/aosp_15_r20/external/tensorflow/tensorflow/tools/compatibility/ |
H A D | renames_v2.py | 1397 'tf.train.AdadeltaOptimizer': 1398 'tf.compat.v1.train.AdadeltaOptimizer', 1399 'tf.train.AdagradDAOptimizer': 1400 'tf.compat.v1.train.AdagradDAOptimizer', 1401 'tf.train.AdagradOptimizer': 1402 'tf.compat.v1.train.AdagradOptimizer', 1403 'tf.train.AdamOptimizer': 1404 'tf.compat.v1.train.AdamOptimizer', 1405 'tf.train.CheckpointSaverHook': 1407 'tf.train.CheckpointSaverListener': [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/training/ |
H A D | training.py | 18 See the [Training](https://tensorflow.org/api_guides/python/train) guide. 130 tf_export("train.BytesList")(BytesList) 131 tf_export("train.ClusterDef")(ClusterDef) 132 tf_export("train.Example")(Example) 133 tf_export("train.Feature")(Feature) 134 tf_export("train.Features")(Features) 135 tf_export("train.FeatureList")(FeatureList) 136 tf_export("train.FeatureLists")(FeatureLists) 137 tf_export("train.FloatList")(FloatList) 138 tf_export("train.Int64List")(Int64List) [all …]
|
H A D | server_lib.py | 29 """Creates a `tf.train.ServerDef` protocol buffer. 32 server_or_cluster_def: A `tf.train.ServerDef` or `tf.train.ClusterDef` 33 protocol buffer, or a `tf.train.ClusterSpec` object, describing the server 47 A `tf.train.ServerDef`. 69 "`tf.train.ServerDef` or `tf.train.ClusterSpec`.") 94 @tf_export("distribute.Server", v1=["distribute.Server", "train.Server"]) 95 @deprecation.deprecated_endpoints("train.Server") 102 cluster (specified by a `tf.train.ClusterSpec`), and 120 server_or_cluster_def: A `tf.train.ServerDef` or `tf.train.ClusterDef` 121 protocol buffer, or a `tf.train.ClusterSpec` object, describing the [all …]
|
H A D | saver.py | 144 # of a V2 checkpoint: e.g. "/fs/train/ckpt-<step>/tmp/worker<i>-<step>". 262 # <train dir>/myckpt_temp/ 267 # <train dir>/ 275 # "<train dir>/myckpt" in this case. Save() and Restore() work with the 547 # - Extend the inference graph to a train graph. 638 @tf_export(v1=["train.Saver"]) 644 `tf.compat.v1.train.Saver` is not supported for saving and restoring 645 checkpoints in TF2. Please switch to `tf.train.Checkpoint` or 654 You can load a name-based checkpoint written by `tf.compat.v1.train.Saver` 655 using `tf.train.Checkpoint.restore` or `tf.keras.Model.load_weights`. However, [all …]
|
H A D | moving_averages.py | 32 @tf_export("__internal__.train.assign_moving_average", v1=[]) 281 @tf_export("train.ExponentialMovingAverage") 339 ema = tf.train.ExponentialMovingAverage(decay=0.9999) 358 ...train the model by running train_step multiple times... 368 weights and restore them before continuing to train. You can see the 373 `tf.train.Checkpoint`. At evaluation time, create your shadow variables and 374 use `tf.train.Checkpoint` to restore the moving averages into the shadow 377 3. Checkpoint out your moving average variables in your `tf.train.Checkpoint`. 397 ema = tf.train.ExponentialMovingAverage(decay=0.9999) 403 checkpoint = tf.train.Checkpoint(model_weights=[var0, var1], [all …]
|
H A D | training_util.py | 36 @tf_export(v1=['train.global_step']) 48 print('global_step: %s' % tf.compat.v1.train.global_step(sess, 67 @tf_export(v1=['train.get_global_step']) 111 ... global_step = tf.compat.v1.train.get_or_create_global_step() 113 ... optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1) 126 ... print(sess.run(tf.compat.v1.train.get_global_step())) 161 @tf_export(v1=['train.create_global_step']) 202 ... global_step = tf.compat.v1.train.create_global_step() 204 ... optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1) 255 @tf_export(v1=['train.get_or_create_global_step']) [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/checkpoint/ |
H A D | checkpoint.py | 203 log_fn("Detecting that an object or model or tf.train.Checkpoint is being" 207 "https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restore" 230 `tf.train.latest_checkpoint`. 515 tf.train.latest_checkpoint(checkpoint_directory)) 524 `tf.train.latest_checkpoint`. 727 "you. As a workaround, consider either using tf.train.Checkpoint to " 893 being restored by a later call to `tf.train.Checkpoint.restore()`. 975 `tf.train.Checkpoint.restore()`. 999 "Restoring a name-based tf.train.Saver checkpoint using the object-based " 1026 checkpoint saved with train.Saver(), and restored with train.Checkpoint(): [all …]
|
H A D | checkpoint_management.py | 62 @tf_export(v1=["train.generate_checkpoint_state_proto"]) 82 `tf.train.CheckpointManager` for an implementation). 129 instructions=("Use `tf.train.CheckpointManager` to manage checkpoints " 131 @tf_export(v1=["train.update_checkpoint_state"]) 158 `tf.train.CheckpointManager` for an implementation). 173 @tf_export("__internal__.train.update_checkpoint_state", v1=[]) 203 `tf.train.CheckpointManager` for an implementation). 248 @tf_export("train.get_checkpoint_state") 326 @tf_export("train.latest_checkpoint") 333 using `v1.train.Saver.save` [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | Dropout.cpp | 62 Ctype<inplace> _dropout_impl(T& input, double p, bool train) { in _dropout_impl() argument 64 if (p == 0 || !train || input.sym_numel() == 0) { in _dropout_impl() 105 native_dropout_cpu(const Tensor& input, double p, std::optional<bool> train) { in native_dropout_cpu() argument 113 if (!train.has_value() || *train) { in native_dropout_cpu() 132 Tensor dropout(const Tensor& input, double p, bool train) { in dropout() argument 138 if (input.is_nested() || (train && is_fused_kernel_acceptable(input, p))) { in dropout() 139 return std::get<0>(at::native_dropout(input, p, train)); in dropout() 141 return _dropout<false>(input, p, train); in dropout() 147 Tensor& dropout_(Tensor& input, double p, bool train) { in dropout_() argument 148 return _dropout<true>(input, p, train); in dropout_() [all …]
|
H A D | Normalization.cpp | 139 bool train, double eps, Tensor& output) { in batch_norm_cpu_transform_input_template() argument 152 save_mean, save_invstd, running_mean, running_var, train, eps); in batch_norm_cpu_transform_input_template() 168 auto mean = as_nd(train ? save_mean : running_mean); in batch_norm_cpu_transform_input_template() 170 if (train) { in batch_norm_cpu_transform_input_template() 306 bool train, double eps, std::array<bool,3> grad_input_mask) { in batch_norm_backward_cpu_template() argument 337 grad_out_, input, weight, running_mean, running_var, save_mean, save_invstd, train, eps); in batch_norm_backward_cpu_template() 379 .add_const_input(train ? input : grad_out_) in batch_norm_backward_cpu_template() 383 if (train) { in batch_norm_backward_cpu_template() 410 if (train) { in batch_norm_backward_cpu_template() 430 if (train) { in batch_norm_backward_cpu_template() [all …]
|
H A D | RNN.cpp | 1071 return at::dropout(input, p, /*train=*/true); in dropout() 1075 return {at::dropout(input.data, p, /*train=*/true), input.batch_sizes}; in dropout() 1082 int64_t num_layers, double dropout_p, bool train) { in apply_layer_stack() argument 1095 if (dropout_p != 0 && train && l < num_layers - 1) { in apply_layer_stack() 1112 int64_t num_layers, double dropout_p, bool train, bool bidirectional) { in _rnn_impl() argument 1117 …_stack(BidirLayer{cell}, input, pair_vec(hiddens), pair_vec(params), num_layers, dropout_p, train); in _rnn_impl() 1120 …stack(LayerT<hidden_type,cell_params>{cell}, input, hiddens, params, num_layers, dropout_p, train); in _rnn_impl() 1129 int64_t num_layers, double dropout_p, bool train, bool bidirectional) { in _rnn_impl_with_concat() argument 1130 …ellType, LayerT, BidirLayerT>(input, params, hiddens, num_layers, dropout_p, train, bidirectional); in _rnn_impl_with_concat() 1138 int64_t num_layers, double dropout_p, bool train, bool bidirectional) { in _lstm_impl() argument [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/kernels/ |
H A D | training_ops_test.cc | 110 Graph* train; in BM_SGD() local 111 SGD(params, &init, &train); in BM_SGD() 112 test::Benchmark("cpu", train, GetOptions(), init, nullptr, "", in BM_SGD() 146 Graph* train; in BM_Adagrad() local 147 Adagrad(params, &init, &train); in BM_Adagrad() 148 test::Benchmark("cpu", train, GetOptions(), init, nullptr, "", in BM_Adagrad() 185 Graph* train; in BM_SparseAdagrad() local 186 SparseAdagrad(m, n, &init, &train); in BM_SparseAdagrad() 187 test::Benchmark("cpu", train, GetMultiThreadedOptions(), init, nullptr, "", in BM_SparseAdagrad() 229 Graph* train; in BM_Momentum() local [all …]
|
/aosp_15_r20/packages/modules/StatsD/statsd/src/storage/ |
D | StorageManager.cpp | 180 VLOG("Failed to wrtie train info magic"); in writeTrainInfo() 185 // Write the train version in writeTrainInfo() 189 VLOG("Failed to wrtie train version code"); in writeTrainInfo() 199 VLOG("Failed to write train name size"); in writeTrainInfo() 207 VLOG("Failed to write train name"); in writeTrainInfo() 293 VLOG("Failed to read train info magic"); in readTrainInfoLocked() 299 VLOG("Train info magic was 0x%08x, expected 0x%08x", magic, TRAIN_INFO_FILE_MAGIC); in readTrainInfoLocked() 304 // Read the train version code in readTrainInfoLocked() 308 VLOG("Failed to read train version code from train info file"); in readTrainInfoLocked() 317 VLOG("Failed to read train name size from train info file"); in readTrainInfoLocked() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/functorch/ |
H A D | PyTorchOperatorHacks.cpp | 165 Ctype<inplace> _dropout_impl(T& input, double p, bool train) { in _dropout_impl() argument 167 if (p == 0 || !train || input.numel() == 0) { in _dropout_impl() 215 static Tensor dropout(const Tensor& input, double p, bool train) { in ALIAS_SPECIALIZATION() 218 if (train && is_fused_kernel_acceptable(input, p)) { in ALIAS_SPECIALIZATION() 219 return std::get<0>(at::native_dropout(input, p, train)); in ALIAS_SPECIALIZATION() 221 return _dropout<false>(input, p, train); in ALIAS_SPECIALIZATION() 227 Tensor& dropout_(Tensor& input, double p, bool train) { in dropout_() argument 228 return _dropout<true>(input, p, train); in dropout_() 231 Tensor feature_dropout(const Tensor& input, double p, bool train) { in feature_dropout() argument 232 return _feature_dropout<false>(input, p, train); in feature_dropout() [all …]
|
/aosp_15_r20/external/pytorch/torch/csrc/lazy/ |
H A D | tutorial.md | 165 Let's set up a loader that would feed the `MNIST` dataset in `train` to our model. 204 dataset1 = datasets.MNIST('./data', train=True, download=True, 211 train(log_interval, model, device, train_loader, optimizer, epoch) 215 The training loop in `train` also has one addition. Namely, `torch._lazy.mark_step()` which deserve… 226 def train(log_interval, model, device, train_loader, optimizer, epoch): 227 model.train() 238 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( 248 Train Epoch: 1 [0/60000 (0%)] Loss: 2.343924 249 Train Epoch: 1 [640/60000 (1%)] Loss: 1.760821 250 Train Epoch: 1 [1280/60000 (2%)] Loss: 0.802798 [all …]
|
/aosp_15_r20/external/zstd/tests/ |
H A D | playTests.sh | 1100 zstd --train -B2K tmpCorpusHighCompress -o tmpDictHighCompress 1101 zstd --train -B2K tmpCorpusLowCompress -o tmpDictLowCompress 1110 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c -o tmpDict 1135 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c "$PRGDIR"/*.h -o tmpDictC 1138 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c --dictID=1 -o tmpDict1 1141 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c --dictID -o 1 tmpDict1 && die "wrong order : --dictID mus… 1143 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c -o tmpDict2 --maxdict=4K -v 1145 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c -o tmpDict3 --maxdict=1K -v 1147 zstd --train "$TESTDIR"/*.c "$PRGDIR"/*.c -o tmpDict3 --maxdict -v 4K && die "wrong order : --maxdi… 1168 zstd --train-legacy -q tmp && die "Dictionary training should fail : not enough input source" [all …]
|
/aosp_15_r20/external/zstd/programs/ |
H A D | zstd.1 | 92 \fB\-\-train FILES\fR 421 …eatly improves efficiency on small files and messages\. It\'s possible to train \fBzstd\fR with a … 424 \fB\-\-train FILEs\fR 425 …et dictionary size (for example, ~10 MB for a 100 KB dictionary)\. \fB\-\-train\fR can be combined… 431 …train\fR supports multithreading if \fBzstd\fR is compiled with threading support (default)\. Addi… 464 \fB\-\-train\-cover[=k#,d=#,steps=#,split=#,shrink[=#]]\fR 474 \fBzstd \-\-train\-cover FILEs\fR 477 \fBzstd \-\-train\-cover=k=50,d=8 FILEs\fR 480 \fBzstd \-\-train\-cover=d=8,steps=500 FILEs\fR 483 \fBzstd \-\-train\-cover=k=50 FILEs\fR [all …]
|
H A D | zstd.1.md | 97 * `--train FILES`: 514 It's possible to train `zstd` with a set of samples, 520 * `--train FILEs`: 525 `--train` can be combined with `-r` to indicate a directory rather than listing all the files, 533 `--train` supports multithreading if `zstd` is compiled with threading support (default). 534 Additional advanced parameters can be specified with `--train-fastcover`. 535 The legacy dictionary builder can be accessed with `--train-legacy`. 536 The slower cover dictionary builder can be accessed with `--train-cover`. 537 Default `--train` is equivalent to `--train-fastcover=d=8,steps=4`. 586 * `--train-cover[=k#,d=#,steps=#,split=#,shrink[=#]]`: [all …]
|
/aosp_15_r20/external/skia/infra/bots/ |
H A D | infra_tests.py | 28 def python_unit_tests(train): argument 29 if train: 37 def recipe_test(train): argument 43 if train: 44 cmd.append('train') 50 def gen_tasks_test(train): argument 52 if not train: 63 train = False 64 if '--train' in sys.argv: 65 train = True [all …]
|
/aosp_15_r20/external/google-cloud-java/java-automl/proto-google-cloud-automl-v1/src/main/java/com/google/cloud/automl/v1/ |
H A D | InputConfig.java | 48 * * `TRAIN` - Rows in this file are used to train the model. 51 * Automatically divided into train and test data. 80% for training and 61 * TRAIN,gs://folder/image1.jpg,daisy 74 * * `TRAIN` - Rows in this file are used to train the model. 77 * Automatically divided into train and test data. 80% for training and 91 * TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,, 92 * TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,, 118 * TRAIN,gs://folder/train_videos.csv 152 * TRAIN,gs://folder/train_videos.csv 175 * * `TRAIN` - Rows in this file are used to train the model. [all …]
|
/aosp_15_r20/external/pytorch/torch/ao/quantization/pt2e/ |
H A D | export_utils.py | 40 Switch dropout patterns in the model between train and eval modes. 42 Dropout has different behavior in train vs eval mode. For exported models, 43 however, calling `model.train()` or `model.eval()` does not automatically switch 94 Switch batchnorm patterns in the model between train and eval modes. 96 Batchnorm has different behavior in train vs eval mode. For exported models, 97 however, calling `model.train()` or `model.eval()` does not automatically switch 188 Move an exported GraphModule to train mode. 190 This is equivalent to model.train() but only for certain special ops like dropout, batchnorm. 200 Allow users to call `model.train()` and `model.eval()` on an exported model, 204 Note: This does not achieve the same effect as what `model.train()` and `model.eval()` [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cpu/ |
H A D | batch_norm_kernel.cpp | 35 const Tensor& running_mean, const Tensor& running_var, bool train, double eps) { in batch_norm_cpu_collect_linear_and_constant_terms() argument 58 if (train) { in batch_norm_cpu_collect_linear_and_constant_terms() 77 const Tensor& running_mean, const Tensor& running_var, bool train, double eps) { in batch_norm_cpu_contiguous_impl() argument 91 save_mean, save_invstd, running_mean, running_var, train, eps); in batch_norm_cpu_contiguous_impl() 129 const Tensor& running_mean, const Tensor& running_var, bool train, double eps) { in batch_norm_cpu_channels_last_impl() argument 143 save_mean, save_invstd, running_mean, running_var, train, eps); in batch_norm_cpu_channels_last_impl() 408 bool train, double eps) { in batch_norm_cpu_backward_contiguous_impl() argument 441 if (train) { in batch_norm_cpu_backward_contiguous_impl() 473 if (train) { in batch_norm_cpu_backward_contiguous_impl() 531 bool train, double eps) { in batch_norm_cpu_backward_channels_last_impl() argument [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/keras/optimizer_v2/ |
H A D | legacy_learning_rate_decay.py | 28 @tf_export(v1=["train.exponential_decay"]) 59 learning_rate = tf.compat.v1.train.exponential_decay(starter_learning_rate, 64 tf.compat.v1.train.GradientDescentOptimizer(learning_rate) 104 @tf_export(v1=["train.piecewise_constant_decay", "train.piecewise_constant"]) 115 learning_rate = tf.compat.v1.train.piecewise_constant(global_step, boundaries, 182 @tf_export(v1=["train.polynomial_decay"]) 229 learning_rate = tf.compat.v1.train.polynomial_decay(starter_learning_rate, 235 tf.compat.v1.train.GradientDescentOptimizer(learning_rate) 283 @tf_export(v1=["train.natural_exp_decay"]) 320 learning_rate = tf.compat.v1.train.natural_exp_decay(learning_rate, [all …]
|
/aosp_15_r20/external/pytorch/torchgen/_autoheuristic/ |
H A D | train_decision.py | 23 from train import AHTrain 155 df_train = datasets["train"] 252 Splits the dataframe into train, val, and test sets. 253 Also adds other datasets, specified by the user, to the train set. 256 # Split into train+val and test 261 # Split train+val inputs into train and val 266 datasets = {"train": df_train, "val": df_val, "test": df_test} 297 return datasets["train"] 317 df_train = self.add_training_data(datasets["train"], datasets) 318 datasets["train"] = df_train [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkldnn/ |
H A D | Normalization.cpp | 26 bool train, in mkldnn_batch_norm() argument 35 bool train, in mkldnn_batch_norm_backward() argument 50 bool train, in _mkldnn_batch_norm_legit() argument 59 bool train, in _mkldnn_batch_norm_legit_no_stats() argument 135 bool train, in mkldnn_batch_norm() argument 159 if (train) { in mkldnn_batch_norm() 215 …mkldnn_batch_norm(input, weight_opt, bias_opt, running_mean, running_var, /*train*/true, momentum,… in _batch_norm_with_update_mkldnn() 223 bool train, in _mkldnn_batch_norm_legit() argument 226 …return mkldnn_batch_norm(input, weight_opt, bias_opt, running_mean, running_var, train, momentum, … in _mkldnn_batch_norm_legit() 232 bool train, in _mkldnn_batch_norm_legit_no_stats() argument [all …]
|