1 /*
2  * Performance events x86 architecture header
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <[email protected]>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <[email protected]>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 
17 #include <asm/fpu/xstate.h>
18 #include <asm/intel_ds.h>
19 #include <asm/cpu.h>
20 
21 /* To enable MSR tracing please use the generic trace points. */
22 
23 /*
24  *          |   NHM/WSM    |      SNB     |
25  * register -------------------------------
26  *          |  HT  | no HT |  HT  | no HT |
27  *-----------------------------------------
28  * offcore  | core | core  | cpu  | core  |
29  * lbr_sel  | core | core  | cpu  | core  |
30  * ld_lat   | cpu  | core  | cpu  | core  |
31  *-----------------------------------------
32  *
33  * Given that there is a small number of shared regs,
34  * we can pre-allocate their slot in the per-cpu
35  * per-core reg tables.
36  */
37 enum extra_reg_type {
38 	EXTRA_REG_NONE		= -1, /* not used */
39 
40 	EXTRA_REG_RSP_0		= 0,  /* offcore_response_0 */
41 	EXTRA_REG_RSP_1		= 1,  /* offcore_response_1 */
42 	EXTRA_REG_LBR		= 2,  /* lbr_select */
43 	EXTRA_REG_LDLAT		= 3,  /* ld_lat_threshold */
44 	EXTRA_REG_FE		= 4,  /* fe_* */
45 	EXTRA_REG_SNOOP_0	= 5,  /* snoop response 0 */
46 	EXTRA_REG_SNOOP_1	= 6,  /* snoop response 1 */
47 
48 	EXTRA_REG_MAX		      /* number of entries needed */
49 };
50 
51 struct event_constraint {
52 	union {
53 		unsigned long	idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
54 		u64		idxmsk64;
55 	};
56 	u64		code;
57 	u64		cmask;
58 	int		weight;
59 	int		overlap;
60 	int		flags;
61 	unsigned int	size;
62 };
63 
constraint_match(struct event_constraint * c,u64 ecode)64 static inline bool constraint_match(struct event_constraint *c, u64 ecode)
65 {
66 	return ((ecode & c->cmask) - c->code) <= (u64)c->size;
67 }
68 
69 #define PERF_ARCH(name, val)	\
70 	PERF_X86_EVENT_##name = val,
71 
72 /*
73  * struct hw_perf_event.flags flags
74  */
75 enum {
76 #include "perf_event_flags.h"
77 };
78 
79 #undef PERF_ARCH
80 
81 #define PERF_ARCH(name, val)						\
82 	static_assert((PERF_X86_EVENT_##name & PERF_EVENT_FLAG_ARCH) ==	\
83 		      PERF_X86_EVENT_##name);
84 
85 #include "perf_event_flags.h"
86 
87 #undef PERF_ARCH
88 
is_topdown_count(struct perf_event * event)89 static inline bool is_topdown_count(struct perf_event *event)
90 {
91 	return event->hw.flags & PERF_X86_EVENT_TOPDOWN;
92 }
93 
is_metric_event(struct perf_event * event)94 static inline bool is_metric_event(struct perf_event *event)
95 {
96 	u64 config = event->attr.config;
97 
98 	return ((config & ARCH_PERFMON_EVENTSEL_EVENT) == 0) &&
99 		((config & INTEL_ARCH_EVENT_MASK) >= INTEL_TD_METRIC_RETIRING)  &&
100 		((config & INTEL_ARCH_EVENT_MASK) <= INTEL_TD_METRIC_MAX);
101 }
102 
is_slots_event(struct perf_event * event)103 static inline bool is_slots_event(struct perf_event *event)
104 {
105 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_TD_SLOTS;
106 }
107 
is_topdown_event(struct perf_event * event)108 static inline bool is_topdown_event(struct perf_event *event)
109 {
110 	return is_metric_event(event) || is_slots_event(event);
111 }
112 
is_branch_counters_group(struct perf_event * event)113 static inline bool is_branch_counters_group(struct perf_event *event)
114 {
115 	return event->group_leader->hw.flags & PERF_X86_EVENT_BRANCH_COUNTERS;
116 }
117 
118 struct amd_nb {
119 	int nb_id;  /* NorthBridge id */
120 	int refcnt; /* reference count */
121 	struct perf_event *owners[X86_PMC_IDX_MAX];
122 	struct event_constraint event_constraints[X86_PMC_IDX_MAX];
123 };
124 
125 #define PEBS_COUNTER_MASK	((1ULL << MAX_PEBS_EVENTS) - 1)
126 #define PEBS_PMI_AFTER_EACH_RECORD BIT_ULL(60)
127 #define PEBS_OUTPUT_OFFSET	61
128 #define PEBS_OUTPUT_MASK	(3ull << PEBS_OUTPUT_OFFSET)
129 #define PEBS_OUTPUT_PT		(1ull << PEBS_OUTPUT_OFFSET)
130 #define PEBS_VIA_PT_MASK	(PEBS_OUTPUT_PT | PEBS_PMI_AFTER_EACH_RECORD)
131 
132 /*
133  * Flags PEBS can handle without an PMI.
134  *
135  * TID can only be handled by flushing at context switch.
136  * REGS_USER can be handled for events limited to ring 3.
137  *
138  */
139 #define LARGE_PEBS_FLAGS \
140 	(PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR | \
141 	PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | \
142 	PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER | \
143 	PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR | \
144 	PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER | \
145 	PERF_SAMPLE_PERIOD | PERF_SAMPLE_CODE_PAGE_SIZE | \
146 	PERF_SAMPLE_WEIGHT_TYPE)
147 
148 #define PEBS_GP_REGS			\
149 	((1ULL << PERF_REG_X86_AX)    | \
150 	 (1ULL << PERF_REG_X86_BX)    | \
151 	 (1ULL << PERF_REG_X86_CX)    | \
152 	 (1ULL << PERF_REG_X86_DX)    | \
153 	 (1ULL << PERF_REG_X86_DI)    | \
154 	 (1ULL << PERF_REG_X86_SI)    | \
155 	 (1ULL << PERF_REG_X86_SP)    | \
156 	 (1ULL << PERF_REG_X86_BP)    | \
157 	 (1ULL << PERF_REG_X86_IP)    | \
158 	 (1ULL << PERF_REG_X86_FLAGS) | \
159 	 (1ULL << PERF_REG_X86_R8)    | \
160 	 (1ULL << PERF_REG_X86_R9)    | \
161 	 (1ULL << PERF_REG_X86_R10)   | \
162 	 (1ULL << PERF_REG_X86_R11)   | \
163 	 (1ULL << PERF_REG_X86_R12)   | \
164 	 (1ULL << PERF_REG_X86_R13)   | \
165 	 (1ULL << PERF_REG_X86_R14)   | \
166 	 (1ULL << PERF_REG_X86_R15))
167 
168 /*
169  * Per register state.
170  */
171 struct er_account {
172 	raw_spinlock_t      lock;	/* per-core: protect structure */
173 	u64                 config;	/* extra MSR config */
174 	u64                 reg;	/* extra MSR number */
175 	atomic_t            ref;	/* reference count */
176 };
177 
178 /*
179  * Per core/cpu state
180  *
181  * Used to coordinate shared registers between HT threads or
182  * among events on a single PMU.
183  */
184 struct intel_shared_regs {
185 	struct er_account       regs[EXTRA_REG_MAX];
186 	int                     refcnt;		/* per-core: #HT threads */
187 	unsigned                core_id;	/* per-core: core id */
188 };
189 
190 enum intel_excl_state_type {
191 	INTEL_EXCL_UNUSED    = 0, /* counter is unused */
192 	INTEL_EXCL_SHARED    = 1, /* counter can be used by both threads */
193 	INTEL_EXCL_EXCLUSIVE = 2, /* counter can be used by one thread only */
194 };
195 
196 struct intel_excl_states {
197 	enum intel_excl_state_type state[X86_PMC_IDX_MAX];
198 	bool sched_started; /* true if scheduling has started */
199 };
200 
201 struct intel_excl_cntrs {
202 	raw_spinlock_t	lock;
203 
204 	struct intel_excl_states states[2];
205 
206 	union {
207 		u16	has_exclusive[2];
208 		u32	exclusive_present;
209 	};
210 
211 	int		refcnt;		/* per-core: #HT threads */
212 	unsigned	core_id;	/* per-core: core id */
213 };
214 
215 struct x86_perf_task_context;
216 #define MAX_LBR_ENTRIES		32
217 
218 enum {
219 	LBR_FORMAT_32		= 0x00,
220 	LBR_FORMAT_LIP		= 0x01,
221 	LBR_FORMAT_EIP		= 0x02,
222 	LBR_FORMAT_EIP_FLAGS	= 0x03,
223 	LBR_FORMAT_EIP_FLAGS2	= 0x04,
224 	LBR_FORMAT_INFO		= 0x05,
225 	LBR_FORMAT_TIME		= 0x06,
226 	LBR_FORMAT_INFO2	= 0x07,
227 	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_INFO2,
228 };
229 
230 enum {
231 	X86_PERF_KFREE_SHARED = 0,
232 	X86_PERF_KFREE_EXCL   = 1,
233 	X86_PERF_KFREE_MAX
234 };
235 
236 struct cpu_hw_events {
237 	/*
238 	 * Generic x86 PMC bits
239 	 */
240 	struct perf_event	*events[X86_PMC_IDX_MAX]; /* in counter order */
241 	unsigned long		active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
242 	unsigned long		dirty[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
243 	int			enabled;
244 
245 	int			n_events; /* the # of events in the below arrays */
246 	int			n_added;  /* the # last events in the below arrays;
247 					     they've never been enabled yet */
248 	int			n_txn;    /* the # last events in the below arrays;
249 					     added in the current transaction */
250 	int			n_txn_pair;
251 	int			n_txn_metric;
252 	int			assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
253 	u64			tags[X86_PMC_IDX_MAX];
254 
255 	struct perf_event	*event_list[X86_PMC_IDX_MAX]; /* in enabled order */
256 	struct event_constraint	*event_constraint[X86_PMC_IDX_MAX];
257 
258 	int			n_excl; /* the number of exclusive events */
259 
260 	unsigned int		txn_flags;
261 	int			is_fake;
262 
263 	/*
264 	 * Intel DebugStore bits
265 	 */
266 	struct debug_store	*ds;
267 	void			*ds_pebs_vaddr;
268 	void			*ds_bts_vaddr;
269 	u64			pebs_enabled;
270 	int			n_pebs;
271 	int			n_large_pebs;
272 	int			n_pebs_via_pt;
273 	int			pebs_output;
274 
275 	/* Current super set of events hardware configuration */
276 	u64			pebs_data_cfg;
277 	u64			active_pebs_data_cfg;
278 	int			pebs_record_size;
279 
280 	/* Intel Fixed counter configuration */
281 	u64			fixed_ctrl_val;
282 	u64			active_fixed_ctrl_val;
283 
284 	/*
285 	 * Intel LBR bits
286 	 */
287 	int				lbr_users;
288 	int				lbr_pebs_users;
289 	struct perf_branch_stack	lbr_stack;
290 	struct perf_branch_entry	lbr_entries[MAX_LBR_ENTRIES];
291 	u64				lbr_counters[MAX_LBR_ENTRIES]; /* branch stack extra */
292 	union {
293 		struct er_account		*lbr_sel;
294 		struct er_account		*lbr_ctl;
295 	};
296 	u64				br_sel;
297 	void				*last_task_ctx;
298 	int				last_log_id;
299 	int				lbr_select;
300 	void				*lbr_xsave;
301 
302 	/*
303 	 * Intel host/guest exclude bits
304 	 */
305 	u64				intel_ctrl_guest_mask;
306 	u64				intel_ctrl_host_mask;
307 	struct perf_guest_switch_msr	guest_switch_msrs[X86_PMC_IDX_MAX];
308 
309 	/*
310 	 * Intel checkpoint mask
311 	 */
312 	u64				intel_cp_status;
313 
314 	/*
315 	 * manage shared (per-core, per-cpu) registers
316 	 * used on Intel NHM/WSM/SNB
317 	 */
318 	struct intel_shared_regs	*shared_regs;
319 	/*
320 	 * manage exclusive counter access between hyperthread
321 	 */
322 	struct event_constraint *constraint_list; /* in enable order */
323 	struct intel_excl_cntrs		*excl_cntrs;
324 	int excl_thread_id; /* 0 or 1 */
325 
326 	/*
327 	 * SKL TSX_FORCE_ABORT shadow
328 	 */
329 	u64				tfa_shadow;
330 
331 	/*
332 	 * Perf Metrics
333 	 */
334 	/* number of accepted metrics events */
335 	int				n_metric;
336 
337 	/*
338 	 * AMD specific bits
339 	 */
340 	struct amd_nb			*amd_nb;
341 	int				brs_active; /* BRS is enabled */
342 
343 	/* Inverted mask of bits to clear in the perf_ctr ctrl registers */
344 	u64				perf_ctr_virt_mask;
345 	int				n_pair; /* Large increment events */
346 
347 	void				*kfree_on_online[X86_PERF_KFREE_MAX];
348 
349 	struct pmu			*pmu;
350 };
351 
352 #define __EVENT_CONSTRAINT_RANGE(c, e, n, m, w, o, f) {	\
353 	{ .idxmsk64 = (n) },		\
354 	.code = (c),			\
355 	.size = (e) - (c),		\
356 	.cmask = (m),			\
357 	.weight = (w),			\
358 	.overlap = (o),			\
359 	.flags = f,			\
360 }
361 
362 #define __EVENT_CONSTRAINT(c, n, m, w, o, f) \
363 	__EVENT_CONSTRAINT_RANGE(c, c, n, m, w, o, f)
364 
365 #define EVENT_CONSTRAINT(c, n, m)	\
366 	__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 0, 0)
367 
368 /*
369  * The constraint_match() function only works for 'simple' event codes
370  * and not for extended (AMD64_EVENTSEL_EVENT) events codes.
371  */
372 #define EVENT_CONSTRAINT_RANGE(c, e, n, m) \
373 	__EVENT_CONSTRAINT_RANGE(c, e, n, m, HWEIGHT(n), 0, 0)
374 
375 #define INTEL_EXCLEVT_CONSTRAINT(c, n)	\
376 	__EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT, HWEIGHT(n),\
377 			   0, PERF_X86_EVENT_EXCL)
378 
379 /*
380  * The overlap flag marks event constraints with overlapping counter
381  * masks. This is the case if the counter mask of such an event is not
382  * a subset of any other counter mask of a constraint with an equal or
383  * higher weight, e.g.:
384  *
385  *  c_overlaps = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
386  *  c_another1 = EVENT_CONSTRAINT(0, 0x07, 0);
387  *  c_another2 = EVENT_CONSTRAINT(0, 0x38, 0);
388  *
389  * The event scheduler may not select the correct counter in the first
390  * cycle because it needs to know which subsequent events will be
391  * scheduled. It may fail to schedule the events then. So we set the
392  * overlap flag for such constraints to give the scheduler a hint which
393  * events to select for counter rescheduling.
394  *
395  * Care must be taken as the rescheduling algorithm is O(n!) which
396  * will increase scheduling cycles for an over-committed system
397  * dramatically.  The number of such EVENT_CONSTRAINT_OVERLAP() macros
398  * and its counter masks must be kept at a minimum.
399  */
400 #define EVENT_CONSTRAINT_OVERLAP(c, n, m)	\
401 	__EVENT_CONSTRAINT(c, n, m, HWEIGHT(n), 1, 0)
402 
403 /*
404  * Constraint on the Event code.
405  */
406 #define INTEL_EVENT_CONSTRAINT(c, n)	\
407 	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
408 
409 /*
410  * Constraint on a range of Event codes
411  */
412 #define INTEL_EVENT_CONSTRAINT_RANGE(c, e, n)			\
413 	EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT)
414 
415 /*
416  * Constraint on the Event code + UMask + fixed-mask
417  *
418  * filter mask to validate fixed counter events.
419  * the following filters disqualify for fixed counters:
420  *  - inv
421  *  - edge
422  *  - cnt-mask
423  *  - in_tx
424  *  - in_tx_checkpointed
425  *  The other filters are supported by fixed counters.
426  *  The any-thread option is supported starting with v3.
427  */
428 #define FIXED_EVENT_FLAGS (X86_RAW_EVENT_MASK|HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)
429 #define FIXED_EVENT_CONSTRAINT(c, n)	\
430 	EVENT_CONSTRAINT(c, (1ULL << (32+n)), FIXED_EVENT_FLAGS)
431 
432 /*
433  * The special metric counters do not actually exist. They are calculated from
434  * the combination of the FxCtr3 + MSR_PERF_METRICS.
435  *
436  * The special metric counters are mapped to a dummy offset for the scheduler.
437  * The sharing between multiple users of the same metric without multiplexing
438  * is not allowed, even though the hardware supports that in principle.
439  */
440 
441 #define METRIC_EVENT_CONSTRAINT(c, n)					\
442 	EVENT_CONSTRAINT(c, (1ULL << (INTEL_PMC_IDX_METRIC_BASE + n)),	\
443 			 INTEL_ARCH_EVENT_MASK)
444 
445 /*
446  * Constraint on the Event code + UMask
447  */
448 #define INTEL_UEVENT_CONSTRAINT(c, n)	\
449 	EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
450 
451 /* Constraint on specific umask bit only + event */
452 #define INTEL_UBIT_EVENT_CONSTRAINT(c, n)	\
453 	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|(c))
454 
455 /* Like UEVENT_CONSTRAINT, but match flags too */
456 #define INTEL_FLAGS_UEVENT_CONSTRAINT(c, n)	\
457 	EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS)
458 
459 #define INTEL_EXCLUEVT_CONSTRAINT(c, n)	\
460 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK, \
461 			   HWEIGHT(n), 0, PERF_X86_EVENT_EXCL)
462 
463 #define INTEL_PLD_CONSTRAINT(c, n)	\
464 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
465 			   HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LDLAT)
466 
467 #define INTEL_PSD_CONSTRAINT(c, n)	\
468 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
469 			   HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_STLAT)
470 
471 #define INTEL_PST_CONSTRAINT(c, n)	\
472 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
473 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST)
474 
475 #define INTEL_HYBRID_LAT_CONSTRAINT(c, n)	\
476 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
477 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID)
478 
479 #define INTEL_HYBRID_LDLAT_CONSTRAINT(c, n)	\
480 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
481 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID|PERF_X86_EVENT_PEBS_LD_HSW)
482 
483 #define INTEL_HYBRID_STLAT_CONSTRAINT(c, n)	\
484 	__EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
485 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LAT_HYBRID|PERF_X86_EVENT_PEBS_ST_HSW)
486 
487 /* Event constraint, but match on all event flags too. */
488 #define INTEL_FLAGS_EVENT_CONSTRAINT(c, n) \
489 	EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS)
490 
491 #define INTEL_FLAGS_EVENT_CONSTRAINT_RANGE(c, e, n)			\
492 	EVENT_CONSTRAINT_RANGE(c, e, n, ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS)
493 
494 /* Check only flags, but allow all event/umask */
495 #define INTEL_ALL_EVENT_CONSTRAINT(code, n)	\
496 	EVENT_CONSTRAINT(code, n, X86_ALL_EVENT_FLAGS)
497 
498 /* Check flags and event code, and set the HSW store flag */
499 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_ST(code, n) \
500 	__EVENT_CONSTRAINT(code, n, 			\
501 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
502 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
503 
504 /* Check flags and event code, and set the HSW load flag */
505 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(code, n) \
506 	__EVENT_CONSTRAINT(code, n,			\
507 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
508 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
509 
510 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(code, end, n) \
511 	__EVENT_CONSTRAINT_RANGE(code, end, n,				\
512 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
513 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
514 
515 #define INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(code, n) \
516 	__EVENT_CONSTRAINT(code, n,			\
517 			  ARCH_PERFMON_EVENTSEL_EVENT|X86_ALL_EVENT_FLAGS, \
518 			  HWEIGHT(n), 0, \
519 			  PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL)
520 
521 /* Check flags and event code/umask, and set the HSW store flag */
522 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(code, n) \
523 	__EVENT_CONSTRAINT(code, n, 			\
524 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
525 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_ST_HSW)
526 
527 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(code, n) \
528 	__EVENT_CONSTRAINT(code, n,			\
529 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
530 			  HWEIGHT(n), 0, \
531 			  PERF_X86_EVENT_PEBS_ST_HSW|PERF_X86_EVENT_EXCL)
532 
533 /* Check flags and event code/umask, and set the HSW load flag */
534 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(code, n) \
535 	__EVENT_CONSTRAINT(code, n, 			\
536 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
537 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_LD_HSW)
538 
539 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(code, n) \
540 	__EVENT_CONSTRAINT(code, n,			\
541 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
542 			  HWEIGHT(n), 0, \
543 			  PERF_X86_EVENT_PEBS_LD_HSW|PERF_X86_EVENT_EXCL)
544 
545 /* Check flags and event code/umask, and set the HSW N/A flag */
546 #define INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(code, n) \
547 	__EVENT_CONSTRAINT(code, n, 			\
548 			  INTEL_ARCH_EVENT_MASK|X86_ALL_EVENT_FLAGS, \
549 			  HWEIGHT(n), 0, PERF_X86_EVENT_PEBS_NA_HSW)
550 
551 
552 /*
553  * We define the end marker as having a weight of -1
554  * to enable blacklisting of events using a counter bitmask
555  * of zero and thus a weight of zero.
556  * The end marker has a weight that cannot possibly be
557  * obtained from counting the bits in the bitmask.
558  */
559 #define EVENT_CONSTRAINT_END { .weight = -1 }
560 
561 /*
562  * Check for end marker with weight == -1
563  */
564 #define for_each_event_constraint(e, c)	\
565 	for ((e) = (c); (e)->weight != -1; (e)++)
566 
567 /*
568  * Extra registers for specific events.
569  *
570  * Some events need large masks and require external MSRs.
571  * Those extra MSRs end up being shared for all events on
572  * a PMU and sometimes between PMU of sibling HT threads.
573  * In either case, the kernel needs to handle conflicting
574  * accesses to those extra, shared, regs. The data structure
575  * to manage those registers is stored in cpu_hw_event.
576  */
577 struct extra_reg {
578 	unsigned int		event;
579 	unsigned int		msr;
580 	u64			config_mask;
581 	u64			valid_mask;
582 	int			idx;  /* per_xxx->regs[] reg index */
583 	bool			extra_msr_access;
584 };
585 
586 #define EVENT_EXTRA_REG(e, ms, m, vm, i) {	\
587 	.event = (e),			\
588 	.msr = (ms),			\
589 	.config_mask = (m),		\
590 	.valid_mask = (vm),		\
591 	.idx = EXTRA_REG_##i,		\
592 	.extra_msr_access = true,	\
593 	}
594 
595 #define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx)	\
596 	EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx)
597 
598 #define INTEL_UEVENT_EXTRA_REG(event, msr, vm, idx) \
599 	EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT | \
600 			ARCH_PERFMON_EVENTSEL_UMASK, vm, idx)
601 
602 #define INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(c) \
603 	INTEL_UEVENT_EXTRA_REG(c, \
604 			       MSR_PEBS_LD_LAT_THRESHOLD, \
605 			       0xffff, \
606 			       LDLAT)
607 
608 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0)
609 
610 union perf_capabilities {
611 	struct {
612 		u64	lbr_format:6;
613 		u64	pebs_trap:1;
614 		u64	pebs_arch_reg:1;
615 		u64	pebs_format:4;
616 		u64	smm_freeze:1;
617 		/*
618 		 * PMU supports separate counter range for writing
619 		 * values > 32bit.
620 		 */
621 		u64	full_width_write:1;
622 		u64     pebs_baseline:1;
623 		u64	perf_metrics:1;
624 		u64	pebs_output_pt_available:1;
625 		u64	pebs_timing_info:1;
626 		u64	anythread_deprecated:1;
627 		u64	rdpmc_metrics_clear:1;
628 	};
629 	u64	capabilities;
630 };
631 
632 struct x86_pmu_quirk {
633 	struct x86_pmu_quirk *next;
634 	void (*func)(void);
635 };
636 
637 union x86_pmu_config {
638 	struct {
639 		u64 event:8,
640 		    umask:8,
641 		    usr:1,
642 		    os:1,
643 		    edge:1,
644 		    pc:1,
645 		    interrupt:1,
646 		    __reserved1:1,
647 		    en:1,
648 		    inv:1,
649 		    cmask:8,
650 		    event2:4,
651 		    __reserved2:4,
652 		    go:1,
653 		    ho:1;
654 	} bits;
655 	u64 value;
656 };
657 
658 #define X86_CONFIG(args...) ((union x86_pmu_config){.bits = {args}}).value
659 
660 enum {
661 	x86_lbr_exclusive_lbr,
662 	x86_lbr_exclusive_bts,
663 	x86_lbr_exclusive_pt,
664 	x86_lbr_exclusive_max,
665 };
666 
667 #define PERF_PEBS_DATA_SOURCE_MAX	0x100
668 #define PERF_PEBS_DATA_SOURCE_MASK	(PERF_PEBS_DATA_SOURCE_MAX - 1)
669 #define PERF_PEBS_DATA_SOURCE_GRT_MAX	0x10
670 #define PERF_PEBS_DATA_SOURCE_GRT_MASK	(PERF_PEBS_DATA_SOURCE_GRT_MAX - 1)
671 
672 /*
673  * CPUID.1AH.EAX[31:0] uniquely identifies the microarchitecture
674  * of the core. Bits 31-24 indicates its core type (Core or Atom)
675  * and Bits [23:0] indicates the native model ID of the core.
676  * Core type and native model ID are defined in below enumerations.
677  */
678 enum hybrid_cpu_type {
679 	HYBRID_INTEL_NONE,
680 	HYBRID_INTEL_ATOM	= 0x20,
681 	HYBRID_INTEL_CORE	= 0x40,
682 };
683 
684 #define X86_HYBRID_PMU_ATOM_IDX		0
685 #define X86_HYBRID_PMU_CORE_IDX		1
686 #define X86_HYBRID_PMU_TINY_IDX		2
687 
688 enum hybrid_pmu_type {
689 	not_hybrid,
690 	hybrid_small		= BIT(X86_HYBRID_PMU_ATOM_IDX),
691 	hybrid_big		= BIT(X86_HYBRID_PMU_CORE_IDX),
692 	hybrid_tiny		= BIT(X86_HYBRID_PMU_TINY_IDX),
693 
694 	/* The belows are only used for matching */
695 	hybrid_big_small	= hybrid_big   | hybrid_small,
696 	hybrid_small_tiny	= hybrid_small | hybrid_tiny,
697 	hybrid_big_small_tiny	= hybrid_big   | hybrid_small_tiny,
698 };
699 
700 enum atom_native_id {
701 	cmt_native_id           = 0x2,  /* Crestmont */
702 	skt_native_id           = 0x3,  /* Skymont */
703 };
704 
705 struct x86_hybrid_pmu {
706 	struct pmu			pmu;
707 	const char			*name;
708 	enum hybrid_pmu_type		pmu_type;
709 	cpumask_t			supported_cpus;
710 	union perf_capabilities		intel_cap;
711 	u64				intel_ctrl;
712 	u64				pebs_events_mask;
713 	u64				config_mask;
714 	union {
715 			u64		cntr_mask64;
716 			unsigned long	cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
717 	};
718 	union {
719 			u64		fixed_cntr_mask64;
720 			unsigned long	fixed_cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
721 	};
722 	struct event_constraint		unconstrained;
723 
724 	u64				hw_cache_event_ids
725 					[PERF_COUNT_HW_CACHE_MAX]
726 					[PERF_COUNT_HW_CACHE_OP_MAX]
727 					[PERF_COUNT_HW_CACHE_RESULT_MAX];
728 	u64				hw_cache_extra_regs
729 					[PERF_COUNT_HW_CACHE_MAX]
730 					[PERF_COUNT_HW_CACHE_OP_MAX]
731 					[PERF_COUNT_HW_CACHE_RESULT_MAX];
732 	struct event_constraint		*event_constraints;
733 	struct event_constraint		*pebs_constraints;
734 	struct extra_reg		*extra_regs;
735 
736 	unsigned int			late_ack	:1,
737 					mid_ack		:1,
738 					enabled_ack	:1;
739 
740 	u64				pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX];
741 };
742 
hybrid_pmu(struct pmu * pmu)743 static __always_inline struct x86_hybrid_pmu *hybrid_pmu(struct pmu *pmu)
744 {
745 	return container_of(pmu, struct x86_hybrid_pmu, pmu);
746 }
747 
748 extern struct static_key_false perf_is_hybrid;
749 #define is_hybrid()		static_branch_unlikely(&perf_is_hybrid)
750 
751 #define hybrid(_pmu, _field)				\
752 (*({							\
753 	typeof(&x86_pmu._field) __Fp = &x86_pmu._field;	\
754 							\
755 	if (is_hybrid() && (_pmu))			\
756 		__Fp = &hybrid_pmu(_pmu)->_field;	\
757 							\
758 	__Fp;						\
759 }))
760 
761 #define hybrid_var(_pmu, _var)				\
762 (*({							\
763 	typeof(&_var) __Fp = &_var;			\
764 							\
765 	if (is_hybrid() && (_pmu))			\
766 		__Fp = &hybrid_pmu(_pmu)->_var;		\
767 							\
768 	__Fp;						\
769 }))
770 
771 #define hybrid_bit(_pmu, _field)			\
772 ({							\
773 	bool __Fp = x86_pmu._field;			\
774 							\
775 	if (is_hybrid() && (_pmu))			\
776 		__Fp = hybrid_pmu(_pmu)->_field;	\
777 							\
778 	__Fp;						\
779 })
780 
781 /*
782  * struct x86_pmu - generic x86 pmu
783  */
784 struct x86_pmu {
785 	/*
786 	 * Generic x86 PMC bits
787 	 */
788 	const char	*name;
789 	int		version;
790 	int		(*handle_irq)(struct pt_regs *);
791 	void		(*disable_all)(void);
792 	void		(*enable_all)(int added);
793 	void		(*enable)(struct perf_event *);
794 	void		(*disable)(struct perf_event *);
795 	void		(*assign)(struct perf_event *event, int idx);
796 	void		(*add)(struct perf_event *);
797 	void		(*del)(struct perf_event *);
798 	void		(*read)(struct perf_event *event);
799 	int		(*set_period)(struct perf_event *event);
800 	u64		(*update)(struct perf_event *event);
801 	int		(*hw_config)(struct perf_event *event);
802 	int		(*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
803 	unsigned	eventsel;
804 	unsigned	perfctr;
805 	unsigned	fixedctr;
806 	int		(*addr_offset)(int index, bool eventsel);
807 	int		(*rdpmc_index)(int index);
808 	u64		(*event_map)(int);
809 	int		max_events;
810 	u64		config_mask;
811 	union {
812 			u64		cntr_mask64;
813 			unsigned long	cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
814 	};
815 	union {
816 			u64		fixed_cntr_mask64;
817 			unsigned long	fixed_cntr_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
818 	};
819 	int		cntval_bits;
820 	u64		cntval_mask;
821 	union {
822 			unsigned long events_maskl;
823 			unsigned long events_mask[BITS_TO_LONGS(ARCH_PERFMON_EVENTS_COUNT)];
824 	};
825 	int		events_mask_len;
826 	int		apic;
827 	u64		max_period;
828 	struct event_constraint *
829 			(*get_event_constraints)(struct cpu_hw_events *cpuc,
830 						 int idx,
831 						 struct perf_event *event);
832 
833 	void		(*put_event_constraints)(struct cpu_hw_events *cpuc,
834 						 struct perf_event *event);
835 
836 	void		(*start_scheduling)(struct cpu_hw_events *cpuc);
837 
838 	void		(*commit_scheduling)(struct cpu_hw_events *cpuc, int idx, int cntr);
839 
840 	void		(*stop_scheduling)(struct cpu_hw_events *cpuc);
841 
842 	struct event_constraint *event_constraints;
843 	struct x86_pmu_quirk *quirks;
844 	void		(*limit_period)(struct perf_event *event, s64 *l);
845 
846 	/* PMI handler bits */
847 	unsigned int	late_ack		:1,
848 			mid_ack			:1,
849 			enabled_ack		:1;
850 	/*
851 	 * sysfs attrs
852 	 */
853 	int		attr_rdpmc_broken;
854 	int		attr_rdpmc;
855 	struct attribute **format_attrs;
856 
857 	ssize_t		(*events_sysfs_show)(char *page, u64 config);
858 	const struct attribute_group **attr_update;
859 
860 	unsigned long	attr_freeze_on_smi;
861 
862 	/*
863 	 * CPU Hotplug hooks
864 	 */
865 	int		(*cpu_prepare)(int cpu);
866 	void		(*cpu_starting)(int cpu);
867 	void		(*cpu_dying)(int cpu);
868 	void		(*cpu_dead)(int cpu);
869 
870 	void		(*check_microcode)(void);
871 	void		(*sched_task)(struct perf_event_pmu_context *pmu_ctx,
872 				      struct task_struct *task, bool sched_in);
873 
874 	/*
875 	 * Intel Arch Perfmon v2+
876 	 */
877 	u64			intel_ctrl;
878 	union perf_capabilities intel_cap;
879 
880 	/*
881 	 * Intel DebugStore bits
882 	 */
883 	unsigned int	bts			:1,
884 			bts_active		:1,
885 			pebs			:1,
886 			pebs_active		:1,
887 			pebs_broken		:1,
888 			pebs_prec_dist		:1,
889 			pebs_no_tlb		:1,
890 			pebs_no_isolation	:1,
891 			pebs_block		:1,
892 			pebs_ept		:1;
893 	int		pebs_record_size;
894 	int		pebs_buffer_size;
895 	u64		pebs_events_mask;
896 	void		(*drain_pebs)(struct pt_regs *regs, struct perf_sample_data *data);
897 	struct event_constraint *pebs_constraints;
898 	void		(*pebs_aliases)(struct perf_event *event);
899 	u64		(*pebs_latency_data)(struct perf_event *event, u64 status);
900 	unsigned long	large_pebs_flags;
901 	u64		rtm_abort_event;
902 	u64		pebs_capable;
903 
904 	/*
905 	 * Intel LBR
906 	 */
907 	unsigned int	lbr_tos, lbr_from, lbr_to,
908 			lbr_info, lbr_nr;	   /* LBR base regs and size */
909 	union {
910 		u64	lbr_sel_mask;		   /* LBR_SELECT valid bits */
911 		u64	lbr_ctl_mask;		   /* LBR_CTL valid bits */
912 	};
913 	union {
914 		const int	*lbr_sel_map;	   /* lbr_select mappings */
915 		int		*lbr_ctl_map;	   /* LBR_CTL mappings */
916 	};
917 	u64		lbr_callstack_users;	   /* lbr callstack system wide users */
918 	bool		lbr_double_abort;	   /* duplicated lbr aborts */
919 	bool		lbr_pt_coexist;		   /* (LBR|BTS) may coexist with PT */
920 
921 	unsigned int	lbr_has_info:1;
922 	unsigned int	lbr_has_tsx:1;
923 	unsigned int	lbr_from_flags:1;
924 	unsigned int	lbr_to_cycles:1;
925 
926 	/*
927 	 * Intel Architectural LBR CPUID Enumeration
928 	 */
929 	unsigned int	lbr_depth_mask:8;
930 	unsigned int	lbr_deep_c_reset:1;
931 	unsigned int	lbr_lip:1;
932 	unsigned int	lbr_cpl:1;
933 	unsigned int	lbr_filter:1;
934 	unsigned int	lbr_call_stack:1;
935 	unsigned int	lbr_mispred:1;
936 	unsigned int	lbr_timed_lbr:1;
937 	unsigned int	lbr_br_type:1;
938 	unsigned int	lbr_counters:4;
939 
940 	void		(*lbr_reset)(void);
941 	void		(*lbr_read)(struct cpu_hw_events *cpuc);
942 	void		(*lbr_save)(void *ctx);
943 	void		(*lbr_restore)(void *ctx);
944 
945 	/*
946 	 * Intel PT/LBR/BTS are exclusive
947 	 */
948 	atomic_t	lbr_exclusive[x86_lbr_exclusive_max];
949 
950 	/*
951 	 * Intel perf metrics
952 	 */
953 	int		num_topdown_events;
954 
955 	/*
956 	 * perf task context (i.e. struct perf_event_pmu_context::task_ctx_data)
957 	 * switch helper to bridge calls from perf/core to perf/x86.
958 	 * See struct pmu::swap_task_ctx() usage for examples;
959 	 */
960 	void		(*swap_task_ctx)(struct perf_event_pmu_context *prev_epc,
961 					 struct perf_event_pmu_context *next_epc);
962 
963 	/*
964 	 * AMD bits
965 	 */
966 	unsigned int	amd_nb_constraints : 1;
967 	u64		perf_ctr_pair_en;
968 
969 	/*
970 	 * Extra registers for events
971 	 */
972 	struct extra_reg *extra_regs;
973 	unsigned int flags;
974 
975 	/*
976 	 * Intel host/guest support (KVM)
977 	 */
978 	struct perf_guest_switch_msr *(*guest_get_msrs)(int *nr, void *data);
979 
980 	/*
981 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
982 	 */
983 	int (*check_period) (struct perf_event *event, u64 period);
984 
985 	int (*aux_output_match) (struct perf_event *event);
986 
987 	void (*filter)(struct pmu *pmu, int cpu, bool *ret);
988 	/*
989 	 * Hybrid support
990 	 *
991 	 * Most PMU capabilities are the same among different hybrid PMUs.
992 	 * The global x86_pmu saves the architecture capabilities, which
993 	 * are available for all PMUs. The hybrid_pmu only includes the
994 	 * unique capabilities.
995 	 */
996 	int				num_hybrid_pmus;
997 	struct x86_hybrid_pmu		*hybrid_pmu;
998 	enum hybrid_cpu_type (*get_hybrid_cpu_type)	(void);
999 };
1000 
1001 struct x86_perf_task_context_opt {
1002 	int lbr_callstack_users;
1003 	int lbr_stack_state;
1004 	int log_id;
1005 };
1006 
1007 struct x86_perf_task_context {
1008 	u64 lbr_sel;
1009 	int tos;
1010 	int valid_lbrs;
1011 	struct x86_perf_task_context_opt opt;
1012 	struct lbr_entry lbr[MAX_LBR_ENTRIES];
1013 };
1014 
1015 struct x86_perf_task_context_arch_lbr {
1016 	struct x86_perf_task_context_opt opt;
1017 	struct lbr_entry entries[];
1018 };
1019 
1020 /*
1021  * Add padding to guarantee the 64-byte alignment of the state buffer.
1022  *
1023  * The structure is dynamically allocated. The size of the LBR state may vary
1024  * based on the number of LBR registers.
1025  *
1026  * Do not put anything after the LBR state.
1027  */
1028 struct x86_perf_task_context_arch_lbr_xsave {
1029 	struct x86_perf_task_context_opt		opt;
1030 
1031 	union {
1032 		struct xregs_state			xsave;
1033 		struct {
1034 			struct fxregs_state		i387;
1035 			struct xstate_header		header;
1036 			struct arch_lbr_state		lbr;
1037 		} __attribute__ ((packed, aligned (XSAVE_ALIGNMENT)));
1038 	};
1039 };
1040 
1041 #define x86_add_quirk(func_)						\
1042 do {									\
1043 	static struct x86_pmu_quirk __quirk __initdata = {		\
1044 		.func = func_,						\
1045 	};								\
1046 	__quirk.next = x86_pmu.quirks;					\
1047 	x86_pmu.quirks = &__quirk;					\
1048 } while (0)
1049 
1050 /*
1051  * x86_pmu flags
1052  */
1053 #define PMU_FL_NO_HT_SHARING	0x1 /* no hyper-threading resource sharing */
1054 #define PMU_FL_HAS_RSP_1	0x2 /* has 2 equivalent offcore_rsp regs   */
1055 #define PMU_FL_EXCL_CNTRS	0x4 /* has exclusive counter requirements  */
1056 #define PMU_FL_EXCL_ENABLED	0x8 /* exclusive counter active */
1057 #define PMU_FL_PEBS_ALL		0x10 /* all events are valid PEBS events */
1058 #define PMU_FL_TFA		0x20 /* deal with TSX force abort */
1059 #define PMU_FL_PAIR		0x40 /* merge counters for large incr. events */
1060 #define PMU_FL_INSTR_LATENCY	0x80 /* Support Instruction Latency in PEBS Memory Info Record */
1061 #define PMU_FL_MEM_LOADS_AUX	0x100 /* Require an auxiliary event for the complete memory info */
1062 #define PMU_FL_RETIRE_LATENCY	0x200 /* Support Retire Latency in PEBS */
1063 #define PMU_FL_BR_CNTR		0x400 /* Support branch counter logging */
1064 
1065 #define EVENT_VAR(_id)  event_attr_##_id
1066 #define EVENT_PTR(_id) &event_attr_##_id.attr.attr
1067 
1068 #define EVENT_ATTR(_name, _id)						\
1069 static struct perf_pmu_events_attr EVENT_VAR(_id) = {			\
1070 	.attr		= __ATTR(_name, 0444, events_sysfs_show, NULL),	\
1071 	.id		= PERF_COUNT_HW_##_id,				\
1072 	.event_str	= NULL,						\
1073 };
1074 
1075 #define EVENT_ATTR_STR(_name, v, str)					\
1076 static struct perf_pmu_events_attr event_attr_##v = {			\
1077 	.attr		= __ATTR(_name, 0444, events_sysfs_show, NULL),	\
1078 	.id		= 0,						\
1079 	.event_str	= str,						\
1080 };
1081 
1082 #define EVENT_ATTR_STR_HT(_name, v, noht, ht)				\
1083 static struct perf_pmu_events_ht_attr event_attr_##v = {		\
1084 	.attr		= __ATTR(_name, 0444, events_ht_sysfs_show, NULL),\
1085 	.id		= 0,						\
1086 	.event_str_noht	= noht,						\
1087 	.event_str_ht	= ht,						\
1088 }
1089 
1090 #define EVENT_ATTR_STR_HYBRID(_name, v, str, _pmu)			\
1091 static struct perf_pmu_events_hybrid_attr event_attr_##v = {		\
1092 	.attr		= __ATTR(_name, 0444, events_hybrid_sysfs_show, NULL),\
1093 	.id		= 0,						\
1094 	.event_str	= str,						\
1095 	.pmu_type	= _pmu,						\
1096 }
1097 
1098 #define FORMAT_HYBRID_PTR(_id) (&format_attr_hybrid_##_id.attr.attr)
1099 
1100 #define FORMAT_ATTR_HYBRID(_name, _pmu)					\
1101 static struct perf_pmu_format_hybrid_attr format_attr_hybrid_##_name = {\
1102 	.attr		= __ATTR_RO(_name),				\
1103 	.pmu_type	= _pmu,						\
1104 }
1105 
1106 struct pmu *x86_get_pmu(unsigned int cpu);
1107 extern struct x86_pmu x86_pmu __read_mostly;
1108 
1109 DECLARE_STATIC_CALL(x86_pmu_set_period, *x86_pmu.set_period);
1110 DECLARE_STATIC_CALL(x86_pmu_update,     *x86_pmu.update);
1111 DECLARE_STATIC_CALL(x86_pmu_drain_pebs,	*x86_pmu.drain_pebs);
1112 
task_context_opt(void * ctx)1113 static __always_inline struct x86_perf_task_context_opt *task_context_opt(void *ctx)
1114 {
1115 	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
1116 		return &((struct x86_perf_task_context_arch_lbr *)ctx)->opt;
1117 
1118 	return &((struct x86_perf_task_context *)ctx)->opt;
1119 }
1120 
x86_pmu_has_lbr_callstack(void)1121 static inline bool x86_pmu_has_lbr_callstack(void)
1122 {
1123 	return  x86_pmu.lbr_sel_map &&
1124 		x86_pmu.lbr_sel_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] > 0;
1125 }
1126 
1127 DECLARE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
1128 DECLARE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1129 
1130 int x86_perf_event_set_period(struct perf_event *event);
1131 
1132 /*
1133  * Generalized hw caching related hw_event table, filled
1134  * in on a per model basis. A value of 0 means
1135  * 'not supported', -1 means 'hw_event makes no sense on
1136  * this CPU', any other value means the raw hw_event
1137  * ID.
1138  */
1139 
1140 #define C(x) PERF_COUNT_HW_CACHE_##x
1141 
1142 extern u64 __read_mostly hw_cache_event_ids
1143 				[PERF_COUNT_HW_CACHE_MAX]
1144 				[PERF_COUNT_HW_CACHE_OP_MAX]
1145 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
1146 extern u64 __read_mostly hw_cache_extra_regs
1147 				[PERF_COUNT_HW_CACHE_MAX]
1148 				[PERF_COUNT_HW_CACHE_OP_MAX]
1149 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
1150 
1151 u64 x86_perf_event_update(struct perf_event *event);
1152 
x86_pmu_config_addr(int index)1153 static inline unsigned int x86_pmu_config_addr(int index)
1154 {
1155 	return x86_pmu.eventsel + (x86_pmu.addr_offset ?
1156 				   x86_pmu.addr_offset(index, true) : index);
1157 }
1158 
x86_pmu_event_addr(int index)1159 static inline unsigned int x86_pmu_event_addr(int index)
1160 {
1161 	return x86_pmu.perfctr + (x86_pmu.addr_offset ?
1162 				  x86_pmu.addr_offset(index, false) : index);
1163 }
1164 
x86_pmu_fixed_ctr_addr(int index)1165 static inline unsigned int x86_pmu_fixed_ctr_addr(int index)
1166 {
1167 	return x86_pmu.fixedctr + (x86_pmu.addr_offset ?
1168 				   x86_pmu.addr_offset(index, false) : index);
1169 }
1170 
x86_pmu_rdpmc_index(int index)1171 static inline int x86_pmu_rdpmc_index(int index)
1172 {
1173 	return x86_pmu.rdpmc_index ? x86_pmu.rdpmc_index(index) : index;
1174 }
1175 
1176 bool check_hw_exists(struct pmu *pmu, unsigned long *cntr_mask,
1177 		     unsigned long *fixed_cntr_mask);
1178 
1179 int x86_add_exclusive(unsigned int what);
1180 
1181 void x86_del_exclusive(unsigned int what);
1182 
1183 int x86_reserve_hardware(void);
1184 
1185 void x86_release_hardware(void);
1186 
1187 int x86_pmu_max_precise(void);
1188 
1189 void hw_perf_lbr_event_destroy(struct perf_event *event);
1190 
1191 int x86_setup_perfctr(struct perf_event *event);
1192 
1193 int x86_pmu_hw_config(struct perf_event *event);
1194 
1195 void x86_pmu_disable_all(void);
1196 
has_amd_brs(struct hw_perf_event * hwc)1197 static inline bool has_amd_brs(struct hw_perf_event *hwc)
1198 {
1199 	return hwc->flags & PERF_X86_EVENT_AMD_BRS;
1200 }
1201 
is_counter_pair(struct hw_perf_event * hwc)1202 static inline bool is_counter_pair(struct hw_perf_event *hwc)
1203 {
1204 	return hwc->flags & PERF_X86_EVENT_PAIR;
1205 }
1206 
__x86_pmu_enable_event(struct hw_perf_event * hwc,u64 enable_mask)1207 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
1208 					  u64 enable_mask)
1209 {
1210 	u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask);
1211 
1212 	if (hwc->extra_reg.reg)
1213 		wrmsrl(hwc->extra_reg.reg, hwc->extra_reg.config);
1214 
1215 	/*
1216 	 * Add enabled Merge event on next counter
1217 	 * if large increment event being enabled on this counter
1218 	 */
1219 	if (is_counter_pair(hwc))
1220 		wrmsrl(x86_pmu_config_addr(hwc->idx + 1), x86_pmu.perf_ctr_pair_en);
1221 
1222 	wrmsrl(hwc->config_base, (hwc->config | enable_mask) & ~disable_mask);
1223 }
1224 
1225 void x86_pmu_enable_all(int added);
1226 
1227 int perf_assign_events(struct event_constraint **constraints, int n,
1228 			int wmin, int wmax, int gpmax, int *assign);
1229 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign);
1230 
1231 void x86_pmu_stop(struct perf_event *event, int flags);
1232 
x86_pmu_disable_event(struct perf_event * event)1233 static inline void x86_pmu_disable_event(struct perf_event *event)
1234 {
1235 	u64 disable_mask = __this_cpu_read(cpu_hw_events.perf_ctr_virt_mask);
1236 	struct hw_perf_event *hwc = &event->hw;
1237 
1238 	wrmsrl(hwc->config_base, hwc->config & ~disable_mask);
1239 
1240 	if (is_counter_pair(hwc))
1241 		wrmsrl(x86_pmu_config_addr(hwc->idx + 1), 0);
1242 }
1243 
1244 void x86_pmu_enable_event(struct perf_event *event);
1245 
1246 int x86_pmu_handle_irq(struct pt_regs *regs);
1247 
1248 void x86_pmu_show_pmu_cap(struct pmu *pmu);
1249 
x86_pmu_num_counters(struct pmu * pmu)1250 static inline int x86_pmu_num_counters(struct pmu *pmu)
1251 {
1252 	return hweight64(hybrid(pmu, cntr_mask64));
1253 }
1254 
x86_pmu_max_num_counters(struct pmu * pmu)1255 static inline int x86_pmu_max_num_counters(struct pmu *pmu)
1256 {
1257 	return fls64(hybrid(pmu, cntr_mask64));
1258 }
1259 
x86_pmu_num_counters_fixed(struct pmu * pmu)1260 static inline int x86_pmu_num_counters_fixed(struct pmu *pmu)
1261 {
1262 	return hweight64(hybrid(pmu, fixed_cntr_mask64));
1263 }
1264 
x86_pmu_max_num_counters_fixed(struct pmu * pmu)1265 static inline int x86_pmu_max_num_counters_fixed(struct pmu *pmu)
1266 {
1267 	return fls64(hybrid(pmu, fixed_cntr_mask64));
1268 }
1269 
x86_pmu_get_event_config(struct perf_event * event)1270 static inline u64 x86_pmu_get_event_config(struct perf_event *event)
1271 {
1272 	return event->attr.config & hybrid(event->pmu, config_mask);
1273 }
1274 
1275 extern struct event_constraint emptyconstraint;
1276 
1277 extern struct event_constraint unconstrained;
1278 
kernel_ip(unsigned long ip)1279 static inline bool kernel_ip(unsigned long ip)
1280 {
1281 #ifdef CONFIG_X86_32
1282 	return ip > PAGE_OFFSET;
1283 #else
1284 	return (long)ip < 0;
1285 #endif
1286 }
1287 
1288 /*
1289  * Not all PMUs provide the right context information to place the reported IP
1290  * into full context. Specifically segment registers are typically not
1291  * supplied.
1292  *
1293  * Assuming the address is a linear address (it is for IBS), we fake the CS and
1294  * vm86 mode using the known zero-based code segment and 'fix up' the registers
1295  * to reflect this.
1296  *
1297  * Intel PEBS/LBR appear to typically provide the effective address, nothing
1298  * much we can do about that but pray and treat it like a linear address.
1299  */
set_linear_ip(struct pt_regs * regs,unsigned long ip)1300 static inline void set_linear_ip(struct pt_regs *regs, unsigned long ip)
1301 {
1302 	regs->cs = kernel_ip(ip) ? __KERNEL_CS : __USER_CS;
1303 	if (regs->flags & X86_VM_MASK)
1304 		regs->flags ^= (PERF_EFLAGS_VM | X86_VM_MASK);
1305 	regs->ip = ip;
1306 }
1307 
1308 /*
1309  * x86control flow change classification
1310  * x86control flow changes include branches, interrupts, traps, faults
1311  */
1312 enum {
1313 	X86_BR_NONE		= 0,      /* unknown */
1314 
1315 	X86_BR_USER		= 1 << 0, /* branch target is user */
1316 	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */
1317 
1318 	X86_BR_CALL		= 1 << 2, /* call */
1319 	X86_BR_RET		= 1 << 3, /* return */
1320 	X86_BR_SYSCALL		= 1 << 4, /* syscall */
1321 	X86_BR_SYSRET		= 1 << 5, /* syscall return */
1322 	X86_BR_INT		= 1 << 6, /* sw interrupt */
1323 	X86_BR_IRET		= 1 << 7, /* return from interrupt */
1324 	X86_BR_JCC		= 1 << 8, /* conditional */
1325 	X86_BR_JMP		= 1 << 9, /* jump */
1326 	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
1327 	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
1328 	X86_BR_ABORT		= 1 << 12,/* transaction abort */
1329 	X86_BR_IN_TX		= 1 << 13,/* in transaction */
1330 	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
1331 	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
1332 	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
1333 	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
1334 
1335 	X86_BR_TYPE_SAVE	= 1 << 18,/* indicate to save branch type */
1336 
1337 };
1338 
1339 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
1340 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
1341 
1342 #define X86_BR_ANY       \
1343 	(X86_BR_CALL    |\
1344 	 X86_BR_RET     |\
1345 	 X86_BR_SYSCALL |\
1346 	 X86_BR_SYSRET  |\
1347 	 X86_BR_INT     |\
1348 	 X86_BR_IRET    |\
1349 	 X86_BR_JCC     |\
1350 	 X86_BR_JMP	 |\
1351 	 X86_BR_IRQ	 |\
1352 	 X86_BR_ABORT	 |\
1353 	 X86_BR_IND_CALL |\
1354 	 X86_BR_IND_JMP  |\
1355 	 X86_BR_ZERO_CALL)
1356 
1357 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
1358 
1359 #define X86_BR_ANY_CALL		 \
1360 	(X86_BR_CALL		|\
1361 	 X86_BR_IND_CALL	|\
1362 	 X86_BR_ZERO_CALL	|\
1363 	 X86_BR_SYSCALL		|\
1364 	 X86_BR_IRQ		|\
1365 	 X86_BR_INT)
1366 
1367 int common_branch_type(int type);
1368 int branch_type(unsigned long from, unsigned long to, int abort);
1369 int branch_type_fused(unsigned long from, unsigned long to, int abort,
1370 		      int *offset);
1371 
1372 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event);
1373 ssize_t intel_event_sysfs_show(char *page, u64 config);
1374 
1375 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1376 			  char *page);
1377 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1378 			  char *page);
1379 ssize_t events_hybrid_sysfs_show(struct device *dev,
1380 				 struct device_attribute *attr,
1381 				 char *page);
1382 
fixed_counter_disabled(int i,struct pmu * pmu)1383 static inline bool fixed_counter_disabled(int i, struct pmu *pmu)
1384 {
1385 	u64 intel_ctrl = hybrid(pmu, intel_ctrl);
1386 
1387 	return !(intel_ctrl >> (i + INTEL_PMC_IDX_FIXED));
1388 }
1389 
1390 #ifdef CONFIG_CPU_SUP_AMD
1391 
1392 int amd_pmu_init(void);
1393 
1394 int amd_pmu_lbr_init(void);
1395 void amd_pmu_lbr_reset(void);
1396 void amd_pmu_lbr_read(void);
1397 void amd_pmu_lbr_add(struct perf_event *event);
1398 void amd_pmu_lbr_del(struct perf_event *event);
1399 void amd_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx,
1400 			    struct task_struct *task, bool sched_in);
1401 void amd_pmu_lbr_enable_all(void);
1402 void amd_pmu_lbr_disable_all(void);
1403 int amd_pmu_lbr_hw_config(struct perf_event *event);
1404 
__amd_pmu_lbr_disable(void)1405 static __always_inline void __amd_pmu_lbr_disable(void)
1406 {
1407 	u64 dbg_ctl, dbg_extn_cfg;
1408 
1409 	rdmsrl(MSR_AMD_DBG_EXTN_CFG, dbg_extn_cfg);
1410 	wrmsrl(MSR_AMD_DBG_EXTN_CFG, dbg_extn_cfg & ~DBG_EXTN_CFG_LBRV2EN);
1411 
1412 	if (cpu_feature_enabled(X86_FEATURE_AMD_LBR_PMC_FREEZE)) {
1413 		rdmsrl(MSR_IA32_DEBUGCTLMSR, dbg_ctl);
1414 		wrmsrl(MSR_IA32_DEBUGCTLMSR, dbg_ctl & ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
1415 	}
1416 }
1417 
1418 #ifdef CONFIG_PERF_EVENTS_AMD_BRS
1419 
1420 #define AMD_FAM19H_BRS_EVENT 0xc4 /* RETIRED_TAKEN_BRANCH_INSTRUCTIONS */
1421 
1422 int amd_brs_init(void);
1423 void amd_brs_disable(void);
1424 void amd_brs_enable(void);
1425 void amd_brs_enable_all(void);
1426 void amd_brs_disable_all(void);
1427 void amd_brs_drain(void);
1428 void amd_brs_lopwr_init(void);
1429 int amd_brs_hw_config(struct perf_event *event);
1430 void amd_brs_reset(void);
1431 
amd_pmu_brs_add(struct perf_event * event)1432 static inline void amd_pmu_brs_add(struct perf_event *event)
1433 {
1434 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1435 
1436 	perf_sched_cb_inc(event->pmu);
1437 	cpuc->lbr_users++;
1438 	/*
1439 	 * No need to reset BRS because it is reset
1440 	 * on brs_enable() and it is saturating
1441 	 */
1442 }
1443 
amd_pmu_brs_del(struct perf_event * event)1444 static inline void amd_pmu_brs_del(struct perf_event *event)
1445 {
1446 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1447 
1448 	cpuc->lbr_users--;
1449 	WARN_ON_ONCE(cpuc->lbr_users < 0);
1450 
1451 	perf_sched_cb_dec(event->pmu);
1452 }
1453 
1454 void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx,
1455 			    struct task_struct *task, bool sched_in);
1456 #else
amd_brs_init(void)1457 static inline int amd_brs_init(void)
1458 {
1459 	return 0;
1460 }
amd_brs_disable(void)1461 static inline void amd_brs_disable(void) {}
amd_brs_enable(void)1462 static inline void amd_brs_enable(void) {}
amd_brs_drain(void)1463 static inline void amd_brs_drain(void) {}
amd_brs_lopwr_init(void)1464 static inline void amd_brs_lopwr_init(void) {}
amd_brs_disable_all(void)1465 static inline void amd_brs_disable_all(void) {}
amd_brs_hw_config(struct perf_event * event)1466 static inline int amd_brs_hw_config(struct perf_event *event)
1467 {
1468 	return 0;
1469 }
amd_brs_reset(void)1470 static inline void amd_brs_reset(void) {}
1471 
amd_pmu_brs_add(struct perf_event * event)1472 static inline void amd_pmu_brs_add(struct perf_event *event)
1473 {
1474 }
1475 
amd_pmu_brs_del(struct perf_event * event)1476 static inline void amd_pmu_brs_del(struct perf_event *event)
1477 {
1478 }
1479 
amd_pmu_brs_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)1480 static inline void amd_pmu_brs_sched_task(struct perf_event_pmu_context *pmu_ctx,
1481 					  struct task_struct *task, bool sched_in)
1482 {
1483 }
1484 
amd_brs_enable_all(void)1485 static inline void amd_brs_enable_all(void)
1486 {
1487 }
1488 
1489 #endif
1490 
1491 #else /* CONFIG_CPU_SUP_AMD */
1492 
amd_pmu_init(void)1493 static inline int amd_pmu_init(void)
1494 {
1495 	return 0;
1496 }
1497 
amd_brs_init(void)1498 static inline int amd_brs_init(void)
1499 {
1500 	return -EOPNOTSUPP;
1501 }
1502 
amd_brs_drain(void)1503 static inline void amd_brs_drain(void)
1504 {
1505 }
1506 
amd_brs_enable_all(void)1507 static inline void amd_brs_enable_all(void)
1508 {
1509 }
1510 
amd_brs_disable_all(void)1511 static inline void amd_brs_disable_all(void)
1512 {
1513 }
1514 #endif /* CONFIG_CPU_SUP_AMD */
1515 
is_pebs_pt(struct perf_event * event)1516 static inline int is_pebs_pt(struct perf_event *event)
1517 {
1518 	return !!(event->hw.flags & PERF_X86_EVENT_PEBS_VIA_PT);
1519 }
1520 
1521 #ifdef CONFIG_CPU_SUP_INTEL
1522 
intel_pmu_has_bts_period(struct perf_event * event,u64 period)1523 static inline bool intel_pmu_has_bts_period(struct perf_event *event, u64 period)
1524 {
1525 	struct hw_perf_event *hwc = &event->hw;
1526 	unsigned int hw_event, bts_event;
1527 
1528 	if (event->attr.freq)
1529 		return false;
1530 
1531 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1532 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1533 
1534 	return hw_event == bts_event && period == 1;
1535 }
1536 
intel_pmu_has_bts(struct perf_event * event)1537 static inline bool intel_pmu_has_bts(struct perf_event *event)
1538 {
1539 	struct hw_perf_event *hwc = &event->hw;
1540 
1541 	return intel_pmu_has_bts_period(event, hwc->sample_period);
1542 }
1543 
__intel_pmu_pebs_disable_all(void)1544 static __always_inline void __intel_pmu_pebs_disable_all(void)
1545 {
1546 	wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1547 }
1548 
__intel_pmu_arch_lbr_disable(void)1549 static __always_inline void __intel_pmu_arch_lbr_disable(void)
1550 {
1551 	wrmsrl(MSR_ARCH_LBR_CTL, 0);
1552 }
1553 
__intel_pmu_lbr_disable(void)1554 static __always_inline void __intel_pmu_lbr_disable(void)
1555 {
1556 	u64 debugctl;
1557 
1558 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1559 	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
1560 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1561 }
1562 
1563 int intel_pmu_save_and_restart(struct perf_event *event);
1564 
1565 struct event_constraint *
1566 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
1567 			  struct perf_event *event);
1568 
1569 extern int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu);
1570 extern void intel_cpuc_finish(struct cpu_hw_events *cpuc);
1571 
1572 int intel_pmu_init(void);
1573 
1574 void init_debug_store_on_cpu(int cpu);
1575 
1576 void fini_debug_store_on_cpu(int cpu);
1577 
1578 void release_ds_buffers(void);
1579 
1580 void reserve_ds_buffers(void);
1581 
1582 void release_lbr_buffers(void);
1583 
1584 void reserve_lbr_buffers(void);
1585 
1586 extern struct event_constraint bts_constraint;
1587 extern struct event_constraint vlbr_constraint;
1588 
1589 void intel_pmu_enable_bts(u64 config);
1590 
1591 void intel_pmu_disable_bts(void);
1592 
1593 int intel_pmu_drain_bts_buffer(void);
1594 
1595 u64 grt_latency_data(struct perf_event *event, u64 status);
1596 
1597 u64 cmt_latency_data(struct perf_event *event, u64 status);
1598 
1599 u64 lnl_latency_data(struct perf_event *event, u64 status);
1600 
1601 u64 arl_h_latency_data(struct perf_event *event, u64 status);
1602 
1603 extern struct event_constraint intel_core2_pebs_event_constraints[];
1604 
1605 extern struct event_constraint intel_atom_pebs_event_constraints[];
1606 
1607 extern struct event_constraint intel_slm_pebs_event_constraints[];
1608 
1609 extern struct event_constraint intel_glm_pebs_event_constraints[];
1610 
1611 extern struct event_constraint intel_glp_pebs_event_constraints[];
1612 
1613 extern struct event_constraint intel_grt_pebs_event_constraints[];
1614 
1615 extern struct event_constraint intel_nehalem_pebs_event_constraints[];
1616 
1617 extern struct event_constraint intel_westmere_pebs_event_constraints[];
1618 
1619 extern struct event_constraint intel_snb_pebs_event_constraints[];
1620 
1621 extern struct event_constraint intel_ivb_pebs_event_constraints[];
1622 
1623 extern struct event_constraint intel_hsw_pebs_event_constraints[];
1624 
1625 extern struct event_constraint intel_bdw_pebs_event_constraints[];
1626 
1627 extern struct event_constraint intel_skl_pebs_event_constraints[];
1628 
1629 extern struct event_constraint intel_icl_pebs_event_constraints[];
1630 
1631 extern struct event_constraint intel_glc_pebs_event_constraints[];
1632 
1633 extern struct event_constraint intel_lnc_pebs_event_constraints[];
1634 
1635 struct event_constraint *intel_pebs_constraints(struct perf_event *event);
1636 
1637 void intel_pmu_pebs_add(struct perf_event *event);
1638 
1639 void intel_pmu_pebs_del(struct perf_event *event);
1640 
1641 void intel_pmu_pebs_enable(struct perf_event *event);
1642 
1643 void intel_pmu_pebs_disable(struct perf_event *event);
1644 
1645 void intel_pmu_pebs_enable_all(void);
1646 
1647 void intel_pmu_pebs_disable_all(void);
1648 
1649 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in);
1650 
1651 void intel_pmu_drain_pebs_buffer(void);
1652 
1653 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr);
1654 
1655 void intel_ds_init(void);
1656 
1657 void intel_pmu_lbr_save_brstack(struct perf_sample_data *data,
1658 				struct cpu_hw_events *cpuc,
1659 				struct perf_event *event);
1660 
1661 void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
1662 				 struct perf_event_pmu_context *next_epc);
1663 
1664 void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx,
1665 			      struct task_struct *task, bool sched_in);
1666 
1667 u64 lbr_from_signext_quirk_wr(u64 val);
1668 
1669 void intel_pmu_lbr_reset(void);
1670 
1671 void intel_pmu_lbr_reset_32(void);
1672 
1673 void intel_pmu_lbr_reset_64(void);
1674 
1675 void intel_pmu_lbr_add(struct perf_event *event);
1676 
1677 void intel_pmu_lbr_del(struct perf_event *event);
1678 
1679 void intel_pmu_lbr_enable_all(bool pmi);
1680 
1681 void intel_pmu_lbr_disable_all(void);
1682 
1683 void intel_pmu_lbr_read(void);
1684 
1685 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc);
1686 
1687 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc);
1688 
1689 void intel_pmu_lbr_save(void *ctx);
1690 
1691 void intel_pmu_lbr_restore(void *ctx);
1692 
1693 void intel_pmu_lbr_init_core(void);
1694 
1695 void intel_pmu_lbr_init_nhm(void);
1696 
1697 void intel_pmu_lbr_init_atom(void);
1698 
1699 void intel_pmu_lbr_init_slm(void);
1700 
1701 void intel_pmu_lbr_init_snb(void);
1702 
1703 void intel_pmu_lbr_init_hsw(void);
1704 
1705 void intel_pmu_lbr_init_skl(void);
1706 
1707 void intel_pmu_lbr_init_knl(void);
1708 
1709 void intel_pmu_lbr_init(void);
1710 
1711 void intel_pmu_arch_lbr_init(void);
1712 
1713 void intel_pmu_pebs_data_source_nhm(void);
1714 
1715 void intel_pmu_pebs_data_source_skl(bool pmem);
1716 
1717 void intel_pmu_pebs_data_source_adl(void);
1718 
1719 void intel_pmu_pebs_data_source_grt(void);
1720 
1721 void intel_pmu_pebs_data_source_mtl(void);
1722 
1723 void intel_pmu_pebs_data_source_arl_h(void);
1724 
1725 void intel_pmu_pebs_data_source_cmt(void);
1726 
1727 void intel_pmu_pebs_data_source_lnl(void);
1728 
1729 int intel_pmu_setup_lbr_filter(struct perf_event *event);
1730 
1731 void intel_pt_interrupt(void);
1732 
1733 int intel_bts_interrupt(void);
1734 
1735 void intel_bts_enable_local(void);
1736 
1737 void intel_bts_disable_local(void);
1738 
1739 int p4_pmu_init(void);
1740 
1741 int p6_pmu_init(void);
1742 
1743 int knc_pmu_init(void);
1744 
is_ht_workaround_enabled(void)1745 static inline int is_ht_workaround_enabled(void)
1746 {
1747 	return !!(x86_pmu.flags & PMU_FL_EXCL_ENABLED);
1748 }
1749 
intel_pmu_pebs_mask(u64 cntr_mask)1750 static inline u64 intel_pmu_pebs_mask(u64 cntr_mask)
1751 {
1752 	return MAX_PEBS_EVENTS_MASK & cntr_mask;
1753 }
1754 
intel_pmu_max_num_pebs(struct pmu * pmu)1755 static inline int intel_pmu_max_num_pebs(struct pmu *pmu)
1756 {
1757 	static_assert(MAX_PEBS_EVENTS == 32);
1758 	return fls((u32)hybrid(pmu, pebs_events_mask));
1759 }
1760 
1761 #else /* CONFIG_CPU_SUP_INTEL */
1762 
reserve_ds_buffers(void)1763 static inline void reserve_ds_buffers(void)
1764 {
1765 }
1766 
release_ds_buffers(void)1767 static inline void release_ds_buffers(void)
1768 {
1769 }
1770 
release_lbr_buffers(void)1771 static inline void release_lbr_buffers(void)
1772 {
1773 }
1774 
reserve_lbr_buffers(void)1775 static inline void reserve_lbr_buffers(void)
1776 {
1777 }
1778 
intel_pmu_init(void)1779 static inline int intel_pmu_init(void)
1780 {
1781 	return 0;
1782 }
1783 
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)1784 static inline int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
1785 {
1786 	return 0;
1787 }
1788 
intel_cpuc_finish(struct cpu_hw_events * cpuc)1789 static inline void intel_cpuc_finish(struct cpu_hw_events *cpuc)
1790 {
1791 }
1792 
is_ht_workaround_enabled(void)1793 static inline int is_ht_workaround_enabled(void)
1794 {
1795 	return 0;
1796 }
1797 #endif /* CONFIG_CPU_SUP_INTEL */
1798 
1799 #if ((defined CONFIG_CPU_SUP_CENTAUR) || (defined CONFIG_CPU_SUP_ZHAOXIN))
1800 int zhaoxin_pmu_init(void);
1801 #else
zhaoxin_pmu_init(void)1802 static inline int zhaoxin_pmu_init(void)
1803 {
1804 	return 0;
1805 }
1806 #endif /*CONFIG_CPU_SUP_CENTAUR or CONFIG_CPU_SUP_ZHAOXIN*/
1807