xref: /aosp_15_r20/external/cronet/third_party/rust/chromium_crates_io/vendor/regex-1.10.4/src/regex/bytes.rs (revision 6777b5387eb2ff775bb5750e3f5d96f37fb7352b)
1 use alloc::{borrow::Cow, string::String, sync::Arc, vec::Vec};
2 
3 use regex_automata::{meta, util::captures, Input, PatternID};
4 
5 use crate::{bytes::RegexBuilder, error::Error};
6 
7 /// A compiled regular expression for searching Unicode haystacks.
8 ///
9 /// A `Regex` can be used to search haystacks, split haystacks into substrings
10 /// or replace substrings in a haystack with a different substring. All
11 /// searching is done with an implicit `(?s:.)*?` at the beginning and end of
12 /// an pattern. To force an expression to match the whole string (or a prefix
13 /// or a suffix), you must use an anchor like `^` or `$` (or `\A` and `\z`).
14 ///
15 /// Like the `Regex` type in the parent module, matches with this regex return
16 /// byte offsets into the haystack. **Unlike** the parent `Regex` type, these
17 /// byte offsets may not correspond to UTF-8 sequence boundaries since the
18 /// regexes in this module can match arbitrary bytes.
19 ///
20 /// The only methods that allocate new byte strings are the string replacement
21 /// methods. All other methods (searching and splitting) return borrowed
22 /// references into the haystack given.
23 ///
24 /// # Example
25 ///
26 /// Find the offsets of a US phone number:
27 ///
28 /// ```
29 /// use regex::bytes::Regex;
30 ///
31 /// let re = Regex::new("[0-9]{3}-[0-9]{3}-[0-9]{4}").unwrap();
32 /// let m = re.find(b"phone: 111-222-3333").unwrap();
33 /// assert_eq!(7..19, m.range());
34 /// ```
35 ///
36 /// # Example: extracting capture groups
37 ///
38 /// A common way to use regexes is with capture groups. That is, instead of
39 /// just looking for matches of an entire regex, parentheses are used to create
40 /// groups that represent part of the match.
41 ///
42 /// For example, consider a haystack with multiple lines, and each line has
43 /// three whitespace delimited fields where the second field is expected to be
44 /// a number and the third field a boolean. To make this convenient, we use
45 /// the [`Captures::extract`] API to put the strings that match each group
46 /// into a fixed size array:
47 ///
48 /// ```
49 /// use regex::bytes::Regex;
50 ///
51 /// let hay = b"
52 /// rabbit         54 true
53 /// groundhog 2 true
54 /// does not match
55 /// fox   109    false
56 /// ";
57 /// let re = Regex::new(r"(?m)^\s*(\S+)\s+([0-9]+)\s+(true|false)\s*$").unwrap();
58 /// let mut fields: Vec<(&[u8], i64, bool)> = vec![];
59 /// for (_, [f1, f2, f3]) in re.captures_iter(hay).map(|caps| caps.extract()) {
60 ///     // These unwraps are OK because our pattern is written in a way where
61 ///     // all matches for f2 and f3 will be valid UTF-8.
62 ///     let f2 = std::str::from_utf8(f2).unwrap();
63 ///     let f3 = std::str::from_utf8(f3).unwrap();
64 ///     fields.push((f1, f2.parse()?, f3.parse()?));
65 /// }
66 /// assert_eq!(fields, vec![
67 ///     (&b"rabbit"[..], 54, true),
68 ///     (&b"groundhog"[..], 2, true),
69 ///     (&b"fox"[..], 109, false),
70 /// ]);
71 ///
72 /// # Ok::<(), Box<dyn std::error::Error>>(())
73 /// ```
74 ///
75 /// # Example: matching invalid UTF-8
76 ///
77 /// One of the reasons for searching `&[u8]` haystacks is that the `&[u8]`
78 /// might not be valid UTF-8. Indeed, with a `bytes::Regex`, patterns that
79 /// match invalid UTF-8 are explicitly allowed. Here's one example that looks
80 /// for valid UTF-8 fields that might be separated by invalid UTF-8. In this
81 /// case, we use `(?s-u:.)`, which matches any byte. Attempting to use it in a
82 /// top-level `Regex` will result in the regex failing to compile. Notice also
83 /// that we use `.` with Unicode mode enabled, in which case, only valid UTF-8
84 /// is matched. In this way, we can build one pattern where some parts only
85 /// match valid UTF-8 while other parts are more permissive.
86 ///
87 /// ```
88 /// use regex::bytes::Regex;
89 ///
90 /// // F0 9F 92 A9 is the UTF-8 encoding for a Pile of Poo.
91 /// let hay = b"\xFF\xFFfoo\xFF\xFF\xFF\xF0\x9F\x92\xA9\xFF";
92 /// // An equivalent to '(?s-u:.)' is '(?-u:[\x00-\xFF])'.
93 /// let re = Regex::new(r"(?s)(?-u:.)*?(?<f1>.+)(?-u:.)*?(?<f2>.+)").unwrap();
94 /// let caps = re.captures(hay).unwrap();
95 /// assert_eq!(&caps["f1"], &b"foo"[..]);
96 /// assert_eq!(&caps["f2"], "��".as_bytes());
97 /// ```
98 #[derive(Clone)]
99 pub struct Regex {
100     pub(crate) meta: meta::Regex,
101     pub(crate) pattern: Arc<str>,
102 }
103 
104 impl core::fmt::Display for Regex {
105     /// Shows the original regular expression.
fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result106     fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
107         write!(f, "{}", self.as_str())
108     }
109 }
110 
111 impl core::fmt::Debug for Regex {
112     /// Shows the original regular expression.
fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result113     fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
114         f.debug_tuple("Regex").field(&self.as_str()).finish()
115     }
116 }
117 
118 impl core::str::FromStr for Regex {
119     type Err = Error;
120 
121     /// Attempts to parse a string into a regular expression
from_str(s: &str) -> Result<Regex, Error>122     fn from_str(s: &str) -> Result<Regex, Error> {
123         Regex::new(s)
124     }
125 }
126 
127 impl TryFrom<&str> for Regex {
128     type Error = Error;
129 
130     /// Attempts to parse a string into a regular expression
try_from(s: &str) -> Result<Regex, Error>131     fn try_from(s: &str) -> Result<Regex, Error> {
132         Regex::new(s)
133     }
134 }
135 
136 impl TryFrom<String> for Regex {
137     type Error = Error;
138 
139     /// Attempts to parse a string into a regular expression
try_from(s: String) -> Result<Regex, Error>140     fn try_from(s: String) -> Result<Regex, Error> {
141         Regex::new(&s)
142     }
143 }
144 
145 /// Core regular expression methods.
146 impl Regex {
147     /// Compiles a regular expression. Once compiled, it can be used repeatedly
148     /// to search, split or replace substrings in a haystack.
149     ///
150     /// Note that regex compilation tends to be a somewhat expensive process,
151     /// and unlike higher level environments, compilation is not automatically
152     /// cached for you. One should endeavor to compile a regex once and then
153     /// reuse it. For example, it's a bad idea to compile the same regex
154     /// repeatedly in a loop.
155     ///
156     /// # Errors
157     ///
158     /// If an invalid pattern is given, then an error is returned.
159     /// An error is also returned if the pattern is valid, but would
160     /// produce a regex that is bigger than the configured size limit via
161     /// [`RegexBuilder::size_limit`]. (A reasonable size limit is enabled by
162     /// default.)
163     ///
164     /// # Example
165     ///
166     /// ```
167     /// use regex::bytes::Regex;
168     ///
169     /// // An Invalid pattern because of an unclosed parenthesis
170     /// assert!(Regex::new(r"foo(bar").is_err());
171     /// // An invalid pattern because the regex would be too big
172     /// // because Unicode tends to inflate things.
173     /// assert!(Regex::new(r"\w{1000}").is_err());
174     /// // Disabling Unicode can make the regex much smaller,
175     /// // potentially by up to or more than an order of magnitude.
176     /// assert!(Regex::new(r"(?-u:\w){1000}").is_ok());
177     /// ```
new(re: &str) -> Result<Regex, Error>178     pub fn new(re: &str) -> Result<Regex, Error> {
179         RegexBuilder::new(re).build()
180     }
181 
182     /// Returns true if and only if there is a match for the regex anywhere
183     /// in the haystack given.
184     ///
185     /// It is recommended to use this method if all you need to do is test
186     /// whether a match exists, since the underlying matching engine may be
187     /// able to do less work.
188     ///
189     /// # Example
190     ///
191     /// Test if some haystack contains at least one word with exactly 13
192     /// Unicode word characters:
193     ///
194     /// ```
195     /// use regex::bytes::Regex;
196     ///
197     /// let re = Regex::new(r"\b\w{13}\b").unwrap();
198     /// let hay = b"I categorically deny having triskaidekaphobia.";
199     /// assert!(re.is_match(hay));
200     /// ```
201     #[inline]
is_match(&self, haystack: &[u8]) -> bool202     pub fn is_match(&self, haystack: &[u8]) -> bool {
203         self.is_match_at(haystack, 0)
204     }
205 
206     /// This routine searches for the first match of this regex in the
207     /// haystack given, and if found, returns a [`Match`]. The `Match`
208     /// provides access to both the byte offsets of the match and the actual
209     /// substring that matched.
210     ///
211     /// Note that this should only be used if you want to find the entire
212     /// match. If instead you just want to test the existence of a match,
213     /// it's potentially faster to use `Regex::is_match(hay)` instead of
214     /// `Regex::find(hay).is_some()`.
215     ///
216     /// # Example
217     ///
218     /// Find the first word with exactly 13 Unicode word characters:
219     ///
220     /// ```
221     /// use regex::bytes::Regex;
222     ///
223     /// let re = Regex::new(r"\b\w{13}\b").unwrap();
224     /// let hay = b"I categorically deny having triskaidekaphobia.";
225     /// let mat = re.find(hay).unwrap();
226     /// assert_eq!(2..15, mat.range());
227     /// assert_eq!(b"categorically", mat.as_bytes());
228     /// ```
229     #[inline]
find<'h>(&self, haystack: &'h [u8]) -> Option<Match<'h>>230     pub fn find<'h>(&self, haystack: &'h [u8]) -> Option<Match<'h>> {
231         self.find_at(haystack, 0)
232     }
233 
234     /// Returns an iterator that yields successive non-overlapping matches in
235     /// the given haystack. The iterator yields values of type [`Match`].
236     ///
237     /// # Time complexity
238     ///
239     /// Note that since `find_iter` runs potentially many searches on the
240     /// haystack and since each search has worst case `O(m * n)` time
241     /// complexity, the overall worst case time complexity for iteration is
242     /// `O(m * n^2)`.
243     ///
244     /// # Example
245     ///
246     /// Find every word with exactly 13 Unicode word characters:
247     ///
248     /// ```
249     /// use regex::bytes::Regex;
250     ///
251     /// let re = Regex::new(r"\b\w{13}\b").unwrap();
252     /// let hay = b"Retroactively relinquishing remunerations is reprehensible.";
253     /// let matches: Vec<_> = re.find_iter(hay).map(|m| m.as_bytes()).collect();
254     /// assert_eq!(matches, vec![
255     ///     &b"Retroactively"[..],
256     ///     &b"relinquishing"[..],
257     ///     &b"remunerations"[..],
258     ///     &b"reprehensible"[..],
259     /// ]);
260     /// ```
261     #[inline]
find_iter<'r, 'h>(&'r self, haystack: &'h [u8]) -> Matches<'r, 'h>262     pub fn find_iter<'r, 'h>(&'r self, haystack: &'h [u8]) -> Matches<'r, 'h> {
263         Matches { haystack, it: self.meta.find_iter(haystack) }
264     }
265 
266     /// This routine searches for the first match of this regex in the haystack
267     /// given, and if found, returns not only the overall match but also the
268     /// matches of each capture group in the regex. If no match is found, then
269     /// `None` is returned.
270     ///
271     /// Capture group `0` always corresponds to an implicit unnamed group that
272     /// includes the entire match. If a match is found, this group is always
273     /// present. Subsequent groups may be named and are numbered, starting
274     /// at 1, by the order in which the opening parenthesis appears in the
275     /// pattern. For example, in the pattern `(?<a>.(?<b>.))(?<c>.)`, `a`,
276     /// `b` and `c` correspond to capture group indices `1`, `2` and `3`,
277     /// respectively.
278     ///
279     /// You should only use `captures` if you need access to the capture group
280     /// matches. Otherwise, [`Regex::find`] is generally faster for discovering
281     /// just the overall match.
282     ///
283     /// # Example
284     ///
285     /// Say you have some haystack with movie names and their release years,
286     /// like "'Citizen Kane' (1941)". It'd be nice if we could search for
287     /// strings looking like that, while also extracting the movie name and its
288     /// release year separately. The example below shows how to do that.
289     ///
290     /// ```
291     /// use regex::bytes::Regex;
292     ///
293     /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap();
294     /// let hay = b"Not my favorite movie: 'Citizen Kane' (1941).";
295     /// let caps = re.captures(hay).unwrap();
296     /// assert_eq!(caps.get(0).unwrap().as_bytes(), b"'Citizen Kane' (1941)");
297     /// assert_eq!(caps.get(1).unwrap().as_bytes(), b"Citizen Kane");
298     /// assert_eq!(caps.get(2).unwrap().as_bytes(), b"1941");
299     /// // You can also access the groups by index using the Index notation.
300     /// // Note that this will panic on an invalid index. In this case, these
301     /// // accesses are always correct because the overall regex will only
302     /// // match when these capture groups match.
303     /// assert_eq!(&caps[0], b"'Citizen Kane' (1941)");
304     /// assert_eq!(&caps[1], b"Citizen Kane");
305     /// assert_eq!(&caps[2], b"1941");
306     /// ```
307     ///
308     /// Note that the full match is at capture group `0`. Each subsequent
309     /// capture group is indexed by the order of its opening `(`.
310     ///
311     /// We can make this example a bit clearer by using *named* capture groups:
312     ///
313     /// ```
314     /// use regex::bytes::Regex;
315     ///
316     /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>\d{4})\)").unwrap();
317     /// let hay = b"Not my favorite movie: 'Citizen Kane' (1941).";
318     /// let caps = re.captures(hay).unwrap();
319     /// assert_eq!(caps.get(0).unwrap().as_bytes(), b"'Citizen Kane' (1941)");
320     /// assert_eq!(caps.name("title").unwrap().as_bytes(), b"Citizen Kane");
321     /// assert_eq!(caps.name("year").unwrap().as_bytes(), b"1941");
322     /// // You can also access the groups by name using the Index notation.
323     /// // Note that this will panic on an invalid group name. In this case,
324     /// // these accesses are always correct because the overall regex will
325     /// // only match when these capture groups match.
326     /// assert_eq!(&caps[0], b"'Citizen Kane' (1941)");
327     /// assert_eq!(&caps["title"], b"Citizen Kane");
328     /// assert_eq!(&caps["year"], b"1941");
329     /// ```
330     ///
331     /// Here we name the capture groups, which we can access with the `name`
332     /// method or the `Index` notation with a `&str`. Note that the named
333     /// capture groups are still accessible with `get` or the `Index` notation
334     /// with a `usize`.
335     ///
336     /// The `0`th capture group is always unnamed, so it must always be
337     /// accessed with `get(0)` or `[0]`.
338     ///
339     /// Finally, one other way to to get the matched substrings is with the
340     /// [`Captures::extract`] API:
341     ///
342     /// ```
343     /// use regex::bytes::Regex;
344     ///
345     /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)").unwrap();
346     /// let hay = b"Not my favorite movie: 'Citizen Kane' (1941).";
347     /// let (full, [title, year]) = re.captures(hay).unwrap().extract();
348     /// assert_eq!(full, b"'Citizen Kane' (1941)");
349     /// assert_eq!(title, b"Citizen Kane");
350     /// assert_eq!(year, b"1941");
351     /// ```
352     #[inline]
captures<'h>(&self, haystack: &'h [u8]) -> Option<Captures<'h>>353     pub fn captures<'h>(&self, haystack: &'h [u8]) -> Option<Captures<'h>> {
354         self.captures_at(haystack, 0)
355     }
356 
357     /// Returns an iterator that yields successive non-overlapping matches in
358     /// the given haystack. The iterator yields values of type [`Captures`].
359     ///
360     /// This is the same as [`Regex::find_iter`], but instead of only providing
361     /// access to the overall match, each value yield includes access to the
362     /// matches of all capture groups in the regex. Reporting this extra match
363     /// data is potentially costly, so callers should only use `captures_iter`
364     /// over `find_iter` when they actually need access to the capture group
365     /// matches.
366     ///
367     /// # Time complexity
368     ///
369     /// Note that since `captures_iter` runs potentially many searches on the
370     /// haystack and since each search has worst case `O(m * n)` time
371     /// complexity, the overall worst case time complexity for iteration is
372     /// `O(m * n^2)`.
373     ///
374     /// # Example
375     ///
376     /// We can use this to find all movie titles and their release years in
377     /// some haystack, where the movie is formatted like "'Title' (xxxx)":
378     ///
379     /// ```
380     /// use regex::bytes::Regex;
381     ///
382     /// let re = Regex::new(r"'([^']+)'\s+\(([0-9]{4})\)").unwrap();
383     /// let hay = b"'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931).";
384     /// let mut movies = vec![];
385     /// for (_, [title, year]) in re.captures_iter(hay).map(|c| c.extract()) {
386     ///     // OK because [0-9]{4} can only match valid UTF-8.
387     ///     let year = std::str::from_utf8(year).unwrap();
388     ///     movies.push((title, year.parse::<i64>()?));
389     /// }
390     /// assert_eq!(movies, vec![
391     ///     (&b"Citizen Kane"[..], 1941),
392     ///     (&b"The Wizard of Oz"[..], 1939),
393     ///     (&b"M"[..], 1931),
394     /// ]);
395     /// # Ok::<(), Box<dyn std::error::Error>>(())
396     /// ```
397     ///
398     /// Or with named groups:
399     ///
400     /// ```
401     /// use regex::bytes::Regex;
402     ///
403     /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>[0-9]{4})\)").unwrap();
404     /// let hay = b"'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931).";
405     /// let mut it = re.captures_iter(hay);
406     ///
407     /// let caps = it.next().unwrap();
408     /// assert_eq!(&caps["title"], b"Citizen Kane");
409     /// assert_eq!(&caps["year"], b"1941");
410     ///
411     /// let caps = it.next().unwrap();
412     /// assert_eq!(&caps["title"], b"The Wizard of Oz");
413     /// assert_eq!(&caps["year"], b"1939");
414     ///
415     /// let caps = it.next().unwrap();
416     /// assert_eq!(&caps["title"], b"M");
417     /// assert_eq!(&caps["year"], b"1931");
418     /// ```
419     #[inline]
captures_iter<'r, 'h>( &'r self, haystack: &'h [u8], ) -> CaptureMatches<'r, 'h>420     pub fn captures_iter<'r, 'h>(
421         &'r self,
422         haystack: &'h [u8],
423     ) -> CaptureMatches<'r, 'h> {
424         CaptureMatches { haystack, it: self.meta.captures_iter(haystack) }
425     }
426 
427     /// Returns an iterator of substrings of the haystack given, delimited by a
428     /// match of the regex. Namely, each element of the iterator corresponds to
429     /// a part of the haystack that *isn't* matched by the regular expression.
430     ///
431     /// # Time complexity
432     ///
433     /// Since iterators over all matches requires running potentially many
434     /// searches on the haystack, and since each search has worst case
435     /// `O(m * n)` time complexity, the overall worst case time complexity for
436     /// this routine is `O(m * n^2)`.
437     ///
438     /// # Example
439     ///
440     /// To split a string delimited by arbitrary amounts of spaces or tabs:
441     ///
442     /// ```
443     /// use regex::bytes::Regex;
444     ///
445     /// let re = Regex::new(r"[ \t]+").unwrap();
446     /// let hay = b"a b \t  c\td    e";
447     /// let fields: Vec<&[u8]> = re.split(hay).collect();
448     /// assert_eq!(fields, vec![
449     ///     &b"a"[..], &b"b"[..], &b"c"[..], &b"d"[..], &b"e"[..],
450     /// ]);
451     /// ```
452     ///
453     /// # Example: more cases
454     ///
455     /// Basic usage:
456     ///
457     /// ```
458     /// use regex::bytes::Regex;
459     ///
460     /// let re = Regex::new(r" ").unwrap();
461     /// let hay = b"Mary had a little lamb";
462     /// let got: Vec<&[u8]> = re.split(hay).collect();
463     /// assert_eq!(got, vec![
464     ///     &b"Mary"[..], &b"had"[..], &b"a"[..], &b"little"[..], &b"lamb"[..],
465     /// ]);
466     ///
467     /// let re = Regex::new(r"X").unwrap();
468     /// let hay = b"";
469     /// let got: Vec<&[u8]> = re.split(hay).collect();
470     /// assert_eq!(got, vec![&b""[..]]);
471     ///
472     /// let re = Regex::new(r"X").unwrap();
473     /// let hay = b"lionXXtigerXleopard";
474     /// let got: Vec<&[u8]> = re.split(hay).collect();
475     /// assert_eq!(got, vec![
476     ///     &b"lion"[..], &b""[..], &b"tiger"[..], &b"leopard"[..],
477     /// ]);
478     ///
479     /// let re = Regex::new(r"::").unwrap();
480     /// let hay = b"lion::tiger::leopard";
481     /// let got: Vec<&[u8]> = re.split(hay).collect();
482     /// assert_eq!(got, vec![&b"lion"[..], &b"tiger"[..], &b"leopard"[..]]);
483     /// ```
484     ///
485     /// If a haystack contains multiple contiguous matches, you will end up
486     /// with empty spans yielded by the iterator:
487     ///
488     /// ```
489     /// use regex::bytes::Regex;
490     ///
491     /// let re = Regex::new(r"X").unwrap();
492     /// let hay = b"XXXXaXXbXc";
493     /// let got: Vec<&[u8]> = re.split(hay).collect();
494     /// assert_eq!(got, vec![
495     ///     &b""[..], &b""[..], &b""[..], &b""[..],
496     ///     &b"a"[..], &b""[..], &b"b"[..], &b"c"[..],
497     /// ]);
498     ///
499     /// let re = Regex::new(r"/").unwrap();
500     /// let hay = b"(///)";
501     /// let got: Vec<&[u8]> = re.split(hay).collect();
502     /// assert_eq!(got, vec![&b"("[..], &b""[..], &b""[..], &b")"[..]]);
503     /// ```
504     ///
505     /// Separators at the start or end of a haystack are neighbored by empty
506     /// substring.
507     ///
508     /// ```
509     /// use regex::bytes::Regex;
510     ///
511     /// let re = Regex::new(r"0").unwrap();
512     /// let hay = b"010";
513     /// let got: Vec<&[u8]> = re.split(hay).collect();
514     /// assert_eq!(got, vec![&b""[..], &b"1"[..], &b""[..]]);
515     /// ```
516     ///
517     /// When the regex can match the empty string, it splits at every byte
518     /// position in the haystack. This includes between all UTF-8 code units.
519     /// (The top-level [`Regex::split`](crate::Regex::split) will only split
520     /// at valid UTF-8 boundaries.)
521     ///
522     /// ```
523     /// use regex::bytes::Regex;
524     ///
525     /// let re = Regex::new(r"").unwrap();
526     /// let hay = "☃".as_bytes();
527     /// let got: Vec<&[u8]> = re.split(hay).collect();
528     /// assert_eq!(got, vec![
529     ///     &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..],
530     /// ]);
531     /// ```
532     ///
533     /// Contiguous separators (commonly shows up with whitespace), can lead to
534     /// possibly surprising behavior. For example, this code is correct:
535     ///
536     /// ```
537     /// use regex::bytes::Regex;
538     ///
539     /// let re = Regex::new(r" ").unwrap();
540     /// let hay = b"    a  b c";
541     /// let got: Vec<&[u8]> = re.split(hay).collect();
542     /// assert_eq!(got, vec![
543     ///     &b""[..], &b""[..], &b""[..], &b""[..],
544     ///     &b"a"[..], &b""[..], &b"b"[..], &b"c"[..],
545     /// ]);
546     /// ```
547     ///
548     /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
549     /// to match contiguous space characters:
550     ///
551     /// ```
552     /// use regex::bytes::Regex;
553     ///
554     /// let re = Regex::new(r" +").unwrap();
555     /// let hay = b"    a  b c";
556     /// let got: Vec<&[u8]> = re.split(hay).collect();
557     /// // N.B. This does still include a leading empty span because ' +'
558     /// // matches at the beginning of the haystack.
559     /// assert_eq!(got, vec![&b""[..], &b"a"[..], &b"b"[..], &b"c"[..]]);
560     /// ```
561     #[inline]
split<'r, 'h>(&'r self, haystack: &'h [u8]) -> Split<'r, 'h>562     pub fn split<'r, 'h>(&'r self, haystack: &'h [u8]) -> Split<'r, 'h> {
563         Split { haystack, it: self.meta.split(haystack) }
564     }
565 
566     /// Returns an iterator of at most `limit` substrings of the haystack
567     /// given, delimited by a match of the regex. (A `limit` of `0` will return
568     /// no substrings.) Namely, each element of the iterator corresponds to a
569     /// part of the haystack that *isn't* matched by the regular expression.
570     /// The remainder of the haystack that is not split will be the last
571     /// element in the iterator.
572     ///
573     /// # Time complexity
574     ///
575     /// Since iterators over all matches requires running potentially many
576     /// searches on the haystack, and since each search has worst case
577     /// `O(m * n)` time complexity, the overall worst case time complexity for
578     /// this routine is `O(m * n^2)`.
579     ///
580     /// Although note that the worst case time here has an upper bound given
581     /// by the `limit` parameter.
582     ///
583     /// # Example
584     ///
585     /// Get the first two words in some haystack:
586     ///
587     /// ```
588     /// use regex::bytes::Regex;
589     ///
590     /// let re = Regex::new(r"\W+").unwrap();
591     /// let hay = b"Hey! How are you?";
592     /// let fields: Vec<&[u8]> = re.splitn(hay, 3).collect();
593     /// assert_eq!(fields, vec![&b"Hey"[..], &b"How"[..], &b"are you?"[..]]);
594     /// ```
595     ///
596     /// # Examples: more cases
597     ///
598     /// ```
599     /// use regex::bytes::Regex;
600     ///
601     /// let re = Regex::new(r" ").unwrap();
602     /// let hay = b"Mary had a little lamb";
603     /// let got: Vec<&[u8]> = re.splitn(hay, 3).collect();
604     /// assert_eq!(got, vec![&b"Mary"[..], &b"had"[..], &b"a little lamb"[..]]);
605     ///
606     /// let re = Regex::new(r"X").unwrap();
607     /// let hay = b"";
608     /// let got: Vec<&[u8]> = re.splitn(hay, 3).collect();
609     /// assert_eq!(got, vec![&b""[..]]);
610     ///
611     /// let re = Regex::new(r"X").unwrap();
612     /// let hay = b"lionXXtigerXleopard";
613     /// let got: Vec<&[u8]> = re.splitn(hay, 3).collect();
614     /// assert_eq!(got, vec![&b"lion"[..], &b""[..], &b"tigerXleopard"[..]]);
615     ///
616     /// let re = Regex::new(r"::").unwrap();
617     /// let hay = b"lion::tiger::leopard";
618     /// let got: Vec<&[u8]> = re.splitn(hay, 2).collect();
619     /// assert_eq!(got, vec![&b"lion"[..], &b"tiger::leopard"[..]]);
620     ///
621     /// let re = Regex::new(r"X").unwrap();
622     /// let hay = b"abcXdef";
623     /// let got: Vec<&[u8]> = re.splitn(hay, 1).collect();
624     /// assert_eq!(got, vec![&b"abcXdef"[..]]);
625     ///
626     /// let re = Regex::new(r"X").unwrap();
627     /// let hay = b"abcdef";
628     /// let got: Vec<&[u8]> = re.splitn(hay, 2).collect();
629     /// assert_eq!(got, vec![&b"abcdef"[..]]);
630     ///
631     /// let re = Regex::new(r"X").unwrap();
632     /// let hay = b"abcXdef";
633     /// let got: Vec<&[u8]> = re.splitn(hay, 0).collect();
634     /// assert!(got.is_empty());
635     /// ```
636     #[inline]
splitn<'r, 'h>( &'r self, haystack: &'h [u8], limit: usize, ) -> SplitN<'r, 'h>637     pub fn splitn<'r, 'h>(
638         &'r self,
639         haystack: &'h [u8],
640         limit: usize,
641     ) -> SplitN<'r, 'h> {
642         SplitN { haystack, it: self.meta.splitn(haystack, limit) }
643     }
644 
645     /// Replaces the leftmost-first match in the given haystack with the
646     /// replacement provided. The replacement can be a regular string (where
647     /// `$N` and `$name` are expanded to match capture groups) or a function
648     /// that takes a [`Captures`] and returns the replaced string.
649     ///
650     /// If no match is found, then the haystack is returned unchanged. In that
651     /// case, this implementation will likely return a `Cow::Borrowed` value
652     /// such that no allocation is performed.
653     ///
654     /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
655     /// to be equivalent to the `haystack` given.
656     ///
657     /// # Replacement string syntax
658     ///
659     /// All instances of `$ref` in the replacement string are replaced with
660     /// the substring corresponding to the capture group identified by `ref`.
661     ///
662     /// `ref` may be an integer corresponding to the index of the capture group
663     /// (counted by order of opening parenthesis where `0` is the entire match)
664     /// or it can be a name (consisting of letters, digits or underscores)
665     /// corresponding to a named capture group.
666     ///
667     /// If `ref` isn't a valid capture group (whether the name doesn't exist or
668     /// isn't a valid index), then it is replaced with the empty string.
669     ///
670     /// The longest possible name is used. For example, `$1a` looks up the
671     /// capture group named `1a` and not the capture group at index `1`. To
672     /// exert more precise control over the name, use braces, e.g., `${1}a`.
673     ///
674     /// To write a literal `$` use `$$`.
675     ///
676     /// # Example
677     ///
678     /// Note that this function is polymorphic with respect to the replacement.
679     /// In typical usage, this can just be a normal string:
680     ///
681     /// ```
682     /// use regex::bytes::Regex;
683     ///
684     /// let re = Regex::new(r"[^01]+").unwrap();
685     /// assert_eq!(re.replace(b"1078910", b""), &b"1010"[..]);
686     /// ```
687     ///
688     /// But anything satisfying the [`Replacer`] trait will work. For example,
689     /// a closure of type `|&Captures| -> String` provides direct access to the
690     /// captures corresponding to a match. This allows one to access capturing
691     /// group matches easily:
692     ///
693     /// ```
694     /// use regex::bytes::{Captures, Regex};
695     ///
696     /// let re = Regex::new(r"([^,\s]+),\s+(\S+)").unwrap();
697     /// let result = re.replace(b"Springsteen, Bruce", |caps: &Captures| {
698     ///     let mut buf = vec![];
699     ///     buf.extend_from_slice(&caps[2]);
700     ///     buf.push(b' ');
701     ///     buf.extend_from_slice(&caps[1]);
702     ///     buf
703     /// });
704     /// assert_eq!(result, &b"Bruce Springsteen"[..]);
705     /// ```
706     ///
707     /// But this is a bit cumbersome to use all the time. Instead, a simple
708     /// syntax is supported (as described above) that expands `$name` into the
709     /// corresponding capture group. Here's the last example, but using this
710     /// expansion technique with named capture groups:
711     ///
712     /// ```
713     /// use regex::bytes::Regex;
714     ///
715     /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap();
716     /// let result = re.replace(b"Springsteen, Bruce", b"$first $last");
717     /// assert_eq!(result, &b"Bruce Springsteen"[..]);
718     /// ```
719     ///
720     /// Note that using `$2` instead of `$first` or `$1` instead of `$last`
721     /// would produce the same result. To write a literal `$` use `$$`.
722     ///
723     /// Sometimes the replacement string requires use of curly braces to
724     /// delineate a capture group replacement when it is adjacent to some other
725     /// literal text. For example, if we wanted to join two words together with
726     /// an underscore:
727     ///
728     /// ```
729     /// use regex::bytes::Regex;
730     ///
731     /// let re = Regex::new(r"(?<first>\w+)\s+(?<second>\w+)").unwrap();
732     /// let result = re.replace(b"deep fried", b"${first}_$second");
733     /// assert_eq!(result, &b"deep_fried"[..]);
734     /// ```
735     ///
736     /// Without the curly braces, the capture group name `first_` would be
737     /// used, and since it doesn't exist, it would be replaced with the empty
738     /// string.
739     ///
740     /// Finally, sometimes you just want to replace a literal string with no
741     /// regard for capturing group expansion. This can be done by wrapping a
742     /// string with [`NoExpand`]:
743     ///
744     /// ```
745     /// use regex::bytes::{NoExpand, Regex};
746     ///
747     /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap();
748     /// let result = re.replace(b"Springsteen, Bruce", NoExpand(b"$2 $last"));
749     /// assert_eq!(result, &b"$2 $last"[..]);
750     /// ```
751     ///
752     /// Using `NoExpand` may also be faster, since the replacement string won't
753     /// need to be parsed for the `$` syntax.
754     #[inline]
replace<'h, R: Replacer>( &self, haystack: &'h [u8], rep: R, ) -> Cow<'h, [u8]>755     pub fn replace<'h, R: Replacer>(
756         &self,
757         haystack: &'h [u8],
758         rep: R,
759     ) -> Cow<'h, [u8]> {
760         self.replacen(haystack, 1, rep)
761     }
762 
763     /// Replaces all non-overlapping matches in the haystack with the
764     /// replacement provided. This is the same as calling `replacen` with
765     /// `limit` set to `0`.
766     ///
767     /// If no match is found, then the haystack is returned unchanged. In that
768     /// case, this implementation will likely return a `Cow::Borrowed` value
769     /// such that no allocation is performed.
770     ///
771     /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
772     /// to be equivalent to the `haystack` given.
773     ///
774     /// The documentation for [`Regex::replace`] goes into more detail about
775     /// what kinds of replacement strings are supported.
776     ///
777     /// # Time complexity
778     ///
779     /// Since iterators over all matches requires running potentially many
780     /// searches on the haystack, and since each search has worst case
781     /// `O(m * n)` time complexity, the overall worst case time complexity for
782     /// this routine is `O(m * n^2)`.
783     ///
784     /// # Fallibility
785     ///
786     /// If you need to write a replacement routine where any individual
787     /// replacement might "fail," doing so with this API isn't really feasible
788     /// because there's no way to stop the search process if a replacement
789     /// fails. Instead, if you need this functionality, you should consider
790     /// implementing your own replacement routine:
791     ///
792     /// ```
793     /// use regex::bytes::{Captures, Regex};
794     ///
795     /// fn replace_all<E>(
796     ///     re: &Regex,
797     ///     haystack: &[u8],
798     ///     replacement: impl Fn(&Captures) -> Result<Vec<u8>, E>,
799     /// ) -> Result<Vec<u8>, E> {
800     ///     let mut new = Vec::with_capacity(haystack.len());
801     ///     let mut last_match = 0;
802     ///     for caps in re.captures_iter(haystack) {
803     ///         let m = caps.get(0).unwrap();
804     ///         new.extend_from_slice(&haystack[last_match..m.start()]);
805     ///         new.extend_from_slice(&replacement(&caps)?);
806     ///         last_match = m.end();
807     ///     }
808     ///     new.extend_from_slice(&haystack[last_match..]);
809     ///     Ok(new)
810     /// }
811     ///
812     /// // Let's replace each word with the number of bytes in that word.
813     /// // But if we see a word that is "too long," we'll give up.
814     /// let re = Regex::new(r"\w+").unwrap();
815     /// let replacement = |caps: &Captures| -> Result<Vec<u8>, &'static str> {
816     ///     if caps[0].len() >= 5 {
817     ///         return Err("word too long");
818     ///     }
819     ///     Ok(caps[0].len().to_string().into_bytes())
820     /// };
821     /// assert_eq!(
822     ///     Ok(b"2 3 3 3?".to_vec()),
823     ///     replace_all(&re, b"hi how are you?", &replacement),
824     /// );
825     /// assert!(replace_all(&re, b"hi there", &replacement).is_err());
826     /// ```
827     ///
828     /// # Example
829     ///
830     /// This example shows how to flip the order of whitespace (excluding line
831     /// terminators) delimited fields, and normalizes the whitespace that
832     /// delimits the fields:
833     ///
834     /// ```
835     /// use regex::bytes::Regex;
836     ///
837     /// let re = Regex::new(r"(?m)^(\S+)[\s--\r\n]+(\S+)$").unwrap();
838     /// let hay = b"
839     /// Greetings  1973
840     /// Wild\t1973
841     /// BornToRun\t\t\t\t1975
842     /// Darkness                    1978
843     /// TheRiver 1980
844     /// ";
845     /// let new = re.replace_all(hay, b"$2 $1");
846     /// assert_eq!(new, &b"
847     /// 1973 Greetings
848     /// 1973 Wild
849     /// 1975 BornToRun
850     /// 1978 Darkness
851     /// 1980 TheRiver
852     /// "[..]);
853     /// ```
854     #[inline]
replace_all<'h, R: Replacer>( &self, haystack: &'h [u8], rep: R, ) -> Cow<'h, [u8]>855     pub fn replace_all<'h, R: Replacer>(
856         &self,
857         haystack: &'h [u8],
858         rep: R,
859     ) -> Cow<'h, [u8]> {
860         self.replacen(haystack, 0, rep)
861     }
862 
863     /// Replaces at most `limit` non-overlapping matches in the haystack with
864     /// the replacement provided. If `limit` is `0`, then all non-overlapping
865     /// matches are replaced. That is, `Regex::replace_all(hay, rep)` is
866     /// equivalent to `Regex::replacen(hay, 0, rep)`.
867     ///
868     /// If no match is found, then the haystack is returned unchanged. In that
869     /// case, this implementation will likely return a `Cow::Borrowed` value
870     /// such that no allocation is performed.
871     ///
872     /// When a `Cow::Borrowed` is returned, the value returned is guaranteed
873     /// to be equivalent to the `haystack` given.
874     ///
875     /// The documentation for [`Regex::replace`] goes into more detail about
876     /// what kinds of replacement strings are supported.
877     ///
878     /// # Time complexity
879     ///
880     /// Since iterators over all matches requires running potentially many
881     /// searches on the haystack, and since each search has worst case
882     /// `O(m * n)` time complexity, the overall worst case time complexity for
883     /// this routine is `O(m * n^2)`.
884     ///
885     /// Although note that the worst case time here has an upper bound given
886     /// by the `limit` parameter.
887     ///
888     /// # Fallibility
889     ///
890     /// See the corresponding section in the docs for [`Regex::replace_all`]
891     /// for tips on how to deal with a replacement routine that can fail.
892     ///
893     /// # Example
894     ///
895     /// This example shows how to flip the order of whitespace (excluding line
896     /// terminators) delimited fields, and normalizes the whitespace that
897     /// delimits the fields. But we only do it for the first two matches.
898     ///
899     /// ```
900     /// use regex::bytes::Regex;
901     ///
902     /// let re = Regex::new(r"(?m)^(\S+)[\s--\r\n]+(\S+)$").unwrap();
903     /// let hay = b"
904     /// Greetings  1973
905     /// Wild\t1973
906     /// BornToRun\t\t\t\t1975
907     /// Darkness                    1978
908     /// TheRiver 1980
909     /// ";
910     /// let new = re.replacen(hay, 2, b"$2 $1");
911     /// assert_eq!(new, &b"
912     /// 1973 Greetings
913     /// 1973 Wild
914     /// BornToRun\t\t\t\t1975
915     /// Darkness                    1978
916     /// TheRiver 1980
917     /// "[..]);
918     /// ```
919     #[inline]
replacen<'h, R: Replacer>( &self, haystack: &'h [u8], limit: usize, mut rep: R, ) -> Cow<'h, [u8]>920     pub fn replacen<'h, R: Replacer>(
921         &self,
922         haystack: &'h [u8],
923         limit: usize,
924         mut rep: R,
925     ) -> Cow<'h, [u8]> {
926         // If we know that the replacement doesn't have any capture expansions,
927         // then we can use the fast path. The fast path can make a tremendous
928         // difference:
929         //
930         //   1) We use `find_iter` instead of `captures_iter`. Not asking for
931         //      captures generally makes the regex engines faster.
932         //   2) We don't need to look up all of the capture groups and do
933         //      replacements inside the replacement string. We just push it
934         //      at each match and be done with it.
935         if let Some(rep) = rep.no_expansion() {
936             let mut it = self.find_iter(haystack).enumerate().peekable();
937             if it.peek().is_none() {
938                 return Cow::Borrowed(haystack);
939             }
940             let mut new = Vec::with_capacity(haystack.len());
941             let mut last_match = 0;
942             for (i, m) in it {
943                 new.extend_from_slice(&haystack[last_match..m.start()]);
944                 new.extend_from_slice(&rep);
945                 last_match = m.end();
946                 if limit > 0 && i >= limit - 1 {
947                     break;
948                 }
949             }
950             new.extend_from_slice(&haystack[last_match..]);
951             return Cow::Owned(new);
952         }
953 
954         // The slower path, which we use if the replacement needs access to
955         // capture groups.
956         let mut it = self.captures_iter(haystack).enumerate().peekable();
957         if it.peek().is_none() {
958             return Cow::Borrowed(haystack);
959         }
960         let mut new = Vec::with_capacity(haystack.len());
961         let mut last_match = 0;
962         for (i, cap) in it {
963             // unwrap on 0 is OK because captures only reports matches
964             let m = cap.get(0).unwrap();
965             new.extend_from_slice(&haystack[last_match..m.start()]);
966             rep.replace_append(&cap, &mut new);
967             last_match = m.end();
968             if limit > 0 && i >= limit - 1 {
969                 break;
970             }
971         }
972         new.extend_from_slice(&haystack[last_match..]);
973         Cow::Owned(new)
974     }
975 }
976 
977 /// A group of advanced or "lower level" search methods. Some methods permit
978 /// starting the search at a position greater than `0` in the haystack. Other
979 /// methods permit reusing allocations, for example, when extracting the
980 /// matches for capture groups.
981 impl Regex {
982     /// Returns the end byte offset of the first match in the haystack given.
983     ///
984     /// This method may have the same performance characteristics as
985     /// `is_match`. Behaviorlly, it doesn't just report whether it match
986     /// occurs, but also the end offset for a match. In particular, the offset
987     /// returned *may be shorter* than the proper end of the leftmost-first
988     /// match that you would find via [`Regex::find`].
989     ///
990     /// Note that it is not guaranteed that this routine finds the shortest or
991     /// "earliest" possible match. Instead, the main idea of this API is that
992     /// it returns the offset at the point at which the internal regex engine
993     /// has determined that a match has occurred. This may vary depending on
994     /// which internal regex engine is used, and thus, the offset itself may
995     /// change based on internal heuristics.
996     ///
997     /// # Example
998     ///
999     /// Typically, `a+` would match the entire first sequence of `a` in some
1000     /// haystack, but `shortest_match` *may* give up as soon as it sees the
1001     /// first `a`.
1002     ///
1003     /// ```
1004     /// use regex::bytes::Regex;
1005     ///
1006     /// let re = Regex::new(r"a+").unwrap();
1007     /// let offset = re.shortest_match(b"aaaaa").unwrap();
1008     /// assert_eq!(offset, 1);
1009     /// ```
1010     #[inline]
shortest_match(&self, haystack: &[u8]) -> Option<usize>1011     pub fn shortest_match(&self, haystack: &[u8]) -> Option<usize> {
1012         self.shortest_match_at(haystack, 0)
1013     }
1014 
1015     /// Returns the same as `shortest_match`, but starts the search at the
1016     /// given offset.
1017     ///
1018     /// The significance of the starting point is that it takes the surrounding
1019     /// context into consideration. For example, the `\A` anchor can only match
1020     /// when `start == 0`.
1021     ///
1022     /// If a match is found, the offset returned is relative to the beginning
1023     /// of the haystack, not the beginning of the search.
1024     ///
1025     /// # Panics
1026     ///
1027     /// This panics when `start >= haystack.len() + 1`.
1028     ///
1029     /// # Example
1030     ///
1031     /// This example shows the significance of `start` by demonstrating how it
1032     /// can be used to permit look-around assertions in a regex to take the
1033     /// surrounding context into account.
1034     ///
1035     /// ```
1036     /// use regex::bytes::Regex;
1037     ///
1038     /// let re = Regex::new(r"\bchew\b").unwrap();
1039     /// let hay = b"eschew";
1040     /// // We get a match here, but it's probably not intended.
1041     /// assert_eq!(re.shortest_match(&hay[2..]), Some(4));
1042     /// // No match because the  assertions take the context into account.
1043     /// assert_eq!(re.shortest_match_at(hay, 2), None);
1044     /// ```
1045     #[inline]
shortest_match_at( &self, haystack: &[u8], start: usize, ) -> Option<usize>1046     pub fn shortest_match_at(
1047         &self,
1048         haystack: &[u8],
1049         start: usize,
1050     ) -> Option<usize> {
1051         let input =
1052             Input::new(haystack).earliest(true).span(start..haystack.len());
1053         self.meta.search_half(&input).map(|hm| hm.offset())
1054     }
1055 
1056     /// Returns the same as [`Regex::is_match`], but starts the search at the
1057     /// given offset.
1058     ///
1059     /// The significance of the starting point is that it takes the surrounding
1060     /// context into consideration. For example, the `\A` anchor can only
1061     /// match when `start == 0`.
1062     ///
1063     /// # Panics
1064     ///
1065     /// This panics when `start >= haystack.len() + 1`.
1066     ///
1067     /// # Example
1068     ///
1069     /// This example shows the significance of `start` by demonstrating how it
1070     /// can be used to permit look-around assertions in a regex to take the
1071     /// surrounding context into account.
1072     ///
1073     /// ```
1074     /// use regex::bytes::Regex;
1075     ///
1076     /// let re = Regex::new(r"\bchew\b").unwrap();
1077     /// let hay = b"eschew";
1078     /// // We get a match here, but it's probably not intended.
1079     /// assert!(re.is_match(&hay[2..]));
1080     /// // No match because the  assertions take the context into account.
1081     /// assert!(!re.is_match_at(hay, 2));
1082     /// ```
1083     #[inline]
is_match_at(&self, haystack: &[u8], start: usize) -> bool1084     pub fn is_match_at(&self, haystack: &[u8], start: usize) -> bool {
1085         self.meta.is_match(Input::new(haystack).span(start..haystack.len()))
1086     }
1087 
1088     /// Returns the same as [`Regex::find`], but starts the search at the given
1089     /// offset.
1090     ///
1091     /// The significance of the starting point is that it takes the surrounding
1092     /// context into consideration. For example, the `\A` anchor can only
1093     /// match when `start == 0`.
1094     ///
1095     /// # Panics
1096     ///
1097     /// This panics when `start >= haystack.len() + 1`.
1098     ///
1099     /// # Example
1100     ///
1101     /// This example shows the significance of `start` by demonstrating how it
1102     /// can be used to permit look-around assertions in a regex to take the
1103     /// surrounding context into account.
1104     ///
1105     /// ```
1106     /// use regex::bytes::Regex;
1107     ///
1108     /// let re = Regex::new(r"\bchew\b").unwrap();
1109     /// let hay = b"eschew";
1110     /// // We get a match here, but it's probably not intended.
1111     /// assert_eq!(re.find(&hay[2..]).map(|m| m.range()), Some(0..4));
1112     /// // No match because the  assertions take the context into account.
1113     /// assert_eq!(re.find_at(hay, 2), None);
1114     /// ```
1115     #[inline]
find_at<'h>( &self, haystack: &'h [u8], start: usize, ) -> Option<Match<'h>>1116     pub fn find_at<'h>(
1117         &self,
1118         haystack: &'h [u8],
1119         start: usize,
1120     ) -> Option<Match<'h>> {
1121         let input = Input::new(haystack).span(start..haystack.len());
1122         self.meta.find(input).map(|m| Match::new(haystack, m.start(), m.end()))
1123     }
1124 
1125     /// Returns the same as [`Regex::captures`], but starts the search at the
1126     /// given offset.
1127     ///
1128     /// The significance of the starting point is that it takes the surrounding
1129     /// context into consideration. For example, the `\A` anchor can only
1130     /// match when `start == 0`.
1131     ///
1132     /// # Panics
1133     ///
1134     /// This panics when `start >= haystack.len() + 1`.
1135     ///
1136     /// # Example
1137     ///
1138     /// This example shows the significance of `start` by demonstrating how it
1139     /// can be used to permit look-around assertions in a regex to take the
1140     /// surrounding context into account.
1141     ///
1142     /// ```
1143     /// use regex::bytes::Regex;
1144     ///
1145     /// let re = Regex::new(r"\bchew\b").unwrap();
1146     /// let hay = b"eschew";
1147     /// // We get a match here, but it's probably not intended.
1148     /// assert_eq!(&re.captures(&hay[2..]).unwrap()[0], b"chew");
1149     /// // No match because the  assertions take the context into account.
1150     /// assert!(re.captures_at(hay, 2).is_none());
1151     /// ```
1152     #[inline]
captures_at<'h>( &self, haystack: &'h [u8], start: usize, ) -> Option<Captures<'h>>1153     pub fn captures_at<'h>(
1154         &self,
1155         haystack: &'h [u8],
1156         start: usize,
1157     ) -> Option<Captures<'h>> {
1158         let input = Input::new(haystack).span(start..haystack.len());
1159         let mut caps = self.meta.create_captures();
1160         self.meta.captures(input, &mut caps);
1161         if caps.is_match() {
1162             let static_captures_len = self.static_captures_len();
1163             Some(Captures { haystack, caps, static_captures_len })
1164         } else {
1165             None
1166         }
1167     }
1168 
1169     /// This is like [`Regex::captures`], but writes the byte offsets of each
1170     /// capture group match into the locations given.
1171     ///
1172     /// A [`CaptureLocations`] stores the same byte offsets as a [`Captures`],
1173     /// but does *not* store a reference to the haystack. This makes its API
1174     /// a bit lower level and less convenient. But in exchange, callers
1175     /// may allocate their own `CaptureLocations` and reuse it for multiple
1176     /// searches. This may be helpful if allocating a `Captures` shows up in a
1177     /// profile as too costly.
1178     ///
1179     /// To create a `CaptureLocations` value, use the
1180     /// [`Regex::capture_locations`] method.
1181     ///
1182     /// This also returns the overall match if one was found. When a match is
1183     /// found, its offsets are also always stored in `locs` at index `0`.
1184     ///
1185     /// # Example
1186     ///
1187     /// ```
1188     /// use regex::bytes::Regex;
1189     ///
1190     /// let re = Regex::new(r"^([a-z]+)=(\S*)$").unwrap();
1191     /// let mut locs = re.capture_locations();
1192     /// assert!(re.captures_read(&mut locs, b"id=foo123").is_some());
1193     /// assert_eq!(Some((0, 9)), locs.get(0));
1194     /// assert_eq!(Some((0, 2)), locs.get(1));
1195     /// assert_eq!(Some((3, 9)), locs.get(2));
1196     /// ```
1197     #[inline]
captures_read<'h>( &self, locs: &mut CaptureLocations, haystack: &'h [u8], ) -> Option<Match<'h>>1198     pub fn captures_read<'h>(
1199         &self,
1200         locs: &mut CaptureLocations,
1201         haystack: &'h [u8],
1202     ) -> Option<Match<'h>> {
1203         self.captures_read_at(locs, haystack, 0)
1204     }
1205 
1206     /// Returns the same as [`Regex::captures_read`], but starts the search at
1207     /// the given offset.
1208     ///
1209     /// The significance of the starting point is that it takes the surrounding
1210     /// context into consideration. For example, the `\A` anchor can only
1211     /// match when `start == 0`.
1212     ///
1213     /// # Panics
1214     ///
1215     /// This panics when `start >= haystack.len() + 1`.
1216     ///
1217     /// # Example
1218     ///
1219     /// This example shows the significance of `start` by demonstrating how it
1220     /// can be used to permit look-around assertions in a regex to take the
1221     /// surrounding context into account.
1222     ///
1223     /// ```
1224     /// use regex::bytes::Regex;
1225     ///
1226     /// let re = Regex::new(r"\bchew\b").unwrap();
1227     /// let hay = b"eschew";
1228     /// let mut locs = re.capture_locations();
1229     /// // We get a match here, but it's probably not intended.
1230     /// assert!(re.captures_read(&mut locs, &hay[2..]).is_some());
1231     /// // No match because the  assertions take the context into account.
1232     /// assert!(re.captures_read_at(&mut locs, hay, 2).is_none());
1233     /// ```
1234     #[inline]
captures_read_at<'h>( &self, locs: &mut CaptureLocations, haystack: &'h [u8], start: usize, ) -> Option<Match<'h>>1235     pub fn captures_read_at<'h>(
1236         &self,
1237         locs: &mut CaptureLocations,
1238         haystack: &'h [u8],
1239         start: usize,
1240     ) -> Option<Match<'h>> {
1241         let input = Input::new(haystack).span(start..haystack.len());
1242         self.meta.search_captures(&input, &mut locs.0);
1243         locs.0.get_match().map(|m| Match::new(haystack, m.start(), m.end()))
1244     }
1245 
1246     /// An undocumented alias for `captures_read_at`.
1247     ///
1248     /// The `regex-capi` crate previously used this routine, so to avoid
1249     /// breaking that crate, we continue to provide the name as an undocumented
1250     /// alias.
1251     #[doc(hidden)]
1252     #[inline]
read_captures_at<'h>( &self, locs: &mut CaptureLocations, haystack: &'h [u8], start: usize, ) -> Option<Match<'h>>1253     pub fn read_captures_at<'h>(
1254         &self,
1255         locs: &mut CaptureLocations,
1256         haystack: &'h [u8],
1257         start: usize,
1258     ) -> Option<Match<'h>> {
1259         self.captures_read_at(locs, haystack, start)
1260     }
1261 }
1262 
1263 /// Auxiliary methods.
1264 impl Regex {
1265     /// Returns the original string of this regex.
1266     ///
1267     /// # Example
1268     ///
1269     /// ```
1270     /// use regex::bytes::Regex;
1271     ///
1272     /// let re = Regex::new(r"foo\w+bar").unwrap();
1273     /// assert_eq!(re.as_str(), r"foo\w+bar");
1274     /// ```
1275     #[inline]
as_str(&self) -> &str1276     pub fn as_str(&self) -> &str {
1277         &self.pattern
1278     }
1279 
1280     /// Returns an iterator over the capture names in this regex.
1281     ///
1282     /// The iterator returned yields elements of type `Option<&str>`. That is,
1283     /// the iterator yields values for all capture groups, even ones that are
1284     /// unnamed. The order of the groups corresponds to the order of the group's
1285     /// corresponding opening parenthesis.
1286     ///
1287     /// The first element of the iterator always yields the group corresponding
1288     /// to the overall match, and this group is always unnamed. Therefore, the
1289     /// iterator always yields at least one group.
1290     ///
1291     /// # Example
1292     ///
1293     /// This shows basic usage with a mix of named and unnamed capture groups:
1294     ///
1295     /// ```
1296     /// use regex::bytes::Regex;
1297     ///
1298     /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap();
1299     /// let mut names = re.capture_names();
1300     /// assert_eq!(names.next(), Some(None));
1301     /// assert_eq!(names.next(), Some(Some("a")));
1302     /// assert_eq!(names.next(), Some(Some("b")));
1303     /// assert_eq!(names.next(), Some(None));
1304     /// // the '(?:.)' group is non-capturing and so doesn't appear here!
1305     /// assert_eq!(names.next(), Some(Some("c")));
1306     /// assert_eq!(names.next(), None);
1307     /// ```
1308     ///
1309     /// The iterator always yields at least one element, even for regexes with
1310     /// no capture groups and even for regexes that can never match:
1311     ///
1312     /// ```
1313     /// use regex::bytes::Regex;
1314     ///
1315     /// let re = Regex::new(r"").unwrap();
1316     /// let mut names = re.capture_names();
1317     /// assert_eq!(names.next(), Some(None));
1318     /// assert_eq!(names.next(), None);
1319     ///
1320     /// let re = Regex::new(r"[a&&b]").unwrap();
1321     /// let mut names = re.capture_names();
1322     /// assert_eq!(names.next(), Some(None));
1323     /// assert_eq!(names.next(), None);
1324     /// ```
1325     #[inline]
capture_names(&self) -> CaptureNames<'_>1326     pub fn capture_names(&self) -> CaptureNames<'_> {
1327         CaptureNames(self.meta.group_info().pattern_names(PatternID::ZERO))
1328     }
1329 
1330     /// Returns the number of captures groups in this regex.
1331     ///
1332     /// This includes all named and unnamed groups, including the implicit
1333     /// unnamed group that is always present and corresponds to the entire
1334     /// match.
1335     ///
1336     /// Since the implicit unnamed group is always included in this length, the
1337     /// length returned is guaranteed to be greater than zero.
1338     ///
1339     /// # Example
1340     ///
1341     /// ```
1342     /// use regex::bytes::Regex;
1343     ///
1344     /// let re = Regex::new(r"foo").unwrap();
1345     /// assert_eq!(1, re.captures_len());
1346     ///
1347     /// let re = Regex::new(r"(foo)").unwrap();
1348     /// assert_eq!(2, re.captures_len());
1349     ///
1350     /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)").unwrap();
1351     /// assert_eq!(5, re.captures_len());
1352     ///
1353     /// let re = Regex::new(r"[a&&b]").unwrap();
1354     /// assert_eq!(1, re.captures_len());
1355     /// ```
1356     #[inline]
captures_len(&self) -> usize1357     pub fn captures_len(&self) -> usize {
1358         self.meta.group_info().group_len(PatternID::ZERO)
1359     }
1360 
1361     /// Returns the total number of capturing groups that appear in every
1362     /// possible match.
1363     ///
1364     /// If the number of capture groups can vary depending on the match, then
1365     /// this returns `None`. That is, a value is only returned when the number
1366     /// of matching groups is invariant or "static."
1367     ///
1368     /// Note that like [`Regex::captures_len`], this **does** include the
1369     /// implicit capturing group corresponding to the entire match. Therefore,
1370     /// when a non-None value is returned, it is guaranteed to be at least `1`.
1371     /// Stated differently, a return value of `Some(0)` is impossible.
1372     ///
1373     /// # Example
1374     ///
1375     /// This shows a few cases where a static number of capture groups is
1376     /// available and a few cases where it is not.
1377     ///
1378     /// ```
1379     /// use regex::bytes::Regex;
1380     ///
1381     /// let len = |pattern| {
1382     ///     Regex::new(pattern).map(|re| re.static_captures_len())
1383     /// };
1384     ///
1385     /// assert_eq!(Some(1), len("a")?);
1386     /// assert_eq!(Some(2), len("(a)")?);
1387     /// assert_eq!(Some(2), len("(a)|(b)")?);
1388     /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
1389     /// assert_eq!(None, len("(a)|b")?);
1390     /// assert_eq!(None, len("a|(b)")?);
1391     /// assert_eq!(None, len("(b)*")?);
1392     /// assert_eq!(Some(2), len("(b)+")?);
1393     ///
1394     /// # Ok::<(), Box<dyn std::error::Error>>(())
1395     /// ```
1396     #[inline]
static_captures_len(&self) -> Option<usize>1397     pub fn static_captures_len(&self) -> Option<usize> {
1398         self.meta.static_captures_len()
1399     }
1400 
1401     /// Returns a fresh allocated set of capture locations that can
1402     /// be reused in multiple calls to [`Regex::captures_read`] or
1403     /// [`Regex::captures_read_at`].
1404     ///
1405     /// # Example
1406     ///
1407     /// ```
1408     /// use regex::bytes::Regex;
1409     ///
1410     /// let re = Regex::new(r"(.)(.)(\w+)").unwrap();
1411     /// let mut locs = re.capture_locations();
1412     /// assert!(re.captures_read(&mut locs, b"Padron").is_some());
1413     /// assert_eq!(locs.get(0), Some((0, 6)));
1414     /// assert_eq!(locs.get(1), Some((0, 1)));
1415     /// assert_eq!(locs.get(2), Some((1, 2)));
1416     /// assert_eq!(locs.get(3), Some((2, 6)));
1417     /// ```
1418     #[inline]
capture_locations(&self) -> CaptureLocations1419     pub fn capture_locations(&self) -> CaptureLocations {
1420         CaptureLocations(self.meta.create_captures())
1421     }
1422 
1423     /// An alias for `capture_locations` to preserve backward compatibility.
1424     ///
1425     /// The `regex-capi` crate uses this method, so to avoid breaking that
1426     /// crate, we continue to export it as an undocumented API.
1427     #[doc(hidden)]
1428     #[inline]
locations(&self) -> CaptureLocations1429     pub fn locations(&self) -> CaptureLocations {
1430         self.capture_locations()
1431     }
1432 }
1433 
1434 /// Represents a single match of a regex in a haystack.
1435 ///
1436 /// A `Match` contains both the start and end byte offsets of the match and the
1437 /// actual substring corresponding to the range of those byte offsets. It is
1438 /// guaranteed that `start <= end`. When `start == end`, the match is empty.
1439 ///
1440 /// Unlike the top-level `Match` type, this `Match` type is produced by APIs
1441 /// that search `&[u8]` haystacks. This means that the offsets in a `Match` can
1442 /// point to anywhere in the haystack, including in a place that splits the
1443 /// UTF-8 encoding of a Unicode scalar value.
1444 ///
1445 /// The lifetime parameter `'h` refers to the lifetime of the matched of the
1446 /// haystack that this match was produced from.
1447 ///
1448 /// # Numbering
1449 ///
1450 /// The byte offsets in a `Match` form a half-open interval. That is, the
1451 /// start of the range is inclusive and the end of the range is exclusive.
1452 /// For example, given a haystack `abcFOOxyz` and a match of `FOO`, its byte
1453 /// offset range starts at `3` and ends at `6`. `3` corresponds to `F` and
1454 /// `6` corresponds to `x`, which is one past the end of the match. This
1455 /// corresponds to the same kind of slicing that Rust uses.
1456 ///
1457 /// For more on why this was chosen over other schemes (aside from being
1458 /// consistent with how Rust the language works), see [this discussion] and
1459 /// [Dijkstra's note on a related topic][note].
1460 ///
1461 /// [this discussion]: https://github.com/rust-lang/regex/discussions/866
1462 /// [note]: https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
1463 ///
1464 /// # Example
1465 ///
1466 /// This example shows the value of each of the methods on `Match` for a
1467 /// particular search.
1468 ///
1469 /// ```
1470 /// use regex::bytes::Regex;
1471 ///
1472 /// let re = Regex::new(r"\p{Greek}+").unwrap();
1473 /// let hay = "Greek: αβγδ".as_bytes();
1474 /// let m = re.find(hay).unwrap();
1475 /// assert_eq!(7, m.start());
1476 /// assert_eq!(15, m.end());
1477 /// assert!(!m.is_empty());
1478 /// assert_eq!(8, m.len());
1479 /// assert_eq!(7..15, m.range());
1480 /// assert_eq!("αβγδ".as_bytes(), m.as_bytes());
1481 /// ```
1482 #[derive(Copy, Clone, Eq, PartialEq)]
1483 pub struct Match<'h> {
1484     haystack: &'h [u8],
1485     start: usize,
1486     end: usize,
1487 }
1488 
1489 impl<'h> Match<'h> {
1490     /// Returns the byte offset of the start of the match in the haystack. The
1491     /// start of the match corresponds to the position where the match begins
1492     /// and includes the first byte in the match.
1493     ///
1494     /// It is guaranteed that `Match::start() <= Match::end()`.
1495     ///
1496     /// Unlike the top-level `Match` type, the start offset may appear anywhere
1497     /// in the haystack. This includes between the code units of a UTF-8
1498     /// encoded Unicode scalar value.
1499     #[inline]
start(&self) -> usize1500     pub fn start(&self) -> usize {
1501         self.start
1502     }
1503 
1504     /// Returns the byte offset of the end of the match in the haystack. The
1505     /// end of the match corresponds to the byte immediately following the last
1506     /// byte in the match. This means that `&slice[start..end]` works as one
1507     /// would expect.
1508     ///
1509     /// It is guaranteed that `Match::start() <= Match::end()`.
1510     ///
1511     /// Unlike the top-level `Match` type, the start offset may appear anywhere
1512     /// in the haystack. This includes between the code units of a UTF-8
1513     /// encoded Unicode scalar value.
1514     #[inline]
end(&self) -> usize1515     pub fn end(&self) -> usize {
1516         self.end
1517     }
1518 
1519     /// Returns true if and only if this match has a length of zero.
1520     ///
1521     /// Note that an empty match can only occur when the regex itself can
1522     /// match the empty string. Here are some examples of regexes that can
1523     /// all match the empty string: `^`, `^$`, `\b`, `a?`, `a*`, `a{0}`,
1524     /// `(foo|\d+|quux)?`.
1525     #[inline]
is_empty(&self) -> bool1526     pub fn is_empty(&self) -> bool {
1527         self.start == self.end
1528     }
1529 
1530     /// Returns the length, in bytes, of this match.
1531     #[inline]
len(&self) -> usize1532     pub fn len(&self) -> usize {
1533         self.end - self.start
1534     }
1535 
1536     /// Returns the range over the starting and ending byte offsets of the
1537     /// match in the haystack.
1538     #[inline]
range(&self) -> core::ops::Range<usize>1539     pub fn range(&self) -> core::ops::Range<usize> {
1540         self.start..self.end
1541     }
1542 
1543     /// Returns the substring of the haystack that matched.
1544     #[inline]
as_bytes(&self) -> &'h [u8]1545     pub fn as_bytes(&self) -> &'h [u8] {
1546         &self.haystack[self.range()]
1547     }
1548 
1549     /// Creates a new match from the given haystack and byte offsets.
1550     #[inline]
new(haystack: &'h [u8], start: usize, end: usize) -> Match<'h>1551     fn new(haystack: &'h [u8], start: usize, end: usize) -> Match<'h> {
1552         Match { haystack, start, end }
1553     }
1554 }
1555 
1556 impl<'h> core::fmt::Debug for Match<'h> {
fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result1557     fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1558         let mut fmt = f.debug_struct("Match");
1559         fmt.field("start", &self.start).field("end", &self.end);
1560         if let Ok(s) = core::str::from_utf8(self.as_bytes()) {
1561             fmt.field("bytes", &s);
1562         } else {
1563             // FIXME: It would be nice if this could be printed as a string
1564             // with invalid UTF-8 replaced with hex escapes. A alloc would
1565             // probably okay if that makes it easier, but regex-automata does
1566             // (at time of writing) have internal routines that do this. So
1567             // maybe we should expose them.
1568             fmt.field("bytes", &self.as_bytes());
1569         }
1570         fmt.finish()
1571     }
1572 }
1573 
1574 impl<'h> From<Match<'h>> for &'h [u8] {
from(m: Match<'h>) -> &'h [u8]1575     fn from(m: Match<'h>) -> &'h [u8] {
1576         m.as_bytes()
1577     }
1578 }
1579 
1580 impl<'h> From<Match<'h>> for core::ops::Range<usize> {
from(m: Match<'h>) -> core::ops::Range<usize>1581     fn from(m: Match<'h>) -> core::ops::Range<usize> {
1582         m.range()
1583     }
1584 }
1585 
1586 /// Represents the capture groups for a single match.
1587 ///
1588 /// Capture groups refer to parts of a regex enclosed in parentheses. They
1589 /// can be optionally named. The purpose of capture groups is to be able to
1590 /// reference different parts of a match based on the original pattern. In
1591 /// essence, a `Captures` is a container of [`Match`] values for each group
1592 /// that participated in a regex match. Each `Match` can be looked up by either
1593 /// its capture group index or name (if it has one).
1594 ///
1595 /// For example, say you want to match the individual letters in a 5-letter
1596 /// word:
1597 ///
1598 /// ```text
1599 /// (?<first>\w)(\w)(?:\w)\w(?<last>\w)
1600 /// ```
1601 ///
1602 /// This regex has 4 capture groups:
1603 ///
1604 /// * The group at index `0` corresponds to the overall match. It is always
1605 /// present in every match and never has a name.
1606 /// * The group at index `1` with name `first` corresponding to the first
1607 /// letter.
1608 /// * The group at index `2` with no name corresponding to the second letter.
1609 /// * The group at index `3` with name `last` corresponding to the fifth and
1610 /// last letter.
1611 ///
1612 /// Notice that `(?:\w)` was not listed above as a capture group despite it
1613 /// being enclosed in parentheses. That's because `(?:pattern)` is a special
1614 /// syntax that permits grouping but *without* capturing. The reason for not
1615 /// treating it as a capture is that tracking and reporting capture groups
1616 /// requires additional state that may lead to slower searches. So using as few
1617 /// capture groups as possible can help performance. (Although the difference
1618 /// in performance of a couple of capture groups is likely immaterial.)
1619 ///
1620 /// Values with this type are created by [`Regex::captures`] or
1621 /// [`Regex::captures_iter`].
1622 ///
1623 /// `'h` is the lifetime of the haystack that these captures were matched from.
1624 ///
1625 /// # Example
1626 ///
1627 /// ```
1628 /// use regex::bytes::Regex;
1629 ///
1630 /// let re = Regex::new(r"(?<first>\w)(\w)(?:\w)\w(?<last>\w)").unwrap();
1631 /// let caps = re.captures(b"toady").unwrap();
1632 /// assert_eq!(b"toady", &caps[0]);
1633 /// assert_eq!(b"t", &caps["first"]);
1634 /// assert_eq!(b"o", &caps[2]);
1635 /// assert_eq!(b"y", &caps["last"]);
1636 /// ```
1637 pub struct Captures<'h> {
1638     haystack: &'h [u8],
1639     caps: captures::Captures,
1640     static_captures_len: Option<usize>,
1641 }
1642 
1643 impl<'h> Captures<'h> {
1644     /// Returns the `Match` associated with the capture group at index `i`. If
1645     /// `i` does not correspond to a capture group, or if the capture group did
1646     /// not participate in the match, then `None` is returned.
1647     ///
1648     /// When `i == 0`, this is guaranteed to return a non-`None` value.
1649     ///
1650     /// # Examples
1651     ///
1652     /// Get the substring that matched with a default of an empty string if the
1653     /// group didn't participate in the match:
1654     ///
1655     /// ```
1656     /// use regex::bytes::Regex;
1657     ///
1658     /// let re = Regex::new(r"[a-z]+(?:([0-9]+)|([A-Z]+))").unwrap();
1659     /// let caps = re.captures(b"abc123").unwrap();
1660     ///
1661     /// let substr1 = caps.get(1).map_or(&b""[..], |m| m.as_bytes());
1662     /// let substr2 = caps.get(2).map_or(&b""[..], |m| m.as_bytes());
1663     /// assert_eq!(substr1, b"123");
1664     /// assert_eq!(substr2, b"");
1665     /// ```
1666     #[inline]
get(&self, i: usize) -> Option<Match<'h>>1667     pub fn get(&self, i: usize) -> Option<Match<'h>> {
1668         self.caps
1669             .get_group(i)
1670             .map(|sp| Match::new(self.haystack, sp.start, sp.end))
1671     }
1672 
1673     /// Returns the `Match` associated with the capture group named `name`. If
1674     /// `name` isn't a valid capture group or it refers to a group that didn't
1675     /// match, then `None` is returned.
1676     ///
1677     /// Note that unlike `caps["name"]`, this returns a `Match` whose lifetime
1678     /// matches the lifetime of the haystack in this `Captures` value.
1679     /// Conversely, the substring returned by `caps["name"]` has a lifetime
1680     /// of the `Captures` value, which is likely shorter than the lifetime of
1681     /// the haystack. In some cases, it may be necessary to use this method to
1682     /// access the matching substring instead of the `caps["name"]` notation.
1683     ///
1684     /// # Examples
1685     ///
1686     /// Get the substring that matched with a default of an empty string if the
1687     /// group didn't participate in the match:
1688     ///
1689     /// ```
1690     /// use regex::bytes::Regex;
1691     ///
1692     /// let re = Regex::new(
1693     ///     r"[a-z]+(?:(?<numbers>[0-9]+)|(?<letters>[A-Z]+))",
1694     /// ).unwrap();
1695     /// let caps = re.captures(b"abc123").unwrap();
1696     ///
1697     /// let numbers = caps.name("numbers").map_or(&b""[..], |m| m.as_bytes());
1698     /// let letters = caps.name("letters").map_or(&b""[..], |m| m.as_bytes());
1699     /// assert_eq!(numbers, b"123");
1700     /// assert_eq!(letters, b"");
1701     /// ```
1702     #[inline]
name(&self, name: &str) -> Option<Match<'h>>1703     pub fn name(&self, name: &str) -> Option<Match<'h>> {
1704         self.caps
1705             .get_group_by_name(name)
1706             .map(|sp| Match::new(self.haystack, sp.start, sp.end))
1707     }
1708 
1709     /// This is a convenience routine for extracting the substrings
1710     /// corresponding to matching capture groups.
1711     ///
1712     /// This returns a tuple where the first element corresponds to the full
1713     /// substring of the haystack that matched the regex. The second element is
1714     /// an array of substrings, with each corresponding to the to the substring
1715     /// that matched for a particular capture group.
1716     ///
1717     /// # Panics
1718     ///
1719     /// This panics if the number of possible matching groups in this
1720     /// `Captures` value is not fixed to `N` in all circumstances.
1721     /// More precisely, this routine only works when `N` is equivalent to
1722     /// [`Regex::static_captures_len`].
1723     ///
1724     /// Stated more plainly, if the number of matching capture groups in a
1725     /// regex can vary from match to match, then this function always panics.
1726     ///
1727     /// For example, `(a)(b)|(c)` could produce two matching capture groups
1728     /// or one matching capture group for any given match. Therefore, one
1729     /// cannot use `extract` with such a pattern.
1730     ///
1731     /// But a pattern like `(a)(b)|(c)(d)` can be used with `extract` because
1732     /// the number of capture groups in every match is always equivalent,
1733     /// even if the capture _indices_ in each match are not.
1734     ///
1735     /// # Example
1736     ///
1737     /// ```
1738     /// use regex::bytes::Regex;
1739     ///
1740     /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap();
1741     /// let hay = b"On 2010-03-14, I became a Tenneessee lamb.";
1742     /// let Some((full, [year, month, day])) =
1743     ///     re.captures(hay).map(|caps| caps.extract()) else { return };
1744     /// assert_eq!(b"2010-03-14", full);
1745     /// assert_eq!(b"2010", year);
1746     /// assert_eq!(b"03", month);
1747     /// assert_eq!(b"14", day);
1748     /// ```
1749     ///
1750     /// # Example: iteration
1751     ///
1752     /// This example shows how to use this method when iterating over all
1753     /// `Captures` matches in a haystack.
1754     ///
1755     /// ```
1756     /// use regex::bytes::Regex;
1757     ///
1758     /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})").unwrap();
1759     /// let hay = b"1973-01-05, 1975-08-25 and 1980-10-18";
1760     ///
1761     /// let mut dates: Vec<(&[u8], &[u8], &[u8])> = vec![];
1762     /// for (_, [y, m, d]) in re.captures_iter(hay).map(|c| c.extract()) {
1763     ///     dates.push((y, m, d));
1764     /// }
1765     /// assert_eq!(dates, vec![
1766     ///     (&b"1973"[..], &b"01"[..], &b"05"[..]),
1767     ///     (&b"1975"[..], &b"08"[..], &b"25"[..]),
1768     ///     (&b"1980"[..], &b"10"[..], &b"18"[..]),
1769     /// ]);
1770     /// ```
1771     ///
1772     /// # Example: parsing different formats
1773     ///
1774     /// This API is particularly useful when you need to extract a particular
1775     /// value that might occur in a different format. Consider, for example,
1776     /// an identifier that might be in double quotes or single quotes:
1777     ///
1778     /// ```
1779     /// use regex::bytes::Regex;
1780     ///
1781     /// let re = Regex::new(r#"id:(?:"([^"]+)"|'([^']+)')"#).unwrap();
1782     /// let hay = br#"The first is id:"foo" and the second is id:'bar'."#;
1783     /// let mut ids = vec![];
1784     /// for (_, [id]) in re.captures_iter(hay).map(|c| c.extract()) {
1785     ///     ids.push(id);
1786     /// }
1787     /// assert_eq!(ids, vec![b"foo", b"bar"]);
1788     /// ```
extract<const N: usize>(&self) -> (&'h [u8], [&'h [u8]; N])1789     pub fn extract<const N: usize>(&self) -> (&'h [u8], [&'h [u8]; N]) {
1790         let len = self
1791             .static_captures_len
1792             .expect("number of capture groups can vary in a match")
1793             .checked_sub(1)
1794             .expect("number of groups is always greater than zero");
1795         assert_eq!(N, len, "asked for {} groups, but must ask for {}", N, len);
1796         // The regex-automata variant of extract is a bit more permissive.
1797         // It doesn't require the number of matching capturing groups to be
1798         // static, and you can even request fewer groups than what's there. So
1799         // this is guaranteed to never panic because we've asserted above that
1800         // the user has requested precisely the number of groups that must be
1801         // present in any match for this regex.
1802         self.caps.extract_bytes(self.haystack)
1803     }
1804 
1805     /// Expands all instances of `$ref` in `replacement` to the corresponding
1806     /// capture group, and writes them to the `dst` buffer given. A `ref` can
1807     /// be a capture group index or a name. If `ref` doesn't refer to a capture
1808     /// group that participated in the match, then it is replaced with the
1809     /// empty string.
1810     ///
1811     /// # Format
1812     ///
1813     /// The format of the replacement string supports two different kinds of
1814     /// capture references: unbraced and braced.
1815     ///
1816     /// For the unbraced format, the format supported is `$ref` where `name`
1817     /// can be any character in the class `[0-9A-Za-z_]`. `ref` is always
1818     /// the longest possible parse. So for example, `$1a` corresponds to the
1819     /// capture group named `1a` and not the capture group at index `1`. If
1820     /// `ref` matches `^[0-9]+$`, then it is treated as a capture group index
1821     /// itself and not a name.
1822     ///
1823     /// For the braced format, the format supported is `${ref}` where `ref` can
1824     /// be any sequence of bytes except for `}`. If no closing brace occurs,
1825     /// then it is not considered a capture reference. As with the unbraced
1826     /// format, if `ref` matches `^[0-9]+$`, then it is treated as a capture
1827     /// group index and not a name.
1828     ///
1829     /// The braced format is useful for exerting precise control over the name
1830     /// of the capture reference. For example, `${1}a` corresponds to the
1831     /// capture group reference `1` followed by the letter `a`, where as `$1a`
1832     /// (as mentioned above) corresponds to the capture group reference `1a`.
1833     /// The braced format is also useful for expressing capture group names
1834     /// that use characters not supported by the unbraced format. For example,
1835     /// `${foo[bar].baz}` refers to the capture group named `foo[bar].baz`.
1836     ///
1837     /// If a capture group reference is found and it does not refer to a valid
1838     /// capture group, then it will be replaced with the empty string.
1839     ///
1840     /// To write a literal `$`, use `$$`.
1841     ///
1842     /// # Example
1843     ///
1844     /// ```
1845     /// use regex::bytes::Regex;
1846     ///
1847     /// let re = Regex::new(
1848     ///     r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})",
1849     /// ).unwrap();
1850     /// let hay = b"On 14-03-2010, I became a Tenneessee lamb.";
1851     /// let caps = re.captures(hay).unwrap();
1852     ///
1853     /// let mut dst = vec![];
1854     /// caps.expand(b"year=$year, month=$month, day=$day", &mut dst);
1855     /// assert_eq!(dst, b"year=2010, month=03, day=14");
1856     /// ```
1857     #[inline]
expand(&self, replacement: &[u8], dst: &mut Vec<u8>)1858     pub fn expand(&self, replacement: &[u8], dst: &mut Vec<u8>) {
1859         self.caps.interpolate_bytes_into(self.haystack, replacement, dst);
1860     }
1861 
1862     /// Returns an iterator over all capture groups. This includes both
1863     /// matching and non-matching groups.
1864     ///
1865     /// The iterator always yields at least one matching group: the first group
1866     /// (at index `0`) with no name. Subsequent groups are returned in the order
1867     /// of their opening parenthesis in the regex.
1868     ///
1869     /// The elements yielded have type `Option<Match<'h>>`, where a non-`None`
1870     /// value is present if the capture group matches.
1871     ///
1872     /// # Example
1873     ///
1874     /// ```
1875     /// use regex::bytes::Regex;
1876     ///
1877     /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap();
1878     /// let caps = re.captures(b"AZ").unwrap();
1879     ///
1880     /// let mut it = caps.iter();
1881     /// assert_eq!(it.next().unwrap().map(|m| m.as_bytes()), Some(&b"AZ"[..]));
1882     /// assert_eq!(it.next().unwrap().map(|m| m.as_bytes()), Some(&b"A"[..]));
1883     /// assert_eq!(it.next().unwrap().map(|m| m.as_bytes()), None);
1884     /// assert_eq!(it.next().unwrap().map(|m| m.as_bytes()), Some(&b"Z"[..]));
1885     /// assert_eq!(it.next(), None);
1886     /// ```
1887     #[inline]
iter<'c>(&'c self) -> SubCaptureMatches<'c, 'h>1888     pub fn iter<'c>(&'c self) -> SubCaptureMatches<'c, 'h> {
1889         SubCaptureMatches { haystack: self.haystack, it: self.caps.iter() }
1890     }
1891 
1892     /// Returns the total number of capture groups. This includes both
1893     /// matching and non-matching groups.
1894     ///
1895     /// The length returned is always equivalent to the number of elements
1896     /// yielded by [`Captures::iter`]. Consequently, the length is always
1897     /// greater than zero since every `Captures` value always includes the
1898     /// match for the entire regex.
1899     ///
1900     /// # Example
1901     ///
1902     /// ```
1903     /// use regex::bytes::Regex;
1904     ///
1905     /// let re = Regex::new(r"(\w)(\d)?(\w)").unwrap();
1906     /// let caps = re.captures(b"AZ").unwrap();
1907     /// assert_eq!(caps.len(), 4);
1908     /// ```
1909     #[inline]
len(&self) -> usize1910     pub fn len(&self) -> usize {
1911         self.caps.group_len()
1912     }
1913 }
1914 
1915 impl<'h> core::fmt::Debug for Captures<'h> {
fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result1916     fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
1917         /// A little helper type to provide a nice map-like debug
1918         /// representation for our capturing group spans.
1919         ///
1920         /// regex-automata has something similar, but it includes the pattern
1921         /// ID in its debug output, which is confusing. It also doesn't include
1922         /// that strings that match because a regex-automata `Captures` doesn't
1923         /// borrow the haystack.
1924         struct CapturesDebugMap<'a> {
1925             caps: &'a Captures<'a>,
1926         }
1927 
1928         impl<'a> core::fmt::Debug for CapturesDebugMap<'a> {
1929             fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1930                 let mut map = f.debug_map();
1931                 let names =
1932                     self.caps.caps.group_info().pattern_names(PatternID::ZERO);
1933                 for (group_index, maybe_name) in names.enumerate() {
1934                     let key = Key(group_index, maybe_name);
1935                     match self.caps.get(group_index) {
1936                         None => map.entry(&key, &None::<()>),
1937                         Some(mat) => map.entry(&key, &Value(mat)),
1938                     };
1939                 }
1940                 map.finish()
1941             }
1942         }
1943 
1944         struct Key<'a>(usize, Option<&'a str>);
1945 
1946         impl<'a> core::fmt::Debug for Key<'a> {
1947             fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1948                 write!(f, "{}", self.0)?;
1949                 if let Some(name) = self.1 {
1950                     write!(f, "/{:?}", name)?;
1951                 }
1952                 Ok(())
1953             }
1954         }
1955 
1956         struct Value<'a>(Match<'a>);
1957 
1958         impl<'a> core::fmt::Debug for Value<'a> {
1959             fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1960                 use regex_automata::util::escape::DebugHaystack;
1961 
1962                 write!(
1963                     f,
1964                     "{}..{}/{:?}",
1965                     self.0.start(),
1966                     self.0.end(),
1967                     DebugHaystack(self.0.as_bytes())
1968                 )
1969             }
1970         }
1971 
1972         f.debug_tuple("Captures")
1973             .field(&CapturesDebugMap { caps: self })
1974             .finish()
1975     }
1976 }
1977 
1978 /// Get a matching capture group's haystack substring by index.
1979 ///
1980 /// The haystack substring returned can't outlive the `Captures` object if this
1981 /// method is used, because of how `Index` is defined (normally `a[i]` is part
1982 /// of `a` and can't outlive it). To work around this limitation, do that, use
1983 /// [`Captures::get`] instead.
1984 ///
1985 /// `'h` is the lifetime of the matched haystack, but the lifetime of the
1986 /// `&str` returned by this implementation is the lifetime of the `Captures`
1987 /// value itself.
1988 ///
1989 /// # Panics
1990 ///
1991 /// If there is no matching group at the given index.
1992 impl<'h> core::ops::Index<usize> for Captures<'h> {
1993     type Output = [u8];
1994 
1995     // The lifetime is written out to make it clear that the &str returned
1996     // does NOT have a lifetime equivalent to 'h.
index<'a>(&'a self, i: usize) -> &'a [u8]1997     fn index<'a>(&'a self, i: usize) -> &'a [u8] {
1998         self.get(i)
1999             .map(|m| m.as_bytes())
2000             .unwrap_or_else(|| panic!("no group at index '{}'", i))
2001     }
2002 }
2003 
2004 /// Get a matching capture group's haystack substring by name.
2005 ///
2006 /// The haystack substring returned can't outlive the `Captures` object if this
2007 /// method is used, because of how `Index` is defined (normally `a[i]` is part
2008 /// of `a` and can't outlive it). To work around this limitation, do that, use
2009 /// [`Captures::name`] instead.
2010 ///
2011 /// `'h` is the lifetime of the matched haystack, but the lifetime of the
2012 /// `&str` returned by this implementation is the lifetime of the `Captures`
2013 /// value itself.
2014 ///
2015 /// `'n` is the lifetime of the group name used to index the `Captures` value.
2016 ///
2017 /// # Panics
2018 ///
2019 /// If there is no matching group at the given name.
2020 impl<'h, 'n> core::ops::Index<&'n str> for Captures<'h> {
2021     type Output = [u8];
2022 
index<'a>(&'a self, name: &'n str) -> &'a [u8]2023     fn index<'a>(&'a self, name: &'n str) -> &'a [u8] {
2024         self.name(name)
2025             .map(|m| m.as_bytes())
2026             .unwrap_or_else(|| panic!("no group named '{}'", name))
2027     }
2028 }
2029 
2030 /// A low level representation of the byte offsets of each capture group.
2031 ///
2032 /// You can think of this as a lower level [`Captures`], where this type does
2033 /// not support named capturing groups directly and it does not borrow the
2034 /// haystack that these offsets were matched on.
2035 ///
2036 /// Primarily, this type is useful when using the lower level `Regex` APIs such
2037 /// as [`Regex::captures_read`], which permits amortizing the allocation in
2038 /// which capture match offsets are stored.
2039 ///
2040 /// In order to build a value of this type, you'll need to call the
2041 /// [`Regex::capture_locations`] method. The value returned can then be reused
2042 /// in subsequent searches for that regex. Using it for other regexes may
2043 /// result in a panic or otherwise incorrect results.
2044 ///
2045 /// # Example
2046 ///
2047 /// This example shows how to create and use `CaptureLocations` in a search.
2048 ///
2049 /// ```
2050 /// use regex::bytes::Regex;
2051 ///
2052 /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
2053 /// let mut locs = re.capture_locations();
2054 /// let m = re.captures_read(&mut locs, b"Bruce Springsteen").unwrap();
2055 /// assert_eq!(0..17, m.range());
2056 /// assert_eq!(Some((0, 17)), locs.get(0));
2057 /// assert_eq!(Some((0, 5)), locs.get(1));
2058 /// assert_eq!(Some((6, 17)), locs.get(2));
2059 ///
2060 /// // Asking for an invalid capture group always returns None.
2061 /// assert_eq!(None, locs.get(3));
2062 /// # // literals are too big for 32-bit usize: #1041
2063 /// # #[cfg(target_pointer_width = "64")]
2064 /// assert_eq!(None, locs.get(34973498648));
2065 /// # #[cfg(target_pointer_width = "64")]
2066 /// assert_eq!(None, locs.get(9944060567225171988));
2067 /// ```
2068 #[derive(Clone, Debug)]
2069 pub struct CaptureLocations(captures::Captures);
2070 
2071 /// A type alias for `CaptureLocations` for backwards compatibility.
2072 ///
2073 /// Previously, we exported `CaptureLocations` as `Locations` in an
2074 /// undocumented API. To prevent breaking that code (e.g., in `regex-capi`),
2075 /// we continue re-exporting the same undocumented API.
2076 #[doc(hidden)]
2077 pub type Locations = CaptureLocations;
2078 
2079 impl CaptureLocations {
2080     /// Returns the start and end byte offsets of the capture group at index
2081     /// `i`. This returns `None` if `i` is not a valid capture group or if the
2082     /// capture group did not match.
2083     ///
2084     /// # Example
2085     ///
2086     /// ```
2087     /// use regex::bytes::Regex;
2088     ///
2089     /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
2090     /// let mut locs = re.capture_locations();
2091     /// re.captures_read(&mut locs, b"Bruce Springsteen").unwrap();
2092     /// assert_eq!(Some((0, 17)), locs.get(0));
2093     /// assert_eq!(Some((0, 5)), locs.get(1));
2094     /// assert_eq!(Some((6, 17)), locs.get(2));
2095     /// ```
2096     #[inline]
get(&self, i: usize) -> Option<(usize, usize)>2097     pub fn get(&self, i: usize) -> Option<(usize, usize)> {
2098         self.0.get_group(i).map(|sp| (sp.start, sp.end))
2099     }
2100 
2101     /// Returns the total number of capture groups (even if they didn't match).
2102     /// That is, the length returned is unaffected by the result of a search.
2103     ///
2104     /// This is always at least `1` since every regex has at least `1`
2105     /// capturing group that corresponds to the entire match.
2106     ///
2107     /// # Example
2108     ///
2109     /// ```
2110     /// use regex::bytes::Regex;
2111     ///
2112     /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)").unwrap();
2113     /// let mut locs = re.capture_locations();
2114     /// assert_eq!(3, locs.len());
2115     /// re.captures_read(&mut locs, b"Bruce Springsteen").unwrap();
2116     /// assert_eq!(3, locs.len());
2117     /// ```
2118     ///
2119     /// Notice that the length is always at least `1`, regardless of the regex:
2120     ///
2121     /// ```
2122     /// use regex::bytes::Regex;
2123     ///
2124     /// let re = Regex::new(r"").unwrap();
2125     /// let locs = re.capture_locations();
2126     /// assert_eq!(1, locs.len());
2127     ///
2128     /// // [a&&b] is a regex that never matches anything.
2129     /// let re = Regex::new(r"[a&&b]").unwrap();
2130     /// let locs = re.capture_locations();
2131     /// assert_eq!(1, locs.len());
2132     /// ```
2133     #[inline]
len(&self) -> usize2134     pub fn len(&self) -> usize {
2135         // self.0.group_len() returns 0 if the underlying captures doesn't
2136         // represent a match, but the behavior guaranteed for this method is
2137         // that the length doesn't change based on a match or not.
2138         self.0.group_info().group_len(PatternID::ZERO)
2139     }
2140 
2141     /// An alias for the `get` method for backwards compatibility.
2142     ///
2143     /// Previously, we exported `get` as `pos` in an undocumented API. To
2144     /// prevent breaking that code (e.g., in `regex-capi`), we continue
2145     /// re-exporting the same undocumented API.
2146     #[doc(hidden)]
2147     #[inline]
pos(&self, i: usize) -> Option<(usize, usize)>2148     pub fn pos(&self, i: usize) -> Option<(usize, usize)> {
2149         self.get(i)
2150     }
2151 }
2152 
2153 /// An iterator over all non-overlapping matches in a haystack.
2154 ///
2155 /// This iterator yields [`Match`] values. The iterator stops when no more
2156 /// matches can be found.
2157 ///
2158 /// `'r` is the lifetime of the compiled regular expression and `'h` is the
2159 /// lifetime of the haystack.
2160 ///
2161 /// This iterator is created by [`Regex::find_iter`].
2162 ///
2163 /// # Time complexity
2164 ///
2165 /// Note that since an iterator runs potentially many searches on the haystack
2166 /// and since each search has worst case `O(m * n)` time complexity, the
2167 /// overall worst case time complexity for iteration is `O(m * n^2)`.
2168 #[derive(Debug)]
2169 pub struct Matches<'r, 'h> {
2170     haystack: &'h [u8],
2171     it: meta::FindMatches<'r, 'h>,
2172 }
2173 
2174 impl<'r, 'h> Iterator for Matches<'r, 'h> {
2175     type Item = Match<'h>;
2176 
2177     #[inline]
next(&mut self) -> Option<Match<'h>>2178     fn next(&mut self) -> Option<Match<'h>> {
2179         self.it
2180             .next()
2181             .map(|sp| Match::new(self.haystack, sp.start(), sp.end()))
2182     }
2183 
2184     #[inline]
count(self) -> usize2185     fn count(self) -> usize {
2186         // This can actually be up to 2x faster than calling `next()` until
2187         // completion, because counting matches when using a DFA only requires
2188         // finding the end of each match. But returning a `Match` via `next()`
2189         // requires the start of each match which, with a DFA, requires a
2190         // reverse forward scan to find it.
2191         self.it.count()
2192     }
2193 }
2194 
2195 impl<'r, 'h> core::iter::FusedIterator for Matches<'r, 'h> {}
2196 
2197 /// An iterator over all non-overlapping capture matches in a haystack.
2198 ///
2199 /// This iterator yields [`Captures`] values. The iterator stops when no more
2200 /// matches can be found.
2201 ///
2202 /// `'r` is the lifetime of the compiled regular expression and `'h` is the
2203 /// lifetime of the matched string.
2204 ///
2205 /// This iterator is created by [`Regex::captures_iter`].
2206 ///
2207 /// # Time complexity
2208 ///
2209 /// Note that since an iterator runs potentially many searches on the haystack
2210 /// and since each search has worst case `O(m * n)` time complexity, the
2211 /// overall worst case time complexity for iteration is `O(m * n^2)`.
2212 #[derive(Debug)]
2213 pub struct CaptureMatches<'r, 'h> {
2214     haystack: &'h [u8],
2215     it: meta::CapturesMatches<'r, 'h>,
2216 }
2217 
2218 impl<'r, 'h> Iterator for CaptureMatches<'r, 'h> {
2219     type Item = Captures<'h>;
2220 
2221     #[inline]
next(&mut self) -> Option<Captures<'h>>2222     fn next(&mut self) -> Option<Captures<'h>> {
2223         let static_captures_len = self.it.regex().static_captures_len();
2224         self.it.next().map(|caps| Captures {
2225             haystack: self.haystack,
2226             caps,
2227             static_captures_len,
2228         })
2229     }
2230 
2231     #[inline]
count(self) -> usize2232     fn count(self) -> usize {
2233         // This can actually be up to 2x faster than calling `next()` until
2234         // completion, because counting matches when using a DFA only requires
2235         // finding the end of each match. But returning a `Match` via `next()`
2236         // requires the start of each match which, with a DFA, requires a
2237         // reverse forward scan to find it.
2238         self.it.count()
2239     }
2240 }
2241 
2242 impl<'r, 'h> core::iter::FusedIterator for CaptureMatches<'r, 'h> {}
2243 
2244 /// An iterator over all substrings delimited by a regex match.
2245 ///
2246 /// `'r` is the lifetime of the compiled regular expression and `'h` is the
2247 /// lifetime of the byte string being split.
2248 ///
2249 /// This iterator is created by [`Regex::split`].
2250 ///
2251 /// # Time complexity
2252 ///
2253 /// Note that since an iterator runs potentially many searches on the haystack
2254 /// and since each search has worst case `O(m * n)` time complexity, the
2255 /// overall worst case time complexity for iteration is `O(m * n^2)`.
2256 #[derive(Debug)]
2257 pub struct Split<'r, 'h> {
2258     haystack: &'h [u8],
2259     it: meta::Split<'r, 'h>,
2260 }
2261 
2262 impl<'r, 'h> Iterator for Split<'r, 'h> {
2263     type Item = &'h [u8];
2264 
2265     #[inline]
next(&mut self) -> Option<&'h [u8]>2266     fn next(&mut self) -> Option<&'h [u8]> {
2267         self.it.next().map(|span| &self.haystack[span])
2268     }
2269 }
2270 
2271 impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {}
2272 
2273 /// An iterator over at most `N` substrings delimited by a regex match.
2274 ///
2275 /// The last substring yielded by this iterator will be whatever remains after
2276 /// `N-1` splits.
2277 ///
2278 /// `'r` is the lifetime of the compiled regular expression and `'h` is the
2279 /// lifetime of the byte string being split.
2280 ///
2281 /// This iterator is created by [`Regex::splitn`].
2282 ///
2283 /// # Time complexity
2284 ///
2285 /// Note that since an iterator runs potentially many searches on the haystack
2286 /// and since each search has worst case `O(m * n)` time complexity, the
2287 /// overall worst case time complexity for iteration is `O(m * n^2)`.
2288 ///
2289 /// Although note that the worst case time here has an upper bound given
2290 /// by the `limit` parameter to [`Regex::splitn`].
2291 #[derive(Debug)]
2292 pub struct SplitN<'r, 'h> {
2293     haystack: &'h [u8],
2294     it: meta::SplitN<'r, 'h>,
2295 }
2296 
2297 impl<'r, 'h> Iterator for SplitN<'r, 'h> {
2298     type Item = &'h [u8];
2299 
2300     #[inline]
next(&mut self) -> Option<&'h [u8]>2301     fn next(&mut self) -> Option<&'h [u8]> {
2302         self.it.next().map(|span| &self.haystack[span])
2303     }
2304 
2305     #[inline]
size_hint(&self) -> (usize, Option<usize>)2306     fn size_hint(&self) -> (usize, Option<usize>) {
2307         self.it.size_hint()
2308     }
2309 }
2310 
2311 impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {}
2312 
2313 /// An iterator over the names of all capture groups in a regex.
2314 ///
2315 /// This iterator yields values of type `Option<&str>` in order of the opening
2316 /// capture group parenthesis in the regex pattern. `None` is yielded for
2317 /// groups with no name. The first element always corresponds to the implicit
2318 /// and unnamed group for the overall match.
2319 ///
2320 /// `'r` is the lifetime of the compiled regular expression.
2321 ///
2322 /// This iterator is created by [`Regex::capture_names`].
2323 #[derive(Clone, Debug)]
2324 pub struct CaptureNames<'r>(captures::GroupInfoPatternNames<'r>);
2325 
2326 impl<'r> Iterator for CaptureNames<'r> {
2327     type Item = Option<&'r str>;
2328 
2329     #[inline]
next(&mut self) -> Option<Option<&'r str>>2330     fn next(&mut self) -> Option<Option<&'r str>> {
2331         self.0.next()
2332     }
2333 
2334     #[inline]
size_hint(&self) -> (usize, Option<usize>)2335     fn size_hint(&self) -> (usize, Option<usize>) {
2336         self.0.size_hint()
2337     }
2338 
2339     #[inline]
count(self) -> usize2340     fn count(self) -> usize {
2341         self.0.count()
2342     }
2343 }
2344 
2345 impl<'r> ExactSizeIterator for CaptureNames<'r> {}
2346 
2347 impl<'r> core::iter::FusedIterator for CaptureNames<'r> {}
2348 
2349 /// An iterator over all group matches in a [`Captures`] value.
2350 ///
2351 /// This iterator yields values of type `Option<Match<'h>>`, where `'h` is the
2352 /// lifetime of the haystack that the matches are for. The order of elements
2353 /// yielded corresponds to the order of the opening parenthesis for the group
2354 /// in the regex pattern. `None` is yielded for groups that did not participate
2355 /// in the match.
2356 ///
2357 /// The first element always corresponds to the implicit group for the overall
2358 /// match. Since this iterator is created by a [`Captures`] value, and a
2359 /// `Captures` value is only created when a match occurs, it follows that the
2360 /// first element yielded by this iterator is guaranteed to be non-`None`.
2361 ///
2362 /// The lifetime `'c` corresponds to the lifetime of the `Captures` value that
2363 /// created this iterator, and the lifetime `'h` corresponds to the originally
2364 /// matched haystack.
2365 #[derive(Clone, Debug)]
2366 pub struct SubCaptureMatches<'c, 'h> {
2367     haystack: &'h [u8],
2368     it: captures::CapturesPatternIter<'c>,
2369 }
2370 
2371 impl<'c, 'h> Iterator for SubCaptureMatches<'c, 'h> {
2372     type Item = Option<Match<'h>>;
2373 
2374     #[inline]
next(&mut self) -> Option<Option<Match<'h>>>2375     fn next(&mut self) -> Option<Option<Match<'h>>> {
2376         self.it.next().map(|group| {
2377             group.map(|sp| Match::new(self.haystack, sp.start, sp.end))
2378         })
2379     }
2380 
2381     #[inline]
size_hint(&self) -> (usize, Option<usize>)2382     fn size_hint(&self) -> (usize, Option<usize>) {
2383         self.it.size_hint()
2384     }
2385 
2386     #[inline]
count(self) -> usize2387     fn count(self) -> usize {
2388         self.it.count()
2389     }
2390 }
2391 
2392 impl<'c, 'h> ExactSizeIterator for SubCaptureMatches<'c, 'h> {}
2393 
2394 impl<'c, 'h> core::iter::FusedIterator for SubCaptureMatches<'c, 'h> {}
2395 
2396 /// A trait for types that can be used to replace matches in a haystack.
2397 ///
2398 /// In general, users of this crate shouldn't need to implement this trait,
2399 /// since implementations are already provided for `&[u8]` along with other
2400 /// variants of byte string types, as well as `FnMut(&Captures) -> Vec<u8>` (or
2401 /// any `FnMut(&Captures) -> T` where `T: AsRef<[u8]>`). Those cover most use
2402 /// cases, but callers can implement this trait directly if necessary.
2403 ///
2404 /// # Example
2405 ///
2406 /// This example shows a basic implementation of the `Replacer` trait. This can
2407 /// be done much more simply using the replacement byte string interpolation
2408 /// support (e.g., `$first $last`), but this approach avoids needing to parse
2409 /// the replacement byte string at all.
2410 ///
2411 /// ```
2412 /// use regex::bytes::{Captures, Regex, Replacer};
2413 ///
2414 /// struct NameSwapper;
2415 ///
2416 /// impl Replacer for NameSwapper {
2417 ///     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) {
2418 ///         dst.extend_from_slice(&caps["first"]);
2419 ///         dst.extend_from_slice(b" ");
2420 ///         dst.extend_from_slice(&caps["last"]);
2421 ///     }
2422 /// }
2423 ///
2424 /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)").unwrap();
2425 /// let result = re.replace(b"Springsteen, Bruce", NameSwapper);
2426 /// assert_eq!(result, &b"Bruce Springsteen"[..]);
2427 /// ```
2428 pub trait Replacer {
2429     /// Appends possibly empty data to `dst` to replace the current match.
2430     ///
2431     /// The current match is represented by `caps`, which is guaranteed to have
2432     /// a match at capture group `0`.
2433     ///
2434     /// For example, a no-op replacement would be
2435     /// `dst.extend_from_slice(&caps[0])`.
replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>)2436     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>);
2437 
2438     /// Return a fixed unchanging replacement byte string.
2439     ///
2440     /// When doing replacements, if access to [`Captures`] is not needed (e.g.,
2441     /// the replacement byte string does not need `$` expansion), then it can
2442     /// be beneficial to avoid finding sub-captures.
2443     ///
2444     /// In general, this is called once for every call to a replacement routine
2445     /// such as [`Regex::replace_all`].
no_expansion<'r>(&'r mut self) -> Option<Cow<'r, [u8]>>2446     fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, [u8]>> {
2447         None
2448     }
2449 
2450     /// Returns a type that implements `Replacer`, but that borrows and wraps
2451     /// this `Replacer`.
2452     ///
2453     /// This is useful when you want to take a generic `Replacer` (which might
2454     /// not be cloneable) and use it without consuming it, so it can be used
2455     /// more than once.
2456     ///
2457     /// # Example
2458     ///
2459     /// ```
2460     /// use regex::bytes::{Regex, Replacer};
2461     ///
2462     /// fn replace_all_twice<R: Replacer>(
2463     ///     re: Regex,
2464     ///     src: &[u8],
2465     ///     mut rep: R,
2466     /// ) -> Vec<u8> {
2467     ///     let dst = re.replace_all(src, rep.by_ref());
2468     ///     let dst = re.replace_all(&dst, rep.by_ref());
2469     ///     dst.into_owned()
2470     /// }
2471     /// ```
by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self>2472     fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self> {
2473         ReplacerRef(self)
2474     }
2475 }
2476 
2477 impl<'a, const N: usize> Replacer for &'a [u8; N] {
replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>)2478     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) {
2479         caps.expand(&**self, dst);
2480     }
2481 
no_expansion(&mut self) -> Option<Cow<'_, [u8]>>2482     fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> {
2483         no_expansion(self)
2484     }
2485 }
2486 
2487 impl<const N: usize> Replacer for [u8; N] {
replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>)2488     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) {
2489         caps.expand(&*self, dst);
2490     }
2491 
no_expansion(&mut self) -> Option<Cow<'_, [u8]>>2492     fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> {
2493         no_expansion(self)
2494     }
2495 }
2496 
2497 impl<'a> Replacer for &'a [u8] {
replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>)2498     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) {
2499         caps.expand(*self, dst);
2500     }
2501 
no_expansion(&mut self) -> Option<Cow<'_, [u8]>>2502     fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> {
2503         no_expansion(self)
2504     }
2505 }
2506 
2507 impl<'a> Replacer for &'a Vec<u8> {
replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>)2508     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) {
2509         caps.expand(*self, dst);
2510     }
2511 
no_expansion(&mut self) -> Option<Cow<'_, [u8]>>2512     fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> {
2513         no_expansion(self)
2514     }
2515 }
2516 
2517 impl Replacer for Vec<u8> {
replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>)2518     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) {
2519         caps.expand(self, dst);
2520     }
2521 
no_expansion(&mut self) -> Option<Cow<'_, [u8]>>2522     fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> {
2523         no_expansion(self)
2524     }
2525 }
2526 
2527 impl<'a> Replacer for Cow<'a, [u8]> {
replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>)2528     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) {
2529         caps.expand(self.as_ref(), dst);
2530     }
2531 
no_expansion(&mut self) -> Option<Cow<'_, [u8]>>2532     fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> {
2533         no_expansion(self)
2534     }
2535 }
2536 
2537 impl<'a> Replacer for &'a Cow<'a, [u8]> {
replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>)2538     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) {
2539         caps.expand(self.as_ref(), dst);
2540     }
2541 
no_expansion(&mut self) -> Option<Cow<'_, [u8]>>2542     fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> {
2543         no_expansion(self)
2544     }
2545 }
2546 
2547 impl<F, T> Replacer for F
2548 where
2549     F: FnMut(&Captures<'_>) -> T,
2550     T: AsRef<[u8]>,
2551 {
replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>)2552     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) {
2553         dst.extend_from_slice((*self)(caps).as_ref());
2554     }
2555 }
2556 
2557 /// A by-reference adaptor for a [`Replacer`].
2558 ///
2559 /// This permits reusing the same `Replacer` value in multiple calls to a
2560 /// replacement routine like [`Regex::replace_all`].
2561 ///
2562 /// This type is created by [`Replacer::by_ref`].
2563 #[derive(Debug)]
2564 pub struct ReplacerRef<'a, R: ?Sized>(&'a mut R);
2565 
2566 impl<'a, R: Replacer + ?Sized + 'a> Replacer for ReplacerRef<'a, R> {
replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>)2567     fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>) {
2568         self.0.replace_append(caps, dst)
2569     }
2570 
no_expansion<'r>(&'r mut self) -> Option<Cow<'r, [u8]>>2571     fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, [u8]>> {
2572         self.0.no_expansion()
2573     }
2574 }
2575 
2576 /// A helper type for forcing literal string replacement.
2577 ///
2578 /// It can be used with routines like [`Regex::replace`] and
2579 /// [`Regex::replace_all`] to do a literal string replacement without expanding
2580 /// `$name` to their corresponding capture groups. This can be both convenient
2581 /// (to avoid escaping `$`, for example) and faster (since capture groups
2582 /// don't need to be found).
2583 ///
2584 /// `'s` is the lifetime of the literal string to use.
2585 ///
2586 /// # Example
2587 ///
2588 /// ```
2589 /// use regex::bytes::{NoExpand, Regex};
2590 ///
2591 /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)").unwrap();
2592 /// let result = re.replace(b"Springsteen, Bruce", NoExpand(b"$2 $last"));
2593 /// assert_eq!(result, &b"$2 $last"[..]);
2594 /// ```
2595 #[derive(Clone, Debug)]
2596 pub struct NoExpand<'s>(pub &'s [u8]);
2597 
2598 impl<'s> Replacer for NoExpand<'s> {
replace_append(&mut self, _: &Captures<'_>, dst: &mut Vec<u8>)2599     fn replace_append(&mut self, _: &Captures<'_>, dst: &mut Vec<u8>) {
2600         dst.extend_from_slice(self.0);
2601     }
2602 
no_expansion(&mut self) -> Option<Cow<'_, [u8]>>2603     fn no_expansion(&mut self) -> Option<Cow<'_, [u8]>> {
2604         Some(Cow::Borrowed(self.0))
2605     }
2606 }
2607 
2608 /// Quickly checks the given replacement string for whether interpolation
2609 /// should be done on it. It returns `None` if a `$` was found anywhere in the
2610 /// given string, which suggests interpolation needs to be done. But if there's
2611 /// no `$` anywhere, then interpolation definitely does not need to be done. In
2612 /// that case, the given string is returned as a borrowed `Cow`.
2613 ///
2614 /// This is meant to be used to implement the `Replacer::no_expandsion` method
2615 /// in its various trait impls.
no_expansion<T: AsRef<[u8]>>(replacement: &T) -> Option<Cow<'_, [u8]>>2616 fn no_expansion<T: AsRef<[u8]>>(replacement: &T) -> Option<Cow<'_, [u8]>> {
2617     let replacement = replacement.as_ref();
2618     match crate::find_byte::find_byte(b'$', replacement) {
2619         Some(_) => None,
2620         None => Some(Cow::Borrowed(replacement)),
2621     }
2622 }
2623