xref: /aosp_15_r20/external/cronet/third_party/rust/chromium_crates_io/vendor/ryu-1.0.17/src/f2s.rs (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 // Translated from C to Rust. The original C code can be found at
2 // https://github.com/ulfjack/ryu and carries the following license:
3 //
4 // Copyright 2018 Ulf Adams
5 //
6 // The contents of this file may be used under the terms of the Apache License,
7 // Version 2.0.
8 //
9 //    (See accompanying file LICENSE-Apache or copy at
10 //     http://www.apache.org/licenses/LICENSE-2.0)
11 //
12 // Alternatively, the contents of this file may be used under the terms of
13 // the Boost Software License, Version 1.0.
14 //    (See accompanying file LICENSE-Boost or copy at
15 //     https://www.boost.org/LICENSE_1_0.txt)
16 //
17 // Unless required by applicable law or agreed to in writing, this software
18 // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
19 // KIND, either express or implied.
20 
21 use crate::common::{log10_pow2, log10_pow5, pow5bits};
22 use crate::f2s_intrinsics::{
23     mul_pow5_div_pow2, mul_pow5_inv_div_pow2, multiple_of_power_of_2_32, multiple_of_power_of_5_32,
24 };
25 
26 pub const FLOAT_MANTISSA_BITS: u32 = 23;
27 pub const FLOAT_EXPONENT_BITS: u32 = 8;
28 const FLOAT_BIAS: i32 = 127;
29 pub use crate::f2s_intrinsics::{FLOAT_POW5_BITCOUNT, FLOAT_POW5_INV_BITCOUNT};
30 
31 // A floating decimal representing m * 10^e.
32 pub struct FloatingDecimal32 {
33     pub mantissa: u32,
34     // Decimal exponent's range is -45 to 38
35     // inclusive, and can fit in i16 if needed.
36     pub exponent: i32,
37 }
38 
39 #[cfg_attr(feature = "no-panic", inline)]
f2d(ieee_mantissa: u32, ieee_exponent: u32) -> FloatingDecimal3240 pub fn f2d(ieee_mantissa: u32, ieee_exponent: u32) -> FloatingDecimal32 {
41     let (e2, m2) = if ieee_exponent == 0 {
42         (
43             // We subtract 2 so that the bounds computation has 2 additional bits.
44             1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2,
45             ieee_mantissa,
46         )
47     } else {
48         (
49             ieee_exponent as i32 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2,
50             (1u32 << FLOAT_MANTISSA_BITS) | ieee_mantissa,
51         )
52     };
53     let even = (m2 & 1) == 0;
54     let accept_bounds = even;
55 
56     // Step 2: Determine the interval of valid decimal representations.
57     let mv = 4 * m2;
58     let mp = 4 * m2 + 2;
59     // Implicit bool -> int conversion. True is 1, false is 0.
60     let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32;
61     let mm = 4 * m2 - 1 - mm_shift;
62 
63     // Step 3: Convert to a decimal power base using 64-bit arithmetic.
64     let mut vr: u32;
65     let mut vp: u32;
66     let mut vm: u32;
67     let e10: i32;
68     let mut vm_is_trailing_zeros = false;
69     let mut vr_is_trailing_zeros = false;
70     let mut last_removed_digit = 0u8;
71     if e2 >= 0 {
72         let q = log10_pow2(e2);
73         e10 = q as i32;
74         let k = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32) - 1;
75         let i = -e2 + q as i32 + k;
76         vr = mul_pow5_inv_div_pow2(mv, q, i);
77         vp = mul_pow5_inv_div_pow2(mp, q, i);
78         vm = mul_pow5_inv_div_pow2(mm, q, i);
79         if q != 0 && (vp - 1) / 10 <= vm / 10 {
80             // We need to know one removed digit even if we are not going to loop below. We could use
81             // q = X - 1 above, except that would require 33 bits for the result, and we've found that
82             // 32-bit arithmetic is faster even on 64-bit machines.
83             let l = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32 - 1) - 1;
84             last_removed_digit =
85                 (mul_pow5_inv_div_pow2(mv, q - 1, -e2 + q as i32 - 1 + l) % 10) as u8;
86         }
87         if q <= 9 {
88             // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well.
89             // Only one of mp, mv, and mm can be a multiple of 5, if any.
90             if mv % 5 == 0 {
91                 vr_is_trailing_zeros = multiple_of_power_of_5_32(mv, q);
92             } else if accept_bounds {
93                 vm_is_trailing_zeros = multiple_of_power_of_5_32(mm, q);
94             } else {
95                 vp -= multiple_of_power_of_5_32(mp, q) as u32;
96             }
97         }
98     } else {
99         let q = log10_pow5(-e2);
100         e10 = q as i32 + e2;
101         let i = -e2 - q as i32;
102         let k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
103         let mut j = q as i32 - k;
104         vr = mul_pow5_div_pow2(mv, i as u32, j);
105         vp = mul_pow5_div_pow2(mp, i as u32, j);
106         vm = mul_pow5_div_pow2(mm, i as u32, j);
107         if q != 0 && (vp - 1) / 10 <= vm / 10 {
108             j = q as i32 - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
109             last_removed_digit = (mul_pow5_div_pow2(mv, (i + 1) as u32, j) % 10) as u8;
110         }
111         if q <= 1 {
112             // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
113             // mv = 4 * m2, so it always has at least two trailing 0 bits.
114             vr_is_trailing_zeros = true;
115             if accept_bounds {
116                 // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1.
117                 vm_is_trailing_zeros = mm_shift == 1;
118             } else {
119                 // mp = mv + 2, so it always has at least one trailing 0 bit.
120                 vp -= 1;
121             }
122         } else if q < 31 {
123             // TODO(ulfjack): Use a tighter bound here.
124             vr_is_trailing_zeros = multiple_of_power_of_2_32(mv, q - 1);
125         }
126     }
127 
128     // Step 4: Find the shortest decimal representation in the interval of valid representations.
129     let mut removed = 0i32;
130     let output = if vm_is_trailing_zeros || vr_is_trailing_zeros {
131         // General case, which happens rarely (~4.0%).
132         while vp / 10 > vm / 10 {
133             vm_is_trailing_zeros &= vm - (vm / 10) * 10 == 0;
134             vr_is_trailing_zeros &= last_removed_digit == 0;
135             last_removed_digit = (vr % 10) as u8;
136             vr /= 10;
137             vp /= 10;
138             vm /= 10;
139             removed += 1;
140         }
141         if vm_is_trailing_zeros {
142             while vm % 10 == 0 {
143                 vr_is_trailing_zeros &= last_removed_digit == 0;
144                 last_removed_digit = (vr % 10) as u8;
145                 vr /= 10;
146                 vp /= 10;
147                 vm /= 10;
148                 removed += 1;
149             }
150         }
151         if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 {
152             // Round even if the exact number is .....50..0.
153             last_removed_digit = 4;
154         }
155         // We need to take vr + 1 if vr is outside bounds or we need to round up.
156         vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5)
157             as u32
158     } else {
159         // Specialized for the common case (~96.0%). Percentages below are relative to this.
160         // Loop iterations below (approximately):
161         // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
162         while vp / 10 > vm / 10 {
163             last_removed_digit = (vr % 10) as u8;
164             vr /= 10;
165             vp /= 10;
166             vm /= 10;
167             removed += 1;
168         }
169         // We need to take vr + 1 if vr is outside bounds or we need to round up.
170         vr + (vr == vm || last_removed_digit >= 5) as u32
171     };
172     let exp = e10 + removed;
173 
174     FloatingDecimal32 {
175         exponent: exp,
176         mantissa: output,
177     }
178 }
179