNED32
793    <tr><td>FLOAT16
794    <tr><td>FLOAT32
795    <tr><td>QASYMMU8
796    <tr><td>QASYMMS8
797    <tr><td>QUANTIZEDSYMM8PERAXIS
798    </table>
799<tr>
800  <td rowspan="3">Convolution3dLayer
801  <td rowspan="3" style="width:200px;"> Layer to compute a 3D convolution operation.
802  <td rowspan="3">
803      <ul>
804       <li>N/A
805      </ul>
806   <td>CpuRef
807     <td>
808         <ul>
809          <li>NDHWC
810         </ul>
811     <td>
812      <table>
813       <tr><th>
814       <tr><td>BFLOAT16
815       <tr><td>FLOAT16
816       <tr><td>FLOAT32
817       <tr><td>QASYMMS8
818       <tr><td>QASYMMU8
819       <tr><td>QSYMMS8
820       <tr><td>QSYMMS16
821      </table>
822<tr>
823  <td>CpuAcc
824  <td>
825      <ul>
826       <li>N/A
827      </ul>
828  <td>
829      <ul>
830       <li>N/A
831      </ul>
832<tr>
833  <td>GpuAcc
834  <td>
835      <ul>
836       <li>N/A
837      </ul>
838  <td>
839      <ul>
840       <li>N/A
841      </ul>
842<tr>
843  <td rowspan="1">DebugLayer
844  <td rowspan="1" style="width:200px;"> Layer to print out inter layer tensor information.
845  <td rowspan="1">
846      <ul>
847       <li>N/A
848      </ul>
849   <td>CpuRef
850     <td>
851         <ul>
852          <li>All
853         </ul>
854     <td>
855      <table>
856       <tr><th>
857       <tr><td>BFLOAT16
858       <tr><td>FLOAT16
859       <tr><td>FLOAT32
860       <tr><td>QASYMMS8
861       <tr><td>QASYMMU8
862       <tr><td>QSYMMS8
863       <tr><td>QSYMMS16
864       <tr><td>SIGNED32
865      </table>
866<tr>
867  <td rowspan="3">DepthToSpaceLayer
868  <td rowspan="3" style="width:200px;"> Layer to perform Depth to Space transformation.
869  <td rowspan="3">
870      <ul>
871       <li>ANEURALNETWORKS_DEPTH_TO_SPACE
872      </ul>
873   <td>CpuRef
874     <td>
875         <ul>
876          <li>All
877         </ul>
878     <td>
879      <table>
880       <tr><th>
881       <tr><td>BFLOAT16
882       <tr><td>FLOAT16
883       <tr><td>FLOAT32
884       <tr><td>QASYMMS8
885       <tr><td>QASYMMU8
886       <tr><td>QSYMMS16
887      </table>
888<tr>
889  <td>CpuAcc
890  <td>
891      <ul>
892       <li>NHWC
893       <li>NCHW
894      </ul>
895  <td>
896    <table>
897    <tr><th>
898    <tr><td>All
899    </table>
900<tr>
901  <td>GpuAcc
902  <td>
903      <ul>
904       <li>NHWC
905       <li>NCHW
906      </ul>
907  <td>
908    <table>
909    <tr><th>
910    <tr><td>All
911    </table>
912<tr>
913  <td rowspan="3">DepthwiseConvolution2dLayer
914  <td rowspan="3" style="width:200px;"> Layer to compute a deconvolution or transpose convolution.
915  <td rowspan="3">
916      <ul>
917       <li>ANEURALNETWORKS_DEPTHWISE_CONV_2D
918      </ul>
919   <td>CpuRef
920     <td>
921         <ul>
922          <li>All
923         </ul>
924     <td>
925      <table>
926       <tr><th>
927       <tr><td>BFLOAT16
928       <tr><td>FLOAT16
929       <tr><td>FLOAT32
930       <tr><td>QASYMMS8
931       <tr><td>QASYMMU8
932       <tr><td>QSYMMS8
933       <tr><td>QSYMMS16
934      </table>
935<tr>
936  <td>CpuAcc
937  <td>
938      <ul>
939       <li>NHWC
940       <li>NCHW
941      </ul>
942  <td>
943    <table>
944    <tr><th>
945    <tr><td>FLOAT16
946    <tr><td>FLOAT32
947    <tr><td>SIGNED32
948    <tr><td>QASYMMU8
949    <tr><td>QASYMMS8
950    <tr><td>QUANTIZEDSYMM8PERAXIS
951    </table>
952<tr>
953  <td>GpuAcc
954  <td>
955      <ul>
956       <li>NHWC
957       <li>NCHW
958      </ul>
959  <td>
960    <table>
961    <tr><th>
962    <tr><td>FLOAT16
963    <tr><td>FLOAT32
964    <tr><td>SIGNED32
965    <tr><td>QASYMMU8
966    <tr><td>QASYMMS8
967    <tr><td>QUANTIZEDSYMM8PERAXIS
968    </table>
969<tr>
970  <td rowspan="3">DequantizeLayer
971  <td rowspan="3" style="width:200px;"> Layer to dequantize the values in a tensor.
972  <td rowspan="3">
973      <ul>
974       <li>ANEURALNETWORKS_DEQUANTIZE
975      </ul>
976   <td>CpuRef
977     <td>
978         <ul>
979          <li>All
980         </ul>
981     <td>
982      <table>
983       <tr><th>
984       <tr><td>QASYMMS8
985       <tr><td>QASYMMU8
986       <tr><td>QSYMMS8
987       <tr><td>QSYMMS16
988      </table>
989<tr>
990  <td>CpuAcc
991  <td>
992      <ul>
993       <li>All
994      </ul>
995  <td>
996    <table>
997    <tr><th>
998    <tr><td>FLOAT16
999    <tr><td>FLOAT32
1000    <tr><td>QASYMMU8
1001    <tr><td>QASYMMS8
1002    <tr><td>QUANTIZEDSYMM8PERAXIS
1003    <tr><td>QSYMMS8
1004    <tr><td>QSYMMS16
1005    </table>
1006<tr>
1007  <td>GpuAcc
1008  <td>
1009      <ul>
1010       <li>All
1011      </ul>
1012  <td>
1013    <table>
1014    <tr><th>
1015    <tr><td>FLOAT16
1016    <tr><td>FLOAT32
1017    <tr><td>QASYMMU8
1018    <tr><td>QASYMMS8
1019    <tr><td>QUANTIZEDSYMM8PERAXIS
1020    <tr><td>QSYMMS8
1021    <tr><td>QSYMMS16
1022    </table>
1023<tr>
1024  <td rowspan="2">DetectionPostProcessLayer
1025  <td rowspan="2" style="width:200px;"> Layer to generate the detection output based on center size encoded boxes, class prediction and anchors by doing non maximum suppression (NMS).
1026  <td rowspan="2">
1027      <ul>
1028       <li>ANEURALNETWORKS_DETECTION_POSTPROCESSING
1029      </ul>
1030   <td>CpuRef
1031     <td>
1032         <ul>
1033          <li>All
1034         </ul>
1035     <td>
1036      <table>
1037       <tr><th>
1038       <tr><td>BFLOAT16
1039       <tr><td>FLOAT16
1040       <tr><td>FLOAT32
1041       <tr><td>QASYMMS8
1042       <tr><td>QASYMMU8
1043       <tr><td>QSYMMS16
1044      </table>
1045<tr>
1046  <td>CpuAcc
1047  <td>
1048      <ul>
1049       <li>All
1050      </ul>
1051  <td>
1052    <table>
1053    <tr><th>
1054    <tr><td>QASYMMU8
1055    <tr><td>QASYMMS8
1056    <tr><td>FLOAT32
1057    </table>
1058<tr>
1059  <td rowspan="3">DivisionLayer
1060  <td rowspan="3" style="width:200px;"> Layer to divide 2 tensors.
1061  <td rowspan="3">
1062      <ul>
1063       <li>ANEURALNETWORKS_DIV
1064      </ul>
1065   <td>CpuRef
1066     <td>
1067         <ul>
1068          <li>All
1069         </ul>
1070     <td>
1071      <table>
1072       <tr><th>
1073       <tr><td>BFLOAT16
1074       <tr><td>FLOAT16
1075       <tr><td>FLOAT32
1076       <tr><td>QASYMMS8
1077       <tr><td>QASYMMU8
1078       <tr><td>QSYMMS16
1079       <tr><td>SIGNED32
1080      </table>
1081<tr>
1082  <td>CpuAcc
1083  <td>
1084      <ul>
1085       <li>All
1086      </ul>
1087  <td>
1088    <table>
1089    <tr><th>
1090    <tr><td>FLOAT16
1091    <tr><td>FLOAT32
1092    </table>
1093<tr>
1094  <td>GpuAcc
1095  <td>
1096      <ul>
1097       <li>All
1098      </ul>
1099  <td>
1100    <table>
1101    <tr><th>
1102    <tr><td>FLOAT16
1103    <tr><td>FLOAT32
1104    </table>
1105<tr>
1106  <td rowspan="3">ElementwiseBaseLayer
1107  <td rowspan="3" style="width:200px;"> Layer to perform Add - Div - Max - Min - Mul operations.
1108  <td rowspan="3">
1109      <ul>
1110       <li>ANEURALNETWORKS_ADD
1111       <li>ANEURALNETWORKS_DIV
1112       <li>ANEURALNETWORKS_MAXIMUM
1113       <li>ANEURALNETWORKS_MINIMUM
1114       <li>ANEURALNETWORKS_MUL
1115      </ul>
1116   <td>CpuRef
1117     <td>
1118         <ul>
1119          <li>All
1120         </ul>
1121     <td>
1122      <table>
1123       <tr><th>
1124       <tr><td>BFLOAT16
1125       <tr><td>FLOAT16
1126       <tr><td>FLOAT32
1127       <tr><td>QASYMMS8
1128       <tr><td>QASYMMU8
1129       <tr><td>QSYMMS16
1130       <tr><td>SIGNED32
1131      </table>
1132<tr>
1133  <td>CpuAcc
1134  <td>
1135      <ul>
1136       <li>All
1137      </ul>
1138  <td>
1139    <table>
1140    <tr><th>
1141    <tr><td>QASYMMU8
1142    <tr><td>QASYMMS8
1143    <tr><td>QSYMMS16
1144    <tr><td>SIGNED32
1145    <tr><td>FLOAT16
1146    <tr><td>FLOAT32
1147    </table>
1148<tr>
1149  <td>GpuAcc
1150  <td>
1151      <ul>
1152       <li>All
1153      </ul>
1154  <td>
1155    <table>
1156    <tr><th>
1157    <tr><td>QASYMMU8
1158    <tr><td>QASYMMS8
1159    <tr><td>QSYMMS16
1160    <tr><td>SIGNED32
1161    <tr><td>FLOAT16
1162    <tr><td>FLOAT32
1163    </table>
1164<tr>
1165  <td rowspan="3">ElementwiseUnaryLayer
1166  <td rowspan="3" style="width:200px;"> Layer to perform Rsqrt - Exp - Neg - Log - Abs - Sin - Sqrt operations.
1167  <td rowspan="3">
1168      <ul>
1169       <li>ANEURALNETWORKS_ABS
1170       <li>ANEURALNETWORKS_EXP
1171       <li>ANEURALNETWORKS_LOG
1172       <li>ANEURALNETWORKS_NEG
1173       <li>ANEURALNETWORKS_RSQRT
1174       <li>ANEURALNETWORKS_SIN
1175       <li>ANEURALNETWORKS_SQRT
1176      </ul>
1177  <td>CpuRef
1178  <td>
1179      <ul>
1180       <li>All
1181      </ul>
1182  <td>
1183    <table>
1184       <tr><th>
1185       <tr><td>BFLOAT16
1186       <tr><td>FLOAT16
1187       <tr><td>FLOAT32
1188       <tr><td>QASYMMS8
1189       <tr><td>QASYMMU8
1190       <tr><td>QSYMMS16
1191    </table>
1192<tr>
1193  <td>CpuAcc
1194  <td>
1195      <ul>
1196       <li>All
1197      </ul>
1198  <td>
1199    <table>
1200    <tr><th>
1201    <tr><td>FLOAT16
1202    <tr><td>FLOAT32
1203    <tr><td>SIGNED32
1204    </table>
1205<tr>
1206  <td>GpuAcc
1207  <td>
1208      <ul>
1209       <li>All
1210      </ul>
1211  <td>
1212    <table>
1213    <tr><th>
1214    <tr><td>FLOAT16
1215    <tr><td>FLOAT32
1216    </table>
1217<tr>
1218  <td rowspan="1">FakeQuantizationLayer
1219  <td rowspan="1" style="width:200px;"> Layer to quantize float values and dequantize afterwards. The current implementation does not dequantize the values.
1220  <td rowspan="1">
1221      <ul>
1222       <li>N/A
1223      </ul>
1224   <td>CpuRef
1225     <td>
1226         <ul>
1227          <li>All
1228         </ul>
1229     <td>
1230      <table>
1231         <tr><th>
1232         <tr><td>FLOAT32
1233      </table>
1234<tr>
1235  <td rowspan="3">FillLayer
1236  <td rowspan="3" style="width:200px;"> Layer to set the values of a tensor with a given value.
1237  <td rowspan="3">
1238      <ul>
1239       <li>ANEURALNETWORKS_FILL
1240      </ul>
1241   <td>CpuRef
1242     <td>
1243         <ul>
1244          <li>All
1245         </ul>
1246     <td>
1247      <table>
1248       <tr><th>
1249       <tr><td>FLOAT16
1250       <tr><td>FLOAT32
1251       <tr><td>SIGNED32
1252      </table>
1253<tr>
1254  <td>CpuAcc
1255  <td>
1256      <ul>
1257       <li>All
1258      </ul>
1259  <td>
1260    <table>
1261    <tr><th>
1262    <tr><td>All
1263    </table>
1264<tr>
1265  <td>GpuAcc
1266  <td>
1267      <ul>
1268       <li>All
1269      </ul>
1270  <td>
1271    <table>
1272    <tr><th>
1273    <tr><td>All
1274    </table>
1275<tr>
1276  <td rowspan="3">FloorLayer
1277  <td rowspan="3" style="width:200px;"> Layer to round the value to the lowest whole number.
1278  <td rowspan="3">
1279      <ul>
1280       <li>ANEURALNETWORKS_FLOOR
1281      </ul>
1282   <td>CpuRef
1283     <td>
1284         <ul>
1285          <li>All
1286         </ul>
1287     <td>
1288      <table>
1289       <tr><th>
1290       <tr><td>BFLOAT16
1291       <tr><td>FLOAT16
1292       <tr><td>FLOAT32
1293      </table>
1294<tr>
1295  <td>CpuAcc
1296  <td>
1297      <ul>
1298       <li>All
1299      </ul>
1300  <td>
1301    <table>
1302    <tr><th>
1303    <tr><td>FLOAT32
1304    <tr><td>FLOAT16
1305    </table>
1306<tr>
1307  <td>GpuAcc
1308  <td>
1309      <ul>
1310       <li>All
1311      </ul>
1312  <td>
1313    <table>
1314    <tr><th>
1315    <tr><td>FLOAT32
1316    <tr><td>FLOAT16
1317    </table>
1318<tr>
1319  <td rowspan="3">FullyConnectedLayer
1320  <td rowspan="3" style="width:200px;"> Layer to perform a fully connected / dense operation.
1321  <td rowspan="3">
1322      <ul>
1323       <li>ANEURALNETWORKS_FULLY_CONNECTED
1324      </ul>
1325   <td>CpuRef
1326     <td>
1327         <ul>
1328          <li>All
1329         </ul>
1330     <td>
1331      <table>
1332       <tr><th>
1333       <tr><td>BFLOAT16
1334       <tr><td>FLOAT16
1335       <tr><td>FLOAT32
1336       <tr><td>QASYMMS8
1337       <tr><td>QASYMMU8
1338       <tr><td>QSYMMS16
1339      </table>
1340<tr>
1341  <td>CpuAcc
1342  <td>
1343      <ul>
1344       <li>NHWC
1345       <li>NCHW
1346      </ul>
1347  <td>
1348    <table>
1349    <tr><th>
1350    <tr><td>SIGNED32
1351    <tr><td>FLOAT16
1352    <tr><td>FLOAT32
1353    <tr><td>QASYMMU8
1354    <tr><td>QASYMMS8
1355    </table>
1356<tr>
1357  <td>GpuAcc
1358  <td>
1359      <ul>
1360       <li>NHWC
1361       <li>NCHW
1362      </ul>
1363  <td>
1364    <table>
1365    <tr><th>
1366    <tr><td>SIGNED32
1367    <tr><td>FLOAT16
1368    <tr><td>FLOAT32
1369    <tr><td>QASYMMU8
1370    <tr><td>QASYMMS8
1371    </table>
1372<tr>
1373  <td rowspan="3">GatherLayer
1374  <td rowspan="3" style="width:200px;"> Layer to perform the gather operation along the chosen axis.
1375  <td rowspan="3">
1376      <ul>
1377       <li>ANEURALNETWORKS_GATHER
1378      </ul>
1379   <td>CpuRef
1380     <td>
1381         <ul>
1382          <li>All
1383         </ul>
1384     <td>
1385      <table>
1386       <tr><th>
1387       <tr><td>BFLOAT16
1388       <tr><td>FLOAT16
1389       <tr><td>FLOAT32
1390       <tr><td>QASYMMS8
1391       <tr><td>QASYMMU8
1392       <tr><td>QSYMMS16
1393       <tr><td>SIGNED32
1394      </table>
1395<tr>
1396  <td>CpuAcc
1397  <td>
1398      <ul>
1399       <li>All
1400      </ul>
1401  <td>
1402    <table>
1403    <tr><th>
1404    <tr><td>All
1405    </table>
1406<tr>
1407  <td>GpuAcc
1408  <td>
1409      <ul>
1410       <li>All
1411      </ul>
1412  <td>
1413    <table>
1414    <tr><th>
1415    <tr><td>All
1416    </table>
1417<tr>
1418  <td rowspan="3">GatherNdLayer
1419  <td rowspan="3" style="width:200px;"> Layer to perform the gatherNd operation.
1420  <td rowspan="3">
1421      <ul>
1422       <li>N/A
1423      </ul>
1424   <td>CpuRef
1425     <td>
1426         <ul>
1427          <li>All
1428         </ul>
1429     <td>
1430      <table>
1431       <tr><th>
1432       <tr><td>BFLOAT16
1433       <tr><td>FLOAT16
1434       <tr><td>FLOAT32
1435       <tr><td>QASYMMS8
1436       <tr><td>QASYMMU8
1437       <tr><td>QSYMMS16
1438       <tr><td>SIGNED32
1439      </table>
1440<tr>
1441  <td>CpuAcc
1442  <td>
1443      <ul>
1444       <li>All
1445      </ul>
1446  <td>
1447      <table>
1448       <tr><th>
1449       <tr><td>BFLOAT16
1450       <tr><td>FLOAT16
1451       <tr><td>FLOAT32
1452       <tr><td>QASYMMS8
1453       <tr><td>QASYMMU8
1454       <tr><td>QSYMMS16
1455       <tr><td>SIGNED32
1456      </table>
1457<tr>
1458  <td>GpuAcc
1459  <td>
1460      <ul>
1461       <li>All
1462      </ul>
1463  <td>
1464      <table>
1465       <tr><th>
1466       <tr><td>BFLOAT16
1467       <tr><td>FLOAT16
1468       <tr><td>FLOAT32
1469       <tr><td>QASYMMS8
1470       <tr><td>QASYMMU8
1471       <tr><td>QSYMMS16
1472       <tr><td>SIGNED32
1473      </table>
1474<tr>
1475  <td rowspan="1">InputLayer
1476  <td rowspan="1" style="width:200px;"> Special layer used to provide input data to the computational network.
1477  <td rowspan="1">
1478      <ul>
1479       <li>N/A
1480      </ul>
1481   <td>All
1482   <td>
1483         <ul>
1484          <li>All
1485         </ul>
1486  <td>
1487    <table>
1488    <tr><th>
1489    <tr><td>All
1490    </table>
1491<tr>
1492  <td rowspan="3">InstanceNormalizationLayer
1493  <td rowspan="3" style="width:200px;"> Layer to perform an instance normalization on a given axis.
1494  <td rowspan="3">
1495      <ul>
1496       <li>ANEURALNETWORKS_INSTANCE_NORMALIZATION
1497      </ul>
1498   <td>CpuRef
1499     <td>
1500         <ul>
1501          <li>All
1502         </ul>
1503     <td>
1504      <table>
1505       <tr><th>
1506       <tr><td>BFLOAT16
1507       <tr><td>FLOAT16
1508       <tr><td>FLOAT32
1509      </table>
1510<tr>
1511  <td>CpuAcc
1512  <td>
1513      <ul>
1514       <li>NHWC
1515       <li>NCHW
1516      </ul>
1517  <td>
1518    <table>
1519    <tr><th>
1520    <tr><td>FLOAT16
1521    <tr><td>FLOAT32
1522    </table>
1523<tr>
1524  <td>GpuAcc
1525  <td>
1526      <ul>
1527       <li>NHWC
1528       <li>NCHW
1529      </ul>
1530  <td>
1531    <table>
1532    <tr><th>
1533    <tr><td>FLOAT16
1534    <tr><td>FLOAT32
1535    </table>
1536<tr>
1537  <td rowspan="3">L2NormalizationLayer
1538  <td rowspan="3" style="width:200px;"> Layer to perform an L2 normalization on a given axis.
1539  <td rowspan="3">
1540      <ul>
1541       <li>ANEURALNETWORKS_L2_NORMALIZATION
1542      </ul>
1543   <td>CpuRef
1544     <td>
1545         <ul>
1546          <li>All
1547         </ul>
1548     <td>
1549      <table>
1550       <tr><th>
1551       <tr><td>BFLOAT16
1552       <tr><td>FLOAT16
1553       <tr><td>FLOAT32
1554       <tr><td>QASYMMS8
1555       <tr><td>QASYMMU8
1556       <tr><td>QSYMMS16
1557      </table>
1558<tr>
1559  <td>CpuAcc
1560  <td>
1561      <ul>
1562       <li>NHWC
1563       <li>NCHW
1564      </ul>
1565  <td>
1566    <table>
1567    <tr><th>
1568    <tr><td>FLOAT16
1569    <tr><td>FLOAT32
1570    </table>
1571<tr>
1572  <td>GpuAcc
1573  <td>
1574      <ul>
1575       <li>NHWC
1576       <li>NCHW
1577      </ul>
1578  <td>
1579    <table>
1580    <tr><th>
1581    <tr><td>FLOAT16
1582    <tr><td>FLOAT32
1583    </table>
1584<tr>
1585  <td rowspan="3">LogSoftmaxLayer
1586  <td rowspan="3" style="width:200px;"> Layer to perform the log softmax activations given logits.
1587  <td rowspan="3">
1588      <ul>
1589       <li>N/A
1590      </ul>
1591   <td>CpuRef
1592     <td>
1593         <ul>
1594          <li>All
1595         </ul>
1596     <td>
1597      <table>
1598       <tr><th>
1599       <tr><td>BFLOAT16
1600       <tr><td>FLOAT16
1601       <tr><td>FLOAT32
1602      </table>
1603<tr>
1604  <td>CpuAcc
1605  <td>
1606      <ul>
1607       <li>All
1608      </ul>
1609  <td>
1610    <table>
1611    <tr><th>
1612    <tr><td>QASYMMU8
1613    <tr><td>QASYMMS8
1614    <tr><td>FLOAT16
1615    <tr><td>FLOAT32
1616    </table>
1617<tr>
1618  <td>GpuAcc
1619  <td>
1620      <ul>
1621       <li>All
1622      </ul>
1623  <td>
1624    <table>
1625    <tr><th>
1626    <tr><td>QASYMMU8
1627    <tr><td>QASYMMS8
1628    <tr><td>FLOAT16
1629    <tr><td>FLOAT32
1630    </table>
1631<tr>
1632  <td rowspan="3">LogicalBinaryLayer
1633  <td rowspan="3" style="width:200px;"> Layer to perform Logical AND - Logical NOT - Logical OR operations.
1634  <td rowspan="3">
1635      <ul>
1636       <li>ANEURALNETWORKS_LOGICAL_AND
1637       <li>ANEURALNETWORKS_LOGICAL_NOT
1638       <li>ANEURALNETWORKS_LOGICAL_OR
1639      </ul>
1640   <td>CpuRef
1641     <td>
1642         <ul>
1643          <li>All
1644         </ul>
1645     <td>
1646      <table>
1647         <tr><th>
1648         <tr><td>BOOLEAN
1649      </table>
1650<tr>
1651  <td>CpuAcc
1652  <td>
1653      <ul>
1654       <li>All
1655      </ul>
1656  <td>
1657    <table>
1658    <tr><th>
1659    <tr><td>BOOLEAN
1660    </table>
1661<tr>
1662  <td>GpuAcc
1663  <td>
1664      <ul>
1665       <li>All
1666      </ul>
1667  <td>
1668    <table>
1669    <tr><th>
1670    <tr><td>BOOLEAN
1671    </table>
1672<tr>
1673  <td rowspan="3">LstmLayer
1674  <td rowspan="3" style="width:200px;"> Layer to perform a single time step in a Long Short-Term Memory (LSTM) operation.
1675  <td rowspan="3">
1676      <ul>
1677       <li>ANEURALNETWORKS_LSTM
1678      </ul>
1679   <td>CpuRef
1680     <td>
1681         <ul>
1682          <li>All
1683         </ul>
1684     <td>
1685      <table>
1686       <tr><th>
1687       <tr><td>BFLOAT16
1688       <tr><td>FLOAT16
1689       <tr><td>QSYMMS16
1690      </table>
1691<tr>
1692  <td>CpuAcc
1693  <td>
1694      <ul>
1695       <li>All
1696      </ul>
1697  <td>
1698    <table>
1699    <tr><th>
1700    <tr><td>FLOAT16
1701    <tr><td>FLOAT32
1702    </table>
1703<tr>
1704  <td>GpuAcc
1705  <td>
1706      <ul>
1707       <li>All
1708      </ul>
1709  <td>
1710    <table>
1711    <tr><th>
1712    <tr><td>FLOAT16
1713    <tr><td>FLOAT32
1714    </table>
1715<tr>
1716  <td rowspan="3">MapLayer
1717  <td rowspan="3" style="width:200px;"> Layer to perform map operation on tensor.
1718  <td rowspan="3">
1719      <ul>
1720       <li>N/A
1721      </ul>
1722   <td>CpuRef
1723     <td>
1724         <ul>
1725          <li>All
1726         </ul>
1727     <td>
1728      <table>
1729         <tr><th>
1730         <tr><td>All
1731      </table>
1732<tr>
1733  <td>CpuAcc
1734  <td>
1735      <ul>
1736       <li>All
1737      </ul>
1738  <td>
1739    <table>
1740    <tr><th>
1741    <tr><td>All
1742    </table>
1743<tr>
1744  <td>GpuAcc
1745  <td>
1746      <ul>
1747       <li>All
1748      </ul>
1749  <td>
1750    <table>
1751    <tr><th>
1752    <tr><td>All
1753    </table>
1754<tr>
1755  <td rowspan="3">MaximumLayer
1756  <td rowspan="3" style="width:200px;"> Layer to perform an elementwise maximum of two tensors.
1757  <td rowspan="3">
1758      <ul>
1759       <li>N/A
1760      </ul>
1761   <td>CpuRef
1762     <td>
1763         <ul>
1764          <li>All
1765         </ul>
1766     <td>
1767      <table>
1768       <tr><th>
1769       <tr><td>BFLOAT16
1770       <tr><td>FLOAT16
1771       <tr><td>FLOAT32
1772       <tr><td>QASYMMS8
1773       <tr><td>QASYMMU8
1774       <tr><td>QSYMMS16
1775       <tr><td>SIGNED32
1776      </table>
1777<tr>
1778  <td>CpuAcc
1779  <td>
1780      <ul>
1781       <li>All
1782      </ul>
1783  <td>
1784    <table>
1785    <tr><th>
1786    <tr><td>QASYMMU8
1787    <tr><td>QASYMMS8
1788    <tr><td>FLOAT16
1789    <tr><td>FLOAT32
1790    <tr><td>SIGNED32
1791    </table>
1792<tr>
1793  <td>GpuAcc
1794  <td>
1795      <ul>
1796       <li>All
1797      </ul>
1798  <td>
1799    <table>
1800    <tr><th>
1801    <tr><td>QASYMMU8
1802    <tr><td>QASYMMS8
1803    <tr><td>QSYMMS16
1804    <tr><td>FLOAT16
1805    <tr><td>FLOAT32
1806    <tr><td>SIGNED32
1807    </table>
1808<tr>
1809  <td rowspan="3">MeanLayer
1810  <td rowspan="3" style="width:200px;"> Layer to perform reduce mean operation.
1811  <td rowspan="3">
1812      <ul>
1813       <li>ANEURALNETWORKS_MEAN
1814      </ul>
1815   <td>CpuRef
1816     <td>
1817         <ul>
1818          <li>All
1819         </ul>
1820     <td>
1821      <table>
1822       <tr><th>
1823       <tr><td>BFLOAT16
1824       <tr><td>FLOAT16
1825       <tr><td>FLOAT32
1826       <tr><td>QASYMMS8
1827       <tr><td>QASYMMU8
1828       <tr><td>QSYMMS16
1829      </table>
1830<tr>
1831  <td>CpuAcc
1832  <td>
1833      <ul>
1834       <li>All
1835      </ul>
1836  <td>
1837    <table>
1838    <tr><th>
1839    <tr><td>QASYMMU8
1840    <tr><td>QASYMMS8
1841    <tr><td>FLOAT16
1842    <tr><td>FLOAT32
1843    </table>
1844<tr>
1845  <td>GpuAcc
1846  <td>
1847      <ul>
1848       <li>All
1849      </ul>
1850  <td>
1851    <table>
1852    <tr><th>
1853    <tr><td>QASYMMU8
1854    <tr><td>QASYMMS8
1855    <tr><td>FLOAT16
1856    <tr><td>FLOAT32
1857    </table>
1858<tr>
1859  <td rowspan="3">MemCopyLayer
1860  <td rowspan="3" style="width:200px;"> Layer to perform memory copy operation.
1861  <td rowspan="3">
1862      <ul>
1863       <li>N/A
1864      </ul>
1865   <td>CpuRef
1866     <td>
1867         <ul>
1868          <li>All
1869         </ul>
1870     <td>
1871      <table>
1872       <tr><th>
1873       <tr><td>BFLOAT16
1874       <tr><td>FLOAT16
1875       <tr><td>FLOAT32
1876       <tr><td>QASYMMS8
1877       <tr><td>QASYMMU8
1878       <tr><td>QSYMMS16
1879       <tr><td>BOOLEAN
1880      </table>
1881<tr>
1882  <td>CpuAcc
1883  <td>
1884      <ul>
1885       <li>All
1886      </ul>
1887  <td>
1888    <table>
1889    <tr><th>
1890    <tr><td>All
1891    </table>
1892<tr>
1893  <td>GpuAcc
1894  <td>
1895      <ul>
1896       <li>All
1897      </ul>
1898  <td>
1899    <table>
1900    <tr><th>
1901    <tr><td>All
1902    </table>
1903<tr>
1904  <td rowspan="3">MemImportLayer
1905  <td rowspan="3" style="width:200px;"> Layer to perform memory import operation.
1906  <td rowspan="3">
1907      <ul>
1908       <li>N/A
1909      </ul>
1910   <td>CpuRef
1911     <td>
1912         <ul>
1913          <li>All
1914         </ul>
1915     <td>
1916      <table>
1917         <tr><th>
1918         <tr><td>All
1919      </table>
1920<tr>
1921  <td>CpuAcc
1922  <td>
1923      <ul>
1924       <li>All
1925      </ul>
1926  <td>
1927    <table>
1928    <tr><th>
1929    <tr><td>All
1930    </table>
1931<tr>
1932  <td>GpuAcc
1933  <td>
1934      <ul>
1935       <li>All
1936      </ul>
1937  <td>
1938    <table>
1939    <tr><th>
1940    <tr><td>All
1941    </table>
1942<tr>
1943  <td rowspan="3">MergeLayer
1944  <td rowspan="3" style="width:200px;"> Layer to concatenate tensors along a given axis.
1945  <td rowspan="3">
1946      <ul>
1947       <li>ANEURALNETWORKS_CONCATENATION
1948      </ul>
1949   <td>CpuRef
1950     <td>
1951         <ul>
1952          <li>All
1953         </ul>
1954     <td>
1955      <table>
1956       <tr><th>
1957       <tr><td>BFLOAT16
1958       <tr><td>FLOAT16
1959       <tr><td>FLOAT32
1960       <tr><td>QASYMMS8
1961       <tr><td>QASYMMU8
1962       <tr><td>QSYMMS16
1963      </table>
1964<tr>
1965  <td>CpuAcc
1966  <td>
1967      <ul>
1968       <li>All
1969      </ul>
1970  <td>
1971    <table>
1972    <tr><th>
1973    <tr><td>QASYMMU8
1974    <tr><td>QASYMMS8
1975    <tr><td>FLOAT16
1976    <tr><td>FLOAT32
1977    </table>
1978<tr>
1979  <td>GpuAcc
1980  <td>
1981      <ul>
1982       <li>All
1983      </ul>
1984  <td>
1985    <table>
1986    <tr><th>
1987    <tr><td>QASYMMU8
1988    <tr><td>QASYMMS8
1989    <tr><td>FLOAT16
1990    <tr><td>FLOAT32
1991    </table>
1992<tr>
1993  <td rowspan="3">MinimumLayer
1994  <td rowspan="3" style="width:200px;"> Layer to perform an elementwise minimum of two tensors.
1995  <td rowspan="3">
1996      <ul>
1997       <li>ANEURALNETWORKS_MINIMUM
1998      </ul>
1999   <td>CpuRef
2000     <td>
2001         <ul>
2002          <li>All
2003         </ul>
2004     <td>
2005      <table>
2006       <tr><th>
2007       <tr><td>BFLOAT16
2008       <tr><td>FLOAT16
2009       <tr><td>FLOAT32
2010       <tr><td>QASYMMS8
2011       <tr><td>QASYMMU8
2012       <tr><td>QSYMMS16
2013       <tr><td>SIGNED32
2014      </table>
2015<tr>
2016  <td>CpuAcc
2017  <td>
2018      <ul>
2019       <li>All
2020      </ul>
2021  <td>
2022    <table>
2023    <tr><th>
2024    <tr><td>QASYMMU8
2025    <tr><td>QASYMMS8
2026    <tr><td>QSYMMS16
2027    <tr><td>FLOAT16
2028    <tr><td>FLOAT32
2029    </table>
2030<tr>
2031  <td>GpuAcc
2032  <td>
2033      <ul>
2034       <li>All
2035      </ul>
2036  <td>
2037    <table>
2038    <tr><th>
2039    <tr><td>QASYMMU8
2040    <tr><td>QASYMMS8
2041    <tr><td>QSYMMS16
2042    <tr><td>FLOAT16
2043    <tr><td>FLOAT32
2044    <tr><td>SIGNED32
2045    </table>
2046<tr>
2047  <td rowspan="3">MultiplicationLayer
2048  <td rowspan="3" style="width:200px;"> Layer to perform an elementwise multiplication of two tensors.
2049  <td rowspan="3">
2050      <ul>
2051       <li>ANEURALNETWORKS_MUL
2052      </ul>
2053   <td>CpuRef
2054     <td>
2055         <ul>
2056          <li>All
2057         </ul>
2058     <td>
2059      <table>
2060       <tr><th>
2061       <tr><td>BFLOAT16
2062       <tr><td>FLOAT16
2063       <tr><td>FLOAT32
2064       <tr><td>QASYMMS8
2065       <tr><td>QASYMMU8
2066       <tr><td>QSYMMS16
2067       <tr><td>SIGNED32
2068      </table>
2069<tr>
2070  <td>CpuAcc
2071  <td>
2072      <ul>
2073       <li>All
2074      </ul>
2075  <td>
2076    <table>
2077    <tr><th>
2078    <tr><td>QASYMMU8
2079    <tr><td>QASYMMS8
2080    <tr><td>QSYMMS16
2081    <tr><td>SIGNED32
2082    <tr><td>FLOAT16
2083    <tr><td>FLOAT32
2084    </table>
2085<tr>
2086  <td>GpuAcc
2087  <td>
2088      <ul>
2089       <li>All
2090      </ul>
2091  <td>
2092    <table>
2093    <tr><th>
2094    <tr><td>QASYMMU8
2095    <tr><td>QASYMMS8
2096    <tr><td>QSYMMS16
2097    <tr><td>SIGNED32
2098    <tr><td>FLOAT16
2099    <tr><td>FLOAT32
2100    <tr><td>SIGNED32
2101    </table>
2102<tr>
2103  <td rowspan="3">NormalizationLayer
2104  <td rowspan="3" style="width:200px;"> Layer to compute normalization operation.
2105  <td rowspan="3">
2106      <ul>
2107       <li>ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION
2108      </ul>
2109   <td>CpuRef
2110     <td>
2111         <ul>
2112          <li>All
2113         </ul>
2114     <td>
2115      <table>
2116       <tr><th>
2117       <tr><td>BFLOAT16
2118       <tr><td>FLOAT16
2119       <tr><td>FLOAT32
2120       <tr><td>QASYMMS8
2121       <tr><td>QASYMMU8
2122       <tr><td>QSYMMS16
2123      </table>
2124<tr>
2125  <td>CpuAcc
2126  <td>
2127      <ul>
2128       <li>NHWC
2129       <li>NCHW
2130      </ul>
2131  <td>
2132    <table>
2133    <tr><th>
2134    <tr><td>FLOAT32
2135    <tr><td>FLOAT16
2136    </table>
2137<tr>
2138  <td>GpuAcc
2139  <td>
2140      <ul>
2141       <li>NHWC
2142       <li>NCHW
2143      </ul>
2144  <td>
2145    <table>
2146    <tr><th>
2147    <tr><td>FLOAT32
2148    <tr><td>FLOAT16
2149    </table>
2150<tr>
2151  <td rowspan="1">OutputLayer
2152  <td rowspan="1" style="width:200px;"> A special layer providing access to a user supplied buffer into which the output of a network can be written.
2153  <td rowspan="1">
2154      <ul>
2155       <li>N/A
2156      </ul>
2157   <td>All
2158   <td>
2159         <ul>
2160          <li>All
2161         </ul>
2162  <td>
2163    <table>
2164    <tr><th>
2165    <tr><td>All
2166    </table>
2167<tr>
2168  <td rowspan="3">PadLayer
2169  <td rowspan="3" style="width:200px;"> Layer to pad a tensor.
2170  <td rowspan="3">
2171      <ul>
2172       <li>ANEURALNETWORKS_PAD
2173       <li>ANEURALNETWORKS_PAD_V2
2174      </ul>
2175   <td>CpuRef
2176     <td>
2177         <ul>
2178          <li>All
2179         </ul>
2180     <td>
2181      <table>
2182       <tr><th>
2183       <tr><td>BFLOAT16
2184       <tr><td>FLOAT16
2185       <tr><td>FLOAT32
2186       <tr><td>QASYMMS8
2187       <tr><td>QASYMMU8
2188       <tr><td>QSYMMS16
2189      </table>
2190<tr>
2191  <td>CpuAcc
2192  <td>
2193      <ul>
2194       <li>NHWC
2195       <li>NCHW
2196      </ul>
2197  <td>
2198    <table>
2199    <tr><th>
2200    <tr><td>All
2201    </table>
2202<tr>
2203  <td>GpuAcc
2204  <td>
2205      <ul>
2206       <li>NHWC
2207       <li>NCHW
2208      </ul>
2209  <td>
2210    <table>
2211    <tr><th>
2212    <tr><td>All
2213    </table>
2214<tr>
2215  <td rowspan="3">PermuteLayer
2216  <td rowspan="3" style="width:200px;"> Layer to transpose an ND tensor.
2217  <td rowspan="3">
2218      <ul>
2219       <li>ANEURALNETWORKS_TRANSPOSE
2220      </ul>
2221   <td>CpuRef
2222     <td>
2223         <ul>
2224          <li>All
2225         </ul>
2226     <td>
2227      <table>
2228       <tr><th>
2229       <tr><td>BFLOAT16
2230       <tr><td>FLOAT16
2231       <tr><td>FLOAT32
2232       <tr><td>QASYMMS8
2233       <tr><td>QASYMMU8
2234       <tr><td>QSYMMS16
2235      </table>
2236<tr>
2237  <td>CpuAcc
2238  <td>
2239      <ul>
2240       <li>NHWC
2241       <li>NCHW
2242      </ul>
2243  <td>
2244    <table>
2245    <tr><th>
2246    <tr><td>All
2247    </table>
2248<tr>
2249  <td>GpuAcc
2250  <td>
2251      <ul>
2252       <li>NHWC
2253       <li>NCHW
2254      </ul>
2255  <td>
2256    <table>
2257    <tr><th>
2258    <tr><td>All
2259    </table>
2260<tr>
2261  <td rowspan="3">Pooling2dLayer
2262  <td rowspan="3" style="width:200px;"> Layer to perform 2D pooling with the specified pooling operation.
2263  <td rowspan="3">
2264      <ul>
2265       <li>ANEURALNETWORKS_AVERAGE_POOL_2D
2266       <li>ANEURALNETWORKS_L2_POOL_2D
2267       <li>ANEURALNETWORKS_MAX_POOL_2D
2268      </ul>
2269   <td>CpuRef
2270     <td>
2271         <ul>
2272          <li>All
2273         </ul>
2274     <td>
2275      <table>
2276       <tr><th>
2277       <tr><td>BFLOAT16
2278       <tr><td>FLOAT16
2279       <tr><td>FLOAT32
2280       <tr><td>QASYMMS8
2281       <tr><td>QASYMMU8
2282       <tr><td>QSYMMS16
2283      </table>
2284<tr>
2285  <td>CpuAcc
2286  <td>
2287      <ul>
2288       <li>NHWC
2289       <li>NCHW
2290      </ul>
2291  <td>
2292    <table>
2293    <tr><th>
2294    <tr><td>QASYMMU8
2295    <tr><td>QASYMMS8
2296    <tr><td>FLOAT16
2297    <tr><td>FLOAT32
2298    </table>
2299<tr>
2300  <td>GpuAcc
2301  <td>
2302      <ul>
2303       <li>NHWC
2304       <li>NCHW
2305      </ul>
2306  <td>
2307    <table>
2308    <tr><th>
2309    <tr><td>QASYMMU8
2310    <tr><td>QASYMMS8
2311    <tr><td>FLOAT16
2312    <tr><td>FLOAT32
2313    </table>
2314<tr>
2315  <td rowspan="3">Pooling3dLayer
2316  <td rowspan="3" style="width:200px;"> Layer to perform 3D pooling with the specified pooling operation.
2317  <td rowspan="3">
2318      <ul>
2319       <li>ANEURALNETWORKS_AVERAGE_POOL_3D
2320       <li>ANEURALNETWORKS_L2_POOL_3D
2321       <li>ANEURALNETWORKS_MAX_POOL_3D
2322      </ul>
2323   <td>CpuRef
2324     <td>
2325         <ul>
2326          <li>NDHWC
2327         </ul>
2328     <td>
2329      <table>
2330       <tr><th>
2331       <tr><td>BFLOAT16
2332       <tr><td>FLOAT16
2333       <tr><td>FLOAT32
2334       <tr><td>QASYMMS8
2335       <tr><td>QASYMMU8
2336       <tr><td>QSYMMS16
2337      </table>
2338<tr>
2339  <td>CpuAcc
2340  <td>
2341      <ul>
2342       <li>NA
2343      </ul>
2344  <td>
2345<tr>
2346  <td>GpuAcc
2347  <td>
2348      <ul>
2349       <li>NDHWC
2350      </ul>
2351<tr>
2352  <td rowspan="1">PreCompiledLayer
2353  <td rowspan="1" style="width:200px;"> Opaque layer provided by a backend which provides an executable representation of a subgraph from the original network.
2354  <td rowspan="1">
2355      <ul>
2356       <li>N/A
2357      </ul>
2358   <td>N/A
2359   <td>N/A
2360   <td>N/A
2361<tr>
2362  <td rowspan="3">PreluLayer
2363  <td rowspan="3" style="width:200px;"> Layer to compute the activation layer with the PRELU activation function.
2364  <td rowspan="3">
2365      <ul>
2366       <li>ANEURALNETWORKS_PRELU
2367      </ul>
2368   <td>CpuRef
2369     <td>
2370         <ul>
2371          <li>All
2372         </ul>
2373     <td>
2374      <table>
2375       <tr><th>
2376       <tr><td>BFLOAT16
2377       <tr><td>FLOAT16
2378       <tr><td>FLOAT32
2379       <tr><td>QASYMMS8
2380       <tr><td>QASYMMU8
2381       <tr><td>QSYMMS16
2382      </table>
2383<tr>
2384  <td>CpuAcc
2385  <td>
2386      <ul>
2387       <li>All
2388      </ul>
2389  <td>
2390    <table>
2391    <tr><th>
2392    <tr><td>QASYMMU8
2393    <tr><td>QASYMMS8
2394    <tr><td>FLOAT16
2395    <tr><td>FLOAT32
2396    </table>
2397<tr>
2398  <td>GpuAcc
2399  <td>
2400      <ul>
2401       <li>All
2402      </ul>
2403  <td>
2404    <table>
2405    <tr><th>
2406    <tr><td>QASYMMU8
2407    <tr><td>QASYMMS8
2408    <tr><td>FLOAT16
2409    <tr><td>FLOAT32
2410    </table>
2411<tr>
2412  <td rowspan="3">QLstmLayer
2413  <td rowspan="3" style="width:200px;"> Layer to perform quantized LSTM (Long Short-Term Memory) operation.
2414  <td rowspan="3">
2415      <ul>
2416       <li>ANEURALNETWORKS_QUANTIZED_LSTM
2417       <li>ANEURALNETWORKS_QUANTIZED_16BIT_LSTM
2418      </ul>
2419   <td>CpuRef
2420     <td>
2421         <ul>
2422          <li>All
2423         </ul>
2424     <td>
2425      <table>
2426         <tr><th>
2427         <tr><td>All
2428      </table>
2429<tr>
2430  <td>CpuAcc
2431  <td>
2432      <ul>
2433       <li>All
2434      </ul>
2435  <td>
2436    <table>
2437    <tr><th>
2438    <tr><td>QASYMMS8
2439    <tr><td>QASYMMU8
2440    <tr><td>SIGNED32
2441    <tr><td>QSYMMS16
2442    </table>
2443<tr>
2444  <td>GpuAcc
2445  <td>
2446      <ul>
2447       <li>All
2448      </ul>
2449  <td>
2450    <table>
2451    <tr><th>
2452    <tr><td>QASYMMS8
2453    <tr><td>QASYMMU8
2454    <tr><td>SIGNED32
2455    <tr><td>QSYMMS16
2456    </table>
2457<tr>
2458  <td rowspan="3">QuantizeLayer
2459  <td rowspan="3" style="width:200px;"> Layer to perform quantization operation.
2460  <td rowspan="3">
2461      <ul>
2462       <li>ANEURALNETWORKS_QUANTIZE
2463      </ul>
2464   <td>CpuRef
2465     <td>
2466         <ul>
2467          <li>All
2468         </ul>
2469     <td>
2470      <table>
2471       <tr><th>
2472       <tr><td>BFLOAT16
2473       <tr><td>FLOAT16
2474       <tr><td>FLOAT32
2475       <tr><td>QASYMMS8
2476       <tr><td>QASYMMU8
2477       <tr><td>QSYMMS8
2478       <tr><td>QSYMMS16
2479      </table>
2480<tr>
2481  <td>CpuAcc
2482  <td>
2483      <ul>
2484       <li>All
2485      </ul>
2486  <td>
2487    <table>
2488    <tr><th>
2489    <tr><td>QASYMMU8
2490    <tr><td>QASYMMS8
2491    <tr><td>QASYMM16
2492    <tr><td>FLOAT16
2493    <tr><td>FLOAT32
2494    </table>
2495<tr>
2496  <td>GpuAcc
2497  <td>
2498      <ul>
2499       <li>All
2500      </ul>
2501  <td>
2502    <table>
2503    <tr><th>
2504    <tr><td>QASYMMU8
2505    <tr><td>QASYMMS8
2506    <tr><td>QASYMM16
2507    <tr><td>FLOAT16
2508    <tr><td>FLOAT32
2509    </table>
2510<tr>
2511  <td rowspan="3">QuantizedLstmLayer
2512  <td rowspan="3" style="width:200px;"> Layer to perform quantized LSTM (Long Short-Term Memory) operation.
2513  <td rowspan="3">
2514      <ul>
2515       <li>ANEURALNETWORKS_QUANTIZED_LSTM
2516       <li>ANEURALNETWORKS_QUANTIZED_16BIT_LSTM
2517      </ul>
2518   <td>CpuRef
2519     <td>
2520         <ul>
2521          <li>All
2522         </ul>
2523     <td>
2524      <table>
2525         <tr><th>
2526         <tr><td>All
2527      </table>
2528<tr>
2529  <td>CpuAcc
2530  <td>
2531      <ul>
2532       <li>All
2533      </ul>
2534  <td>
2535    <table>
2536    <tr><th>
2537    <tr><td>SIGNED32
2538    <tr><td>QASYMMU8
2539    <tr><td>QSYMMS16
2540    </table>
2541<tr>
2542  <td>GpuAcc
2543  <td>
2544      <ul>
2545       <li>All
2546      </ul>
2547  <td>
2548    <table>
2549    <tr><th>
2550    <tr><td>SIGNED32
2551    <tr><td>QASYMMU8
2552    <tr><td>QSYMMS16
2553    </table>
2554<tr>
2555  <td rowspan="3">RankLayer
2556  <td rowspan="3" style="width:200px;"> Layer to perform a rank operation.
2557  <td rowspan="3">
2558      <ul>
2559       <li>ANEURALNETWORKS_RANK
2560      </ul>
2561   <td>CpuRef
2562     <td>
2563         <ul>
2564          <li>All
2565         </ul>
2566     <td>
2567      <table>
2568         <tr><th>
2569         <tr><td>All
2570      </table>
2571<tr>
2572  <td>CpuAcc
2573  <td>
2574      <ul>
2575       <li>All
2576      </ul>
2577  <td>
2578    <table>
2579    <tr><th>
2580    <tr><td>All
2581    </table>
2582<tr>
2583  <td>GpuAcc
2584  <td>
2585      <ul>
2586       <li>All
2587      </ul>
2588  <td>
2589    <table>
2590    <tr><th>
2591    <tr><td>All
2592    </table>
2593<tr>
2594  <td rowspan="3">ReduceLayer
2595  <td rowspan="3" style="width:200px;"> Layer to perform reduce with the following operations - ARG_IDX_MAX: Index of the max value - ARG_IDX_MIN: Index of the min value - MEAN_SUM:    Mean of sum - PROD:        Product - SUM_SQUARE:  Sum of squares - SUM:         Sum - MIN:         Min - MAX:         Max
2596  <td rowspan="3">
2597      <ul>
2598       <li>ANEURALNETWORKS_REDUCE_MAX
2599       <li>ANEURALNETWORKS_REDUCE_MIN
2600       <li>ANEURALNETWORKS_REDUCE_SUM
2601       <li>ANEURALNETWORKS_REDUCE_PROD
2602      </ul>
2603   <td>CpuRef
2604     <td>
2605         <ul>
2606          <li>All
2607         </ul>
2608     <td>
2609      <table>
2610       <tr><th>
2611       <tr><td>BFLOAT16
2612       <tr><td>FLOAT16
2613       <tr><td>FLOAT32
2614       <tr><td>QASYMMS8
2615       <tr><td>QASYMMU8
2616       <tr><td>QSYMMS16
2617       <tr><td>SIGNED32
2618      </table>
2619<tr>
2620  <td>CpuAcc
2621  <td>
2622      <ul>
2623       <li>All
2624      </ul>
2625  <td>
2626    <table>
2627    <tr><th>
2628    <tr><td>QASYMMU8
2629    <tr><td>QASYMMS8
2630    <tr><td>FLOAT16
2631    <tr><td>FLOAT32
2632    <tr><td>SIGNED32
2633    </table>
2634<tr>
2635  <td>GpuAcc
2636  <td>
2637      <ul>
2638       <li>All
2639      </ul>
2640  <td>
2641    <table>
2642    <tr><th>
2643    <tr><td>QASYMMU8
2644    <tr><td>QASYMMS8
2645    <tr><td>FLOAT16
2646    <tr><td>FLOAT32
2647    <tr><td>SIGNED32
2648    </table>
2649<tr>
2650  <td rowspan="3">ReshapeLayer
2651  <td rowspan="3" style="width:200px;"> Layer to reshape a tensor.
2652  <td rowspan="3">
2653      <ul>
2654       <li>ANEURALNETWORKS_RESHAPE
2655       <li>ANEURALNETWORKS_SQUEEZE
2656       <li>ANEURALNETWORKS_EXPAND_DIMS
2657      </ul>
2658   <td>CpuRef
2659     <td>
2660         <ul>
2661          <li>All
2662         </ul>
2663     <td>
2664      <table>
2665       <tr><th>
2666       <tr><td>BFLOAT16
2667       <tr><td>FLOAT16
2668       <tr><td>FLOAT32
2669       <tr><td>QASYMMS8
2670       <tr><td>QASYMMU8
2671       <tr><td>QSYMMS16
2672       <tr><td>SIGNED32
2673       <tr><td>BOOLEAN
2674      </table>
2675<tr>
2676  <td>CpuAcc
2677  <td>
2678      <ul>
2679       <li>All
2680      </ul>
2681  <td>
2682    <table>
2683    <tr><th>
2684    <tr><td>All
2685    </table>
2686<tr>
2687  <td>GpuAcc
2688  <td>
2689      <ul>
2690       <li>All
2691      </ul>
2692  <td>
2693    <table>
2694    <tr><th>
2695    <tr><td>All
2696    </table>
2697<tr>
2698  <td rowspan="3">ResizeLayer
2699  <td rowspan="3" style="width:200px;"> Layer to perform resize of a tensor using one of the interpolation methods: - Bilinear -  Nearest Neighbor.
2700  <td rowspan="3">
2701      <ul>
2702       <li>ANEURALNETWORKS_RESIZE_BILINEAR
2703       <li>ANEURALNETWORKS_RESIZE_NEAREST_NEIGHBOR
2704      </ul>
2705   <td>CpuRef
2706     <td>
2707         <ul>
2708          <li>All
2709         </ul>
2710     <td>
2711      <table>
2712       <tr><th>
2713       <tr><td>BFLOAT16
2714       <tr><td>FLOAT16
2715       <tr><td>FLOAT32
2716       <tr><td>QASYMMS8
2717       <tr><td>QASYMMU8
2718       <tr><td>QSYMMS16
2719      </table>
2720<tr>
2721  <td>CpuAcc
2722  <td>
2723      <ul>
2724       <li>NHWC
2725       <li>NCHW
2726      </ul>
2727  <td>
2728    <table>
2729    <tr><th>
2730    <tr><td>QASYMMU8
2731    <tr><td>QASYMMS8
2732    <tr><td>FLOAT16
2733    <tr><td>FLOAT32
2734    </table>
2735<tr>
2736  <td>GpuAcc
2737  <td>
2738      <ul>
2739       <li>NHWC
2740       <li>NCHW
2741      </ul>
2742  <td>
2743    <table>
2744    <tr><th>
2745    <tr><td>QASYMMU8
2746    <tr><td>QASYMMS8
2747    <tr><td>FLOAT16
2748    <tr><td>FLOAT32
2749    </table>
2750<tr>
2751  <td rowspan="3">RsqrtLayer
2752  <td rowspan="3" style="width:200px;"> Layer to perform Rsqrt operation.
2753  <td rowspan="3">
2754      <ul>
2755       <li>ANEURALNETWORKS_RSQRT
2756      </ul>
2757  <td>CpuRef
2758  <td>
2759      <ul>
2760       <li>All
2761      </ul>
2762  <td>
2763    <table>
2764       <tr><th>
2765       <tr><td>BFLOAT16
2766       <tr><td>FLOAT16
2767       <tr><td>FLOAT32
2768       <tr><td>QASYMMS8
2769       <tr><td>QASYMMU8
2770       <tr><td>QSYMMS16
2771       <tr><td>SIGNED32
2772    </table>
2773<tr>
2774  <td>CpuAcc
2775  <td>
2776      <ul>
2777       <li>All
2778      </ul>
2779  <td>
2780    <table>
2781    <tr><th>
2782    <tr><td>FLOAT16
2783    <tr><td>FLOAT32
2784    <tr><td>SIGNED32
2785    </table>
2786<tr>
2787  <td>GpuAcc
2788  <td>
2789      <ul>
2790       <li>All
2791      </ul>
2792  <td>
2793    <table>
2794    <tr><th>
2795    <tr><td>FLOAT16
2796    <tr><td>FLOAT32
2797    </table>
2798<tr>
2799  <td rowspan="3">ShapeLayer
2800  <td rowspan="3" style="width:200px;"> Layer to return the shape of the input tensor.
2801  <td rowspan="3">
2802      <ul>
2803       <li>N/A
2804      </ul>
2805  <td>CpuRef
2806  <td>
2807      <ul>
2808       <li>All
2809      </ul>
2810  <td>
2811    <table>
2812    <tr><th>
2813    <tr><td>All
2814    </table>
2815<tr>
2816  <td>CpuAcc
2817  <td>
2818      <ul>
2819       <li>All
2820      </ul>
2821  <td>
2822    <table>
2823    <tr><th>
2824    <tr><td>All
2825    </table>
2826<tr>
2827  <td>GpuAcc
2828  <td>
2829      <ul>
2830       <li>All
2831      </ul>
2832  <td>
2833    <table>
2834    <tr><th>
2835    <tr><td>All
2836    </table>
2837<tr>
2838  <td rowspan="3">SliceLayer
2839  <td rowspan="3" style="width:200px;"> Layer to perform tensor slicing.
2840  <td rowspan="3">
2841      <ul>
2842       <li>ANEURALNETWORKS_SLICE
2843      </ul>
2844   <td>CpuRef
2845     <td>
2846         <ul>
2847          <li>All
2848         </ul>
2849     <td>
2850      <table>
2851       <tr><th>
2852       <tr><td>BFLOAT16
2853       <tr><td>FLOAT32
2854       <tr><td>QASYMMS8
2855       <tr><td>QASYMMU8
2856       <tr><td>QSYMMS16
2857      </table>
2858<tr>
2859  <td>CpuAcc
2860  <td>
2861      <ul>
2862       <li>All
2863      </ul>
2864  <td>
2865    <table>
2866    <tr><th>
2867    <tr><td>All
2868    </table>
2869<tr>
2870  <td>GpuAcc
2871  <td>
2872      <ul>
2873       <li>All
2874      </ul>
2875  <td>
2876    <table>
2877    <tr><th>
2878    <tr><td>All
2879    </table>
2880<tr>
2881  <td rowspan="3">SoftmaxLayer
2882  <td rowspan="3" style="width:200px;"> Layer to perform softmax, log-softmax operation over the specified axis.
2883  <td rowspan="3">
2884      <ul>
2885       <li>ANEURALNETWORKS_LOG_SOFTMAX
2886       <li>ANEURALNETWORKS_SOFTMAX
2887      </ul>
2888   <td>CpuRef
2889     <td>
2890         <ul>
2891          <li>All
2892         </ul>
2893     <td>
2894      <table>
2895       <tr><th>
2896       <tr><td>BFLOAT16
2897       <tr><td>FLOAT16
2898       <tr><td>FLOAT32
2899       <tr><td>QASYMMS8
2900       <tr><td>QASYMMU8
2901       <tr><td>QSYMMS8
2902       <tr><td>QSYMMS16
2903      </table>
2904<tr>
2905  <td>CpuAcc
2906  <td>
2907      <ul>
2908       <li>All
2909      </ul>
2910  <td>
2911    <table>
2912    <tr><th>
2913    <tr><td>QASYMMU8
2914    <tr><td>QASYMMS8
2915    <tr><td>FLOAT16
2916    <tr><td>FLOAT32
2917    </table>
2918<tr>
2919  <td>GpuAcc
2920  <td>
2921      <ul>
2922       <li>All
2923      </ul>
2924  <td>
2925    <table>
2926    <tr><th>
2927    <tr><td>QASYMMU8
2928    <tr><td>QASYMMS8
2929    <tr><td>FLOAT16
2930    <tr><td>FLOAT32
2931    </table>
2932<tr>
2933  <td rowspan="3">SpaceToBatchNdLayer
2934  <td rowspan="3" style="width:200px;"> Layer to divide spatial dimensions of the tensor into a grid of blocks and interleaves these blocks with the batch dimension.
2935  <td rowspan="3">
2936      <ul>
2937       <li>ANEURALNETWORKS_SPACE_TO_BATCH_ND
2938      </ul>
2939   <td>CpuRef
2940     <td>
2941         <ul>
2942          <li>All
2943         </ul>
2944     <td>
2945      <table>
2946       <tr><th>
2947       <tr><td>BFLOAT16
2948       <tr><td>FLOAT16
2949       <tr><td>FLOAT32
2950       <tr><td>QASYMMS8
2951       <tr><td>QASYMMU8
2952       <tr><td>QSYMMS16
2953      </table>
2954<tr>
2955  <td>CpuAcc
2956  <td>
2957      <ul>
2958       <li>NHWC
2959       <li>NCHW
2960      </ul>
2961  <td>
2962    <table>
2963    <tr><th>
2964    <tr><td>All
2965    </table>
2966<tr>
2967  <td>GpuAcc
2968  <td>
2969      <ul>
2970       <li>NHWC
2971       <li>NCHW
2972      </ul>
2973  <td>
2974    <table>
2975    <tr><th>
2976    <tr><td>All
2977    </table>
2978<tr>
2979  <td rowspan="3">SpaceToDepthLayer
2980  <td rowspan="3" style="width:200px;"> Layer to rearrange blocks of spatial data into depth.
2981  <td rowspan="3">
2982      <ul>
2983       <li>ANEURALNETWORKS_SPACE_TO_DEPTH
2984      </ul>
2985   <td>CpuRef
2986     <td>
2987         <ul>
2988          <li>All
2989         </ul>
2990     <td>
2991      <table>
2992       <tr><th>
2993       <tr><td>BFLOAT16
2994       <tr><td>FLOAT16
2995       <tr><td>FLOAT32
2996       <tr><td>QASYMMS8
2997       <tr><td>QASYMMU8
2998       <tr><td>QSYMMS16
2999      </table>
3000<tr>
3001  <td>CpuAcc
3002  <td>
3003      <ul>
3004       <li>NHWC
3005       <li>NCHW
3006      </ul>
3007  <td>
3008    <table>
3009    <tr><th>
3010    <tr><td>All
3011    </table>
3012<tr>
3013  <td>GpuAcc
3014  <td>
3015      <ul>
3016       <li>NHWC
3017       <li>NCHW
3018      </ul>
3019  <td>
3020    <table>
3021    <tr><th>
3022    <tr><td>All
3023    </table>
3024<tr>
3025  <td rowspan="3">SplitterLayer
3026  <td rowspan="3" style="width:200px;"> Layer to split a tensor along a given axis.
3027  <td rowspan="3">
3028      <ul>
3029       <li>ANEURALNETWORKS_SPLIT
3030      </ul>
3031   <td>CpuRef
3032     <td>
3033         <ul>
3034          <li>All
3035         </ul>
3036     <td>
3037      <table>
3038       <tr><th>
3039       <tr><td>BFLOAT16
3040       <tr><td>FLOAT16
3041       <tr><td>FLOAT32
3042       <tr><td>QASYMMS8
3043       <tr><td>QASYMMU8
3044       <tr><td>QSYMMS16
3045      </table>
3046<tr>
3047  <td>CpuAcc
3048  <td>
3049      <ul>
3050       <li>All
3051      </ul>
3052  <td>
3053    <table>
3054    <tr><th>
3055    <tr><td>All
3056    </table>
3057<tr>
3058  <td>GpuAcc
3059  <td>
3060      <ul>
3061       <li>All
3062      </ul>
3063  <td>
3064    <table>
3065    <tr><th>
3066    <tr><td>All
3067    </table>
3068<tr>
3069  <td rowspan="3">StackLayer
3070  <td rowspan="3" style="width:200px;"> Layer to stack tensors along an axis.
3071  <td rowspan="3">
3072      <ul>
3073       <li>N/A
3074      </ul>
3075   <td>CpuRef
3076     <td>
3077         <ul>
3078          <li>All
3079         </ul>
3080     <td>
3081      <table>
3082       <tr><th>
3083       <tr><td>BFLOAT16
3084       <tr><td>FLOAT16
3085       <tr><td>FLOAT32
3086       <tr><td>QASYMMS8
3087       <tr><td>QASYMMU8
3088       <tr><td>QSYMMS16
3089      </table>
3090<tr>
3091  <td>CpuAcc
3092  <td>
3093      <ul>
3094       <li>All
3095      </ul>
3096  <td>
3097    <table>
3098    <tr><th>
3099    <tr><td>All
3100    </table>
3101<tr>
3102  <td>GpuAcc
3103  <td>
3104      <ul>
3105       <li>All
3106      </ul>
3107  <td>
3108    <table>
3109    <tr><th>
3110    <tr><td>All
3111    </table>
3112<tr>
3113  <td rowspan="1">StandInLayer
3114  <td rowspan="1" style="width:200px;"> A layer to represent "unknown" or "unsupported" operations in the input graph. It has a configurable number of input and output slots and an optional name.
3115  <td rowspan="1">
3116      <ul>
3117       <li>N/A
3118      </ul>
3119   <td>N/A
3120   <td>N/A
3121   <td>N/A
3122<tr>
3123  <td rowspan="3">StridedSliceLayer
3124  <td rowspan="3" style="width:200px;"> Layer to extract a strided slice of a tensor.
3125  <td rowspan="3">
3126      <ul>
3127       <li>ANEURALNETWORKS_STRIDED_SLICE
3128      </ul>
3129   <td>CpuRef
3130     <td>
3131         <ul>
3132          <li>All
3133         </ul>
3134     <td>
3135      <table>
3136       <tr><th>
3137       <tr><td>BFLOAT16
3138       <tr><td>FLOAT32
3139       <tr><td>QASYMMS8
3140       <tr><td>QASYMMU8
3141       <tr><td>QSYMMS16
3142      </table>
3143<tr>
3144  <td>CpuAcc
3145  <td>
3146      <ul>
3147       <li>All
3148      </ul>
3149  <td>
3150    <table>
3151    <tr><th>
3152    <tr><td>All
3153    </table>
3154<tr>
3155  <td>GpuAcc
3156  <td>
3157      <ul>
3158       <li>All
3159      </ul>
3160  <td>
3161    <table>
3162    <tr><th>
3163    <tr><td>All
3164    </table>
3165<tr>
3166  <td rowspan="3">SubtractionLayer
3167  <td rowspan="3" style="width:200px;"> Layer to perform an elementwise subtract of 2 tensors.
3168  <td rowspan="3">
3169      <ul>
3170       <li>ANEURALNETWORKS_SUB
3171      </ul>
3172   <td>CpuRef
3173     <td>
3174         <ul>
3175          <li>All
3176         </ul>
3177     <td>
3178      <table>
3179       <tr><th>
3180       <tr><td>BFLOAT16
3181       <tr><td>FLOAT16
3182       <tr><td>FLOAT32
3183       <tr><td>QASYMMS8
3184       <tr><td>QASYMMU8
3185       <tr><td>QSYMMS16
3186       <tr><td>SIGNED32
3187      </table>
3188<tr>
3189  <td>CpuAcc
3190  <td>
3191      <ul>
3192       <li>All
3193      </ul>
3194  <td>
3195    <table>
3196    <tr><th>
3197    <tr><td>QASYMMU8
3198    <tr><td>QASYMMS8
3199    <tr><td>QSYMMS16
3200    <tr><td>SIGNED32
3201    <tr><td>FLOAT16
3202    <tr><td>FLOAT32
3203    </table>
3204<tr>
3205  <td>GpuAcc
3206  <td>
3207      <ul>
3208       <li>All
3209      </ul>
3210  <td>
3211    <table>
3212    <tr><th>
3213    <tr><td>QASYMMU8
3214    <tr><td>QASYMMS8
3215    <tr><td>QSYMMS16
3216    <tr><td>SIGNED32
3217    <tr><td>FLOAT16
3218    <tr><td>FLOAT32
3219    </table>
3220<tr>
3221  <td rowspan="3">TransposeConvolution2dLayer
3222  <td rowspan="3" style="width:200px;"> Layer to perform 2D transpose convolution (deconvolution) operation.
3223  <td rowspan="3">
3224      <ul>
3225       <li>ANEURALNETWORKS_TRANSPOSE_CONV_2D
3226      </ul>
3227   <td>CpuRef
3228     <td>
3229         <ul>
3230          <li>All
3231         </ul>
3232     <td>
3233      <table>
3234       <tr><th>
3235       <tr><td>BFLOAT16
3236       <tr><td>FLOAT16
3237       <tr><td>FLOAT32
3238       <tr><td>QASYMMS8
3239       <tr><td>QASYMMU8
3240       <tr><td>QSYMMS8
3241       <tr><td>QSYMMS16
3242      </table>
3243<tr>
3244  <td>CpuAcc
3245  <td>
3246      <ul>
3247       <li>NHWC
3248       <li>NCHW
3249      </ul>
3250  <td>
3251    <table>
3252    <tr><th>
3253    <tr><td>SIGNED32
3254    <tr><td>FLOAT16
3255    <tr><td>FLOAT32
3256    <tr><td>QASYMMU8
3257    <tr><td>QASYMMS8
3258    <tr><td>QUANTIZEDSYMM8PERAXIS
3259    </table>
3260<tr>
3261  <td>GpuAcc
3262  <td>
3263      <ul>
3264       <li>NHWC
3265       <li>NCHW
3266      </ul>
3267  <td>
3268    <table>
3269    <tr><th>
3270    <tr><td>SIGNED32
3271    <tr><td>FLOAT16
3272    <tr><td>FLOAT32
3273    <tr><td>QASYMMU8
3274    <tr><td>QASYMMS8
3275    <tr><td>QUANTIZEDSYMM8PERAXIS
3276    </table>
3277<tr>
3278  <td rowspan="3">TransposeLayer
3279  <td rowspan="3" style="width:200px;"> Layer to transpose a tensor.
3280  <td rowspan="3">
3281      <ul>
3282       <li>ANEURALNETWORKS_TRANSPOSE
3283      </ul>
3284   <td>CpuRef
3285     <td>
3286         <ul>
3287          <li>All
3288         </ul>
3289     <td>
3290      <table>
3291       <tr><th>
3292       <tr><td>BFLOAT16
3293       <tr><td>FLOAT16
3294       <tr><td>FLOAT32
3295       <tr><td>QASYMMS8
3296       <tr><td>QASYMMU8
3297       <tr><td>QSYMMS16
3298      </table>
3299<tr>
3300  <td>CpuAcc
3301  <td>
3302      <ul>
3303       <li>All
3304      </ul>
3305  <td>
3306    <table>
3307    <tr><th>
3308    <tr><td>All
3309    </table>
3310<tr>
3311  <td>GpuAcc
3312  <td>
3313      <ul>
3314       <li>All
3315      </ul>
3316  <td>
3317    <table>
3318    <tr><th>
3319    <tr><td>All
3320    </table>
3321<tr>
3322  <td rowspan="3">UnidirectionalSquenceLstmLayer
3323  <td rowspan="3" style="width:200px;"> Layer to perform unidirectional sequence LSTM operation.
3324  <td rowspan="3">
3325      <ul>
3326       <li>ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM
3327      </ul>
3328   <td>CpuRef
3329     <td>
3330         <ul>
3331          <li>All
3332         </ul>
3333     <td>
3334      <table>
3335         <tr><th>Input Types
3336         <tr><td>FLOAT32
3337      </table>
3338      <table>
3339         <tr><th>Weight Types
3340         <tr><td>FLOAT32
3341         <tr><td>QASYMMS8
3342      </table>
3343   <td>CpuAcc
3344     <td>
3345         <ul>
3346          <li>All
3347         </ul>
3348     <td>
3349      <table>
3350         <tr><th>Input Types
3351         <tr><td>FLOAT32
3352      </table>
3353      <table>
3354         <tr><th>Weight Types
3355         <tr><td>FLOAT32
3356      </table>
3357   <td>GpuAcc
3358    <td>
3359        <ul>
3360         <li>All
3361        </ul>
3362    <td>
3363     <table>
3364        <tr><th>Input Types
3365        <tr><td>FLOAT32
3366     </table>
3367     <table>
3368        <tr><th>Weight Types
3369        <tr><td>FLOAT32
3370     </table>
3371<tr>
3372  <td rowspan="3">UnmapLayer
3373  <td rowspan="3" style="width:200px;"> Layer to perform unmap operation on tensor.
3374  <td rowspan="3">
3375      <ul>
3376       <li>N/A
3377      </ul>
3378   <td>CpuRef
3379     <td>
3380         <ul>
3381          <li>All
3382         </ul>
3383     <td>
3384      <table>
3385         <tr><th>
3386         <tr><td>All
3387      </table>
3388<tr>
3389  <td>CpuAcc
3390  <td>
3391      <ul>
3392       <li>NHWC
3393       <li>NCHW
3394      </ul>
3395  <td>
3396    <table>
3397    <tr><th>
3398    <tr><td>All
3399    </table>
3400<tr>
3401  <td>GpuAcc
3402  <td>
3403      <ul>
3404       <li>NHWC
3405       <li>NCHW
3406      </ul>
3407  <td>
3408    <table>
3409    <tr><th>
3410    <tr><td>All
3411    </table>
3412</table>
3413
3414*/
3415} // namespace