xref: /aosp_15_r20/external/executorch/examples/qualcomm/scripts/inception_v3.py (revision 523fa7a60841cd1ecfb9cc4201f1ca8b03ed023a)
1# Copyright (c) Qualcomm Innovation Center, Inc.
2# All rights reserved
3#
4# This source code is licensed under the BSD-style license found in the
5# LICENSE file in the root directory of this source tree.
6
7import json
8import os
9from multiprocessing.connection import Client
10
11import numpy as np
12
13import torch
14from executorch.backends.qualcomm.quantizer.quantizer import QuantDtype
15from executorch.examples.models.inception_v3.model import InceptionV3Model
16from executorch.examples.qualcomm.utils import (
17    build_executorch_binary,
18    get_imagenet_dataset,
19    make_output_dir,
20    parse_skip_delegation_node,
21    setup_common_args_and_variables,
22    SimpleADB,
23    topk_accuracy,
24)
25
26
27def main(args):
28    skip_node_id_set, skip_node_op_set = parse_skip_delegation_node(args)
29
30    # ensure the working directory exist.
31    os.makedirs(args.artifact, exist_ok=True)
32
33    if not args.compile_only and args.device is None:
34        raise RuntimeError(
35            "device serial is required if not compile only. "
36            "Please specify a device serial by -s/--device argument."
37        )
38
39    data_num = 100
40    if args.compile_only:
41        inputs = [(torch.rand(1, 3, 224, 224),)]
42    else:
43        inputs, targets, input_list = get_imagenet_dataset(
44            dataset_path=f"{args.dataset}",
45            data_size=data_num,
46            image_shape=(256, 256),
47            crop_size=224,
48        )
49    pte_filename = "ic3_qnn_q8"
50    instance = InceptionV3Model()
51    build_executorch_binary(
52        instance.get_eager_model().eval(),
53        instance.get_example_inputs(),
54        args.model,
55        f"{args.artifact}/{pte_filename}",
56        inputs,
57        skip_node_id_set=skip_node_id_set,
58        skip_node_op_set=skip_node_op_set,
59        quant_dtype=QuantDtype.use_8a8w,
60        shared_buffer=args.shared_buffer,
61    )
62
63    if args.compile_only:
64        return
65
66    adb = SimpleADB(
67        qnn_sdk=os.getenv("QNN_SDK_ROOT"),
68        build_path=f"{args.build_folder}",
69        pte_path=f"{args.artifact}/{pte_filename}.pte",
70        workspace=f"/data/local/tmp/executorch/{pte_filename}",
71        device_id=args.device,
72        host_id=args.host,
73        soc_model=args.model,
74        shared_buffer=args.shared_buffer,
75    )
76    adb.push(inputs=inputs, input_list=input_list)
77    adb.execute()
78
79    # collect output data
80    output_data_folder = f"{args.artifact}/outputs"
81    make_output_dir(output_data_folder)
82
83    adb.pull(output_path=args.artifact)
84
85    # top-k analysis
86    predictions = []
87    for i in range(data_num):
88        predictions.append(
89            np.fromfile(
90                os.path.join(output_data_folder, f"output_{i}_0.raw"), dtype=np.float32
91            )
92        )
93
94    k_val = [1, 5]
95    topk = [topk_accuracy(predictions, targets, k).item() for k in k_val]
96    if args.ip and args.port != -1:
97        with Client((args.ip, args.port)) as conn:
98            conn.send(json.dumps({f"top_{k}": topk[i] for i, k in enumerate(k_val)}))
99    else:
100        for i, k in enumerate(k_val):
101            print(f"top_{k}->{topk[i]}%")
102
103
104if __name__ == "__main__":
105    parser = setup_common_args_and_variables()
106
107    parser.add_argument(
108        "-d",
109        "--dataset",
110        help=(
111            "path to the validation folder of ImageNet dataset. "
112            "e.g. --dataset imagenet-mini/val "
113            "for https://www.kaggle.com/datasets/ifigotin/imagenetmini-1000)"
114        ),
115        type=str,
116        required=False,
117    )
118
119    parser.add_argument(
120        "-a",
121        "--artifact",
122        help="path for storing generated artifacts by this example. "
123        "Default ./inception_v3",
124        default="./inception_v3",
125        type=str,
126    )
127
128    args = parser.parse_args()
129    try:
130        main(args)
131    except Exception as e:
132        if args.ip and args.port != -1:
133            with Client((args.ip, args.port)) as conn:
134                conn.send(json.dumps({"Error": str(e)}))
135        else:
136            raise Exception(e)
137