/aosp_15_r20/external/pytorch/test/inductor/ |
H A D | test_pattern_matcher.py | 837 split_with_sizes = torch.ops.aten.split_with_sizes.default(a, [8, 24], 1) 838 getitem = split_with_sizes[0] 839 getitem_1 = split_with_sizes[1] 850 split_with_sizes = torch.ops.aten.split_with_sizes.default(a, [8, 8, 16], 1) 851 getitem = split_with_sizes[0] 852 getitem_1 = split_with_sizes[1] 853 getitem_2 = split_with_sizes[2] 864 split_with_sizes = torch.ops.aten.split_with_sizes.default( 867 cat = torch.ops.aten.cat.default(split_with_sizes, 0) 877 x = torch.ops.aten.split_with_sizes.default(a, [3, 2, 3], dim=1) [all …]
|
/aosp_15_r20/external/pytorch/test/jit/ |
H A D | test_autodiff_subgraph_slicing.py | 462 # to merge both split_with_sizes in relu in one graph 476 # Case 2: aliasing between relu and split_with_sizes 478 # to merge both split_with_sizes in relu in one graph 479 # i.e. relu and split_with_sizes should be in different 486 %2 : Tensor[] = aten::split_with_sizes(%b, %0, %1) 495 ).check("Tensor = aten::relu").check_not("aten::split_with_sizes").run( 500 # Both `split_with_sizes` should be unfused 507 %2 : Tensor[] = aten::split_with_sizes(%b, %s1, %1) 508 %3 : Tensor[] = aten::split_with_sizes(%b, %s2, %1) 517 ).check("Tensor = aten::relu").check_not("aten::split_with_sizes").run(
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/nested/ |
H A D | NestedTensorUtils.cpp | 119 TORCH_CHECK_INDEX(false, "split_with_sizes() cannot be applied to a 0-dim tensor."); in split_with_sizes_nested() 123 … "split_with_sizes for nested tensors is currently only supported for the last dimension."); in split_with_sizes_nested() 126 "split_with_sizes expects number of splits to be greater than 0, got: ", num_splits); in split_with_sizes_nested() 127 TORCH_CHECK(self.is_contiguous(), "split_with_sizes expects `self` to be contiguous."); in split_with_sizes_nested() 137 "split_with_sizes expects split_sizes to sum exactly to ", self_size, in split_with_sizes_nested()
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/passes/onnx/ |
H A D | preprocess_for_onnx.cpp | 41 // split_with_sizes(Tensor self, int[] split_sizes, int dim=0) -> Tensor[] 46 // %8 : Tensor[] = aten::split_with_sizes(%input, %13, %7) 59 // aten::split_with_sizes(%input, %13, %7, %8) return (%14, %15, %16) 96 case aten::split_with_sizes: in FuseWithListUnpack()
|
/aosp_15_r20/external/executorch/backends/qualcomm/builders/ |
H A D | op_split_with_sizes.py | 20 target = ["aten.split_with_sizes.default"] 43 # split_with_sizes will return a tuple since it has multiple outputs
|
/aosp_15_r20/external/pytorch/torch/_inductor/fx_passes/ |
H A D | post_grad.py | 607 split_nodes = filter_nodes(match.nodes, aten.split_with_sizes) 625 # For example, if the split_node like split_with_sizes(input, [2, 2, 3], 1), 902 aten.split_with_sizes, 922 split_nodes = filter_nodes(match.nodes, aten.split_with_sizes) 957 aten.split_with_sizes,
|
/aosp_15_r20/external/pytorch/torch/csrc/cuda/ |
H A D | comm.cpp | 285 tensor.split_with_sizes(/*split_sizes=*/chunk_sizes, /*dim=*/dim); in _broadcast_out_impl() 332 ? tensor.split_with_sizes(/*split_sizes=*/*chunk_sizes, /*dim=*/dim) in _broadcast_out_impl() 384 out_tensor.split_with_sizes(/*split_sizes=*/chunk_sizes, /*dim=*/dim); in _broadcast_out_impl()
|
/aosp_15_r20/external/pytorch/test/ |
H A D | test_functionalization.py | 858 # test: view ops that return multiple tensors (split_with_sizes) 860 y1, y2 = x.split_with_sizes([2, 2]) 908 split_with_sizes = torch.ops.aten.split_with_sizes.default(arg0_1, [2, 2]) 909 getitem = split_with_sizes[0] 910 getitem_1 = split_with_sizes[1]; split_with_sizes = getitem_1 = None 913 split_with_sizes_1 = torch.ops.aten.split_with_sizes.default(arg0_1, [2, 2]) 918 split_with_sizes_2 = torch.ops.aten.split_with_sizes.default(slice_scatter, [2, 2])
|
H A D | test_proxy_tensor.py | 1572 …split_with_sizes = torch.ops.aten.split_with_sizes.default(values_1, [_local_scalar_dense, _local_… 1573 getitem = split_with_sizes[0] 1574 getitem_1 = split_with_sizes[1] 1575 getitem_2 = split_with_sizes[2]; split_with_sizes = None
|
H A D | test_nestedtensor.py | 1343 a_splits = a.split_with_sizes(split_sizes, dim=-1) 1344 b_splits = b.split_with_sizes(split_sizes, dim=-1) 1345 c_splits = c.split_with_sizes(split_sizes, dim=-1) 1348 nt_splits = nt.split_with_sizes(split_sizes, dim=-1) 1368 … "split_with_sizes for nested tensors is currently only supported for the last dimension.", 1369 lambda: torch.split_with_sizes(nt, split_sizes, dim=1), 1375 … "split_with_sizes for nested tensors is currently only supported for the last dimension.", 1376 lambda: torch.split_with_sizes(nt, split_sizes, dim=0), 1383 "split_with_sizes expects `self` to be contiguous.", 1384 lambda: torch.split_with_sizes(nt_noncontiguous, split_sizes, dim=-1), [all …]
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/runtime/static/ |
H A D | native_ops.cpp | 736 at::native::split_with_sizes(self, split_sizes.vec(), dim); in __anon75e5f0514602() 745 aten::split_with_sizes, 749 … "aten::split_with_sizes(Tensor(a -> *) self, int[] split_sizes, int dim=0) -> Tensor(a)[]")) && in __anon75e5f0514902() 751 … "aten::split_with_sizes(Tensor(a -> *) self, int[] split_sizes, int dim=0) -> (Tensor[])"))) { in __anon75e5f0514902() 760 at::native::split_with_sizes(self, split_sizes.vec(), dim); in __anon75e5f0514902()
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/runtime/ |
H A D | register_special_ops.cpp | 248 RECORD_FUNCTION("split_with_sizes", last(stack, 3)); in __anonedd36e380202() 250 auto result = at::split_with_sizes( in __anonedd36e380202()
|
H A D | symbolic_script.cpp | 609 def split_with_sizes(self, 617 return torch.split_with_sizes(self, split_sizes, dim), backward 644 grad_tensors = torch.split_with_sizes(grad_output, split_sizes, dim)
|
/aosp_15_r20/external/pytorch/torch/onnx/ |
H A D | symbolic_opset13.py | 118 @_onnx_symbolic("aten::split_with_sizes") 119 def split_with_sizes(g: jit_utils.GraphContext, self, split_sizes, dim, _outputs=None): function 134 return split_with_sizes(g, self, split_sizes, dim, _outputs)
|
H A D | symbolic_opset11.py | 78 "split_with_sizes", 636 @_onnx_symbolic("aten::split_with_sizes") 638 def split_with_sizes(g: jit_utils.GraphContext, self, split_sizes, dim, _outputs=None): function
|
/aosp_15_r20/external/pytorch/test/cpp/api/ |
H A D | inference_mode.cpp | 482 b = s_view.split_with_sizes({1, 1}); in TEST() 485 c = s.split_with_sizes({1, 1}); in TEST()
|
/aosp_15_r20/external/executorch/backends/arm/quantizer/quantization_annotation/ |
H A D | generic_annotator.py | 49 torch.ops.aten.split_with_sizes.default,
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | TensorShape.cpp | 164 #include <ATen/ops/split_with_sizes.h> 946 // We need to call split_with_sizes in the case where split_size and dimension size are 0, because in chunk() 948 // 0-sized chunks adding up to 0). So, call split_with_sizes with the correct number of chunks, in chunk() 2621 std::vector<Tensor> split_with_sizes(const Tensor& self, IntArrayRef split_sizes, int64_t dim) { in split_with_sizes() function 2632 "split_with_sizes expects split_sizes have only non-negative ", in split_with_sizes() 2638 "split_with_sizes expects split_sizes to sum exactly to ", dim_size, in split_with_sizes() 2644 auto result = at::native::split_with_sizes(self, split_sizes, dim); in unsafe_split_with_sizes() 4059 auto tmp = self.split_with_sizes(split_sizes, dim); in split_with_sizes_copy_out()
|
H A D | MathBitFallThroughLists.h | 37 m.impl("split_with_sizes", torch::CppFunction::makeFallthrough()); \
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cuda/ |
H A D | TensorShape.cu | 728 "split_with_sizes expects split_sizes have only non-negative ", in split_with_sizes_copy_out_cuda() 735 "split_with_sizes expects split_sizes to sum exactly to ", in split_with_sizes_copy_out_cuda()
|
/aosp_15_r20/external/pytorch/functorch/op_analysis/ |
H A D | public_api | 202 split_with_sizes
|
/aosp_15_r20/external/executorch/backends/arm/test/ops/ |
H A D | test_split.py | 38 return x.split_with_sizes(split_sizes=split_sizes, dim=dim)
|
/aosp_15_r20/external/pytorch/docs/source/ |
H A D | tensor_view.rst | 81 - :meth:`~torch.Tensor.split_with_sizes`
|
H A D | conf.py | 1354 "split_with_sizes", 1401 "split_with_sizes", 1690 "split_with_sizes",
|
/aosp_15_r20/external/pytorch/torch/csrc/distributed/c10d/ |
H A D | ProcessGroupMPI.cpp | 810 srcFlatData.split_with_sizes(c10::IntArrayRef(send_lengthsL), 0); in alltoall() 828 dstFlatData.split_with_sizes(c10::IntArrayRef(recv_lengthsL), 0); in alltoall()
|