/aosp_15_r20/external/tensorflow/tensorflow/python/distribute/ |
H A D | strategy_gather_test.py | 15 """Tests for common methods in strategy classes.""" 43 strategy=[ 60 strategy=[ 71 strategy): argument 72 distributed_values = strategy.experimental_distribute_values_from_function( 76 return strategy.gather(distributed_values, axis=axis) 82 value_on_replica for _ in range(strategy.num_replicas_in_sync) 87 def testGatherPerReplicaDense1D0Axis(self, strategy, pure_eager): argument 91 self._gather_same_shape_and_verify(single_value, axis, pure_eager, strategy) 93 def testGatherPerReplicaDense2D0Axis(self, strategy, pure_eager): argument [all …]
|
H A D | tpu_strategy_test.py | 85 strategy = tpu_lib.TPUStrategyV2(resolver) 86 strategy._enable_packed_variable_in_eager_mode = enable_packed_var 87 return strategy 259 strategy = get_tpu_strategy(enable_packed_var) 260 with strategy.scope(): 273 strategy = get_tpu_strategy(enable_packed_var) 275 with strategy.scope(): 300 strategy.experimental_distribute_datasets_from_function(dataset_fn)) 310 strategy.run(step_fn, args=(next(iterator),)) 322 strategy = get_tpu_strategy(enable_packed_var) [all …]
|
H A D | strategy_common_test.py | 15 """Tests for common methods in strategy classes.""" 42 strategy=[ 49 def testCaptureReplicaId(self, strategy): argument 61 return strategy.run(f) 65 def testMergeCallInitScope(self, strategy): argument 66 with strategy.scope(): 83 return strategy.run(replica_fn) 85 result = strategy.experimental_local_results(fn()) 86 self.assertAllClose(result, [12] * _get_num_replicas_per_client(strategy)) 217 strategy=[ [all …]
|
H A D | strategy_test_lib.py | 141 def is_mirrored_strategy(strategy: distribute_lib.Strategy) -> bool: argument 143 strategy, 148 strategy: distribute_lib.Strategy) -> bool: argument 149 return isinstance(strategy, (mwms_lib.CollectiveAllReduceStrategy, 153 def is_tpu_strategy(strategy: distribute_lib.Strategy) -> bool: argument 154 return isinstance(strategy, 358 self, strategy, input_fn, expected_values, ignore_order=False): argument 361 iterable = strategy.distribute_datasets_from_function(input_fn) 367 list(strategy.experimental_local_results(next(iterator)))) 371 self.evaluate(strategy.experimental_local_results(next(iterator))) [all …]
|
H A D | distribute_lib.py | 19 and it will be usable with a variety of different `tf.distribute.Strategy` 20 implementations. Each descendant will implement a different strategy for 24 model definition code can run unchanged. The `tf.distribute.Strategy` API works 36 The tutorials cover how to use `tf.distribute.Strategy` to do distributed 39 `tf.distribute.Strategy`. 94 when you execute the computation function that was called with `strategy.run`. 101 An _cross-replica context_ is entered when you enter a `strategy.scope`. This 102 is useful for calling `tf.distribute.Strategy` methods which operate across 116 returned by `tf.distribute.Strategy.experimental_distribute_dataset` and 117 `tf.distribute.Strategy.distribute_datasets_from_function`. They are also the [all …]
|
H A D | distribution_strategy_context.py | 15 """Utility to get tf.distribute.Strategy related contexts.""" 34 # replica or cross-replica context for a particular tf.distribute.Strategy. 40 self.strategy = dist 47 def __init__(self, strategy): argument 48 _ThreadMode.__init__(self, strategy, strategy, None) 54 _ThreadMode.__init__(self, replica_ctx.strategy, None, replica_ctx) 105 strategy = tf.distribute.MirroredStrategy(devices=["GPU:0", "GPU:1"]) 106 with strategy.scope(): 113 non_aggregated = strategy.run(replica_fn) 120 aggregated = strategy.run(replica_fn) [all …]
|
H A D | strategy_combinations_test.py | 40 strategy=strategy_combinations.two_replica_strategies, 42 def testTwoReplicaStrategy(self, strategy): argument 43 with strategy.scope(): 49 one_per_replica = strategy.run(one) 50 num_replicas = strategy.reduce( 56 strategy=strategy_combinations.four_replica_strategies, 58 def testFourReplicaStrategy(self, strategy): argument 59 with strategy.scope(): 65 one_per_replica = strategy.run(one) 66 num_replicas = strategy.reduce( [all …]
|
H A D | tpu_strategy_model_parallelism_test.py | 68 strategy = tpu_lib.TPUStrategyV2( 72 return strategy, num_replicas 82 strategy, num_replicas = get_tpu_strategy() 83 with strategy.scope(): 85 with strategy.extended.experimental_logical_device(1): 88 self.assertLen(strategy.experimental_local_results(v), num_replicas) 89 self.assertLen(strategy.experimental_local_results(w), num_replicas) 91 strategy.experimental_local_results(v)[0].device) 93 strategy.experimental_local_results(w)[0].device) 107 result = strategy.run(f, args=(5.,)) [all …]
|
H A D | parameter_server_strategy_v2_test.py | 73 strategy = parameter_server_strategy_v2.ParameterServerStrategyV2( 76 with strategy.scope(): 95 strategy = parameter_server_strategy_v2.ParameterServerStrategyV2( 98 # The strategy scope always wins. 99 with strategy.scope(): 109 with strategy.scope(): 128 strategy = parameter_server_strategy_v2.ParameterServerStrategyV2( 136 # variable_creator_scope inside strategy.scope will not work. 137 with strategy.scope(): 142 # strategy.scope still assigns variables in a round robin fashion. [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/tpu/ |
H A D | tpu_outside_compilation_test.py | 133 strategy = get_tpu_strategy() 146 return strategy.run(tpu_fn, args=(25.0,)) 149 strategy.experimental_local_results(train_step()), 150 constant_op.constant(35., shape=(strategy.num_replicas_in_sync))) 153 strategy = get_tpu_strategy() 166 return strategy.run(tpu_fn, args=(25.0,)) 169 strategy.experimental_local_results(train_step()), 170 constant_op.constant(35., shape=(strategy.num_replicas_in_sync))) 173 strategy = get_tpu_strategy() 187 return strategy.run(tpu_fn, args=(25.0,)) [all …]
|
/aosp_15_r20/external/ComputeLibrary/src/core/NEON/kernels/arm_gemm/ |
H A D | gemm_interleaved.hpp | 65 template<typename strategy, typename To, typename Tr, typename Tri, typename Tab> 70 strategy &strat, const To *a_ptr, const To *b_panel, size_t b_stride, Tri *c_panel, 79 template<typename strategy, typename To, typename Tr, typename Tri, typename Tab> 84 strategy &strat, const To *a_ptr, const To *b_panel, size_t, Tri *c_panel, in run() 89 const int bblocks = iceildiv(n_max - n_0, strategy::out_width()); in run() 93 …auto p=prof.ScopedProfiler(PROFILE_KERNEL, (strategy::out_height() * bblocks * strategy::out_width… in run() 101 …auto p=prof.ScopedProfiler(PROFILE_MERGE, (strategy::out_height() * bblocks * strategy::out_width(… in run() 109 template<typename strategy, typename To, typename Tr, typename Tri, typename Tab> 114 strategy &strat, const To *a_ptr, const To *b_panel, size_t b_stride, Tri *c_panel, in run() 121 const int bblocks = iceildiv(n_max - n_0, strategy::out_width()); in run() [all …]
|
H A D | gemm_hybrid_indirect.hpp | 61 template<typename strategy, typename Tlo, typename Tro, typename Tr> 66 …const strategy &strat, unsigned int num_strings, const unsigned int *string_ptr, IndirectInputArg<… 72 template<typename strategy, typename Tlo, typename Tro, typename Tr> 77 …const strategy &strat, unsigned int num_strings, const unsigned int *string_ptr, IndirectInputArg<… in run() 81 …auto p = prof.ScopedProfiler(PROFILE_KERNEL, (unsigned long)M * kern_k * roundup(N, strategy::out_… in run() 87 if (bias_ptr && !accumulate && (N % strategy::out_width() != 0)) { in run() 89 unsigned int N_remainder = N % strategy::out_width(); in run() 107 Tr *bias_pad_buffer = reinterpret_cast<Tr *>(alloca(strategy::out_width() * sizeof(Tr))); in run() 118 template<typename strategy, typename Tlo, typename Tro, typename Tr> 123 …const strategy &strat, unsigned int num_strings, const unsigned int *string_ptr, IndirectInputArg<… in run() [all …]
|
H A D | gemm_interleaved_pretransposed_2d.hpp | 51 template<typename strategy, typename To, typename Tr> 53 typedef typename strategy::operand_type Toi; 54 typedef typename strategy::result_type Tri; 89 const GemmInterleavedPretransposed2d<strategy, To, Tr> &_parent; 100 blockwalker(const GemmInterleavedPretransposed2d<strategy, To, Tr> &parent) in blockwalker() argument 105 …blockwalker(const GemmInterleavedPretransposed2d<strategy, To, Tr> &parent, unsigned int x0, unsig… in blockwalker() argument 169 return ROUND_UP(sizeof(Tri) * _x_block * strategy::out_height()); in get_c_working_size() 184 strategy strat(_ci); in execute_pretranspose() 187 const unsigned int window_per_batch = _Mround / strategy::out_height(); in execute_pretranspose() 192 unsigned int m_0 = (m_start - (batch_0 * window_per_batch)) * strategy::out_height(); in execute_pretranspose() [all …]
|
/aosp_15_r20/frameworks/base/services/tests/displayservicetests/src/com/android/server/display/ |
H A D | BrightnessMappingStrategyTest.java | 201 BrightnessMappingStrategy strategy = BrightnessMappingStrategy.create(mContext, ddc, in testSimpleStrategyIgnoresNewConfiguration() local 209 strategy.setBrightnessConfiguration(config); in testSimpleStrategyIgnoresNewConfiguration() 210 assertNotEquals(1.0f, strategy.getBrightness(1f), 0.0001f /*tolerance*/); in testSimpleStrategyIgnoresNewConfiguration() 217 BrightnessMappingStrategy strategy = BrightnessMappingStrategy.create(mContext, ddc, in testSimpleStrategyIgnoresNullConfiguration() local 220 strategy.setBrightnessConfiguration(null); in testSimpleStrategyIgnoresNullConfiguration() 224 strategy.getBrightness(LUX_LEVELS[n - 1]), 0.0001f /*tolerance*/); in testSimpleStrategyIgnoresNullConfiguration() 270 BrightnessMappingStrategy strategy = BrightnessMappingStrategy.create(mContext, ddc, in testPhysicalStrategyUsesNewConfigurations() local 281 strategy.setBrightnessConfiguration(config); in testPhysicalStrategyUsesNewConfigurations() 282 assertEquals(1.0f, strategy.getBrightness(1f), 0.0001f /*tolerance*/); in testPhysicalStrategyUsesNewConfigurations() 285 strategy.setBrightnessConfiguration(null); in testPhysicalStrategyUsesNewConfigurations() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/distribute/integration_test/ |
H A D | saved_model_test.py | 55 strategy=[ 69 def test_read_sync_on_read_variable(self, strategy): argument 90 with strategy.scope(): 100 strategy=[ 109 # tf.distribute.Strategy and used for serving later. Serving usually only uses 110 # one device and this is simulated by loading the model under no strategy 115 # tf.distribute.Strategy. The saved tf.function should be an inference 128 def test_read_sync_on_read_variable(self, strategy): argument 145 with strategy.scope(): 151 self.evaluate(strategy.experimental_local_results(m.v)), [0.5, 0.5]) [all …]
|
/aosp_15_r20/external/jacoco/org.jacoco.core.test/src/org/jacoco/core/internal/instr/ |
H A D | ProbeArrayStrategyFactoryTest.java | 52 final IProbeArrayStrategy strategy = test(Opcodes.V1_1, 0, false, true, in testClass1() local 54 assertEquals(ClassFieldProbeArrayStrategy.class, strategy.getClass()); in testClass1() 61 final IProbeArrayStrategy strategy = test(Opcodes.V1_2, 0, false, true, in testClass2() local 63 assertEquals(ClassFieldProbeArrayStrategy.class, strategy.getClass()); in testClass2() 70 final IProbeArrayStrategy strategy = test(Opcodes.V1_3, 0, false, true, in testClass3() local 72 assertEquals(ClassFieldProbeArrayStrategy.class, strategy.getClass()); in testClass3() 79 final IProbeArrayStrategy strategy = test(Opcodes.V1_4, 0, false, true, in testClass4() local 81 assertEquals(ClassFieldProbeArrayStrategy.class, strategy.getClass()); in testClass4() 88 final IProbeArrayStrategy strategy = test(Opcodes.V1_5, 0, false, true, in testClass5() local 90 assertEquals(ClassFieldProbeArrayStrategy.class, strategy.getClass()); in testClass5() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/keras/distribute/ |
H A D | dataset_creator_model_fit_test.py | 40 strategy=strategy_combinations.all_strategies + 52 def testModelFit(self, strategy): argument 53 model = self._model_fit(strategy) 56 def testModelFitwithStepsPerEpochNegativeOne(self, strategy): argument 64 if strategy._should_use_with_coordinator: 67 strategy, 74 strategy, 80 def testModelFitWithNumpyData(self, strategy): argument 84 strategy, 92 def testModelFitWithTensorData(self, strategy): argument [all …]
|
H A D | distributed_file_utils.py | 53 def _get_base_dirpath(strategy): argument 54 task_id = strategy.extended._task_id # pylint: disable=protected-access 58 def _is_temp_dir(dirpath, strategy): argument 59 return dirpath.endswith(_get_base_dirpath(strategy)) 62 def _get_temp_dir(dirpath, strategy): argument 63 if _is_temp_dir(dirpath, strategy): 66 temp_dir = os.path.join(dirpath, _get_base_dirpath(strategy)) 71 def write_dirpath(dirpath, strategy): argument 78 strategy: The tf.distribute strategy object currently used. 83 if strategy is None: [all …]
|
/aosp_15_r20/external/ComputeLibrary/examples/gemm_tuner/ |
H A D | GemmTuner.py | 40 # Gemm strategy 41 Strategy = Enum("Strategy", ["Native", "ReshapedOnlyRHS", "Reshaped"]) variable 61 # Gemm configuration for strategy Native 76 # Gemm configuration for strategy Reshaped Only RHS 102 # Gemm configuration for strategy Reshaped 196 strategy: Strategy 218 gemm_param, strategy, gemm_config, measurement = benchmark_result 220 self._strategies.add(strategy) 230 """ Get the best GEMMConfig set per GEMMParam per Strategy 233 Tuple[GEMMParam, Strategy], List[Tuple[GEMMConfig, Measurement]] [all …]
|
/aosp_15_r20/external/google-cloud-java/java-deploy/proto-google-cloud-deploy-v1/src/main/java/com/google/cloud/deploy/v1/ |
H A D | Strategy.java | 25 * Strategy contains deployment strategy information. 28 * Protobuf type {@code google.cloud.deploy.v1.Strategy} 30 public final class Strategy extends com.google.protobuf.GeneratedMessageV3 class 32 // @@protoc_insertion_point(message_implements:google.cloud.deploy.v1.Strategy) 35 // Use Strategy.newBuilder() to construct. 36 private Strategy(com.google.protobuf.GeneratedMessageV3.Builder<?> builder) { in Strategy() method in Strategy 40 private Strategy() {} in Strategy() method in Strategy 45 return new Strategy(); in newInstance() 64 com.google.cloud.deploy.v1.Strategy.class, in internalGetFieldAccessorTable() 65 com.google.cloud.deploy.v1.Strategy.Builder.class); in internalGetFieldAccessorTable() [all …]
|
/aosp_15_r20/external/googleapis/google/ads/searchads360/v0/common/ |
H A D | bidding.proto | 33 // An automated bidding strategy that raises bids for clicks 37 // This bidding strategy is deprecated and cannot be created anymore. Use 41 // Manual bidding strategy that allows advertiser to set the bid per 54 // An automated bidding strategy to help get the most conversions for your 57 // Maximum bid limit that can be set by the bid strategy. 58 // The limit applies to all keywords managed by the strategy. 62 // Minimum bid limit that can be set by the bid strategy. 63 // The limit applies to all keywords managed by the strategy. 69 // the bidding strategy's currency. If set, the bid strategy will get as many 71 // target CPA is not set, the bid strategy will aim to achieve the lowest [all …]
|
/aosp_15_r20/frameworks/native/libs/input/tests/ |
H A D | VelocityTracker_test.cpp | 231 static std::optional<float> computeVelocity(const VelocityTracker::Strategy strategy, in computeVelocity() argument 234 VelocityTracker vt(strategy); in computeVelocity() 244 const VelocityTracker::Strategy strategy, in computePlanarVelocity() argument 247 return computeVelocity(strategy, events, axis, pointerId); in computePlanarVelocity() 250 static void computeAndCheckVelocity(const VelocityTracker::Strategy strategy, in computeAndCheckVelocity() argument 254 checkVelocity(computePlanarVelocity(strategy, motions, axis, pointerId), targetVelocity); in computeAndCheckVelocity() 258 const VelocityTracker::Strategy strategy, in computeAndCheckAxisScrollVelocity() argument 262 checkVelocity(computeVelocity(strategy, events, AMOTION_EVENT_AXIS_SCROLL), targetVelocity); in computeAndCheckAxisScrollVelocity() 263 // The strategy LSQ2 is not compatible with AXIS_SCROLL. In those situations, we should fall in computeAndCheckAxisScrollVelocity() 264 // back to a strategy that supports differential axes. in computeAndCheckAxisScrollVelocity() [all …]
|
/aosp_15_r20/platform_testing/libraries/device-collectors/src/test/java/android/device/collectors/ |
H A D | PerfettoTracingPerClassStrategyTest.java | 89 PerfettoTracingStrategy strategy = in initStrategy() local 99 strategy.setup(b); in initStrategy() 100 return strategy; in initStrategy() 107 PerfettoTracingStrategy strategy = initStrategy(b); in testPerfettoTraceStartOnFirstTestStart() local 111 strategy.testRunStart(mDataRecord, mRunDesc); in testPerfettoTraceStartOnFirstTestStart() 113 strategy.testStart(mDataRecord, mTest1Desc); in testPerfettoTraceStartOnFirstTestStart() 121 PerfettoTracingStrategy strategy = initStrategy(b); in testPerfettoTraceStartOncePerClass() local 125 strategy.testRunStart(mDataRecord, mRunDesc); in testPerfettoTraceStartOncePerClass() 127 strategy.testStart(mDataRecord, mTest1Desc); in testPerfettoTraceStartOncePerClass() 128 strategy.testEnd(mDataRecord, mTest1Desc); in testPerfettoTraceStartOncePerClass() [all …]
|
/aosp_15_r20/external/python/google-api-python-client/docs/dyn/ |
D | dfareporting_v3_5.placementStrategies.html | 82 <p class="firstline">Deletes an existing placement strategy.</p> 85 <p class="firstline">Gets one placement strategy by ID.</p> 88 <p class="firstline">Inserts a new placement strategy.</p> 97 <p class="firstline">Updates an existing placement strategy. This method supports patch semantics.<… 100 <p class="firstline">Updates an existing placement strategy.</p> 109 <pre>Deletes an existing placement strategy. 113 id: string, Placement strategy ID. (required) 123 <pre>Gets one placement strategy by ID. 127 id: string, Placement strategy ID. (required) 136 { # Contains properties of a placement strategy. [all …]
|
D | dfareporting_v3_4.placementStrategies.html | 82 <p class="firstline">Deletes an existing placement strategy.</p> 85 <p class="firstline">Gets one placement strategy by ID.</p> 88 <p class="firstline">Inserts a new placement strategy.</p> 97 <p class="firstline">Updates an existing placement strategy. This method supports patch semantics.<… 100 <p class="firstline">Updates an existing placement strategy.</p> 109 <pre>Deletes an existing placement strategy. 113 id: string, Placement strategy ID. (required) 123 <pre>Gets one placement strategy by ID. 127 id: string, Placement strategy ID. (required) 136 { # Contains properties of a placement strategy. [all …]
|