/aosp_15_r20/external/pytorch/test/onnx/ |
H A D | test_onnxscript_no_runtime.py | 27 # 1. Register Selu onnxscript function as custom Op 31 def Selu(X): function 43 return g.onnxscript_op(Selu, X).setType(X.type()) 46 symbolic_name="aten::selu", 88 model_selu = torch.nn.SELU() 106 self.assertEqual(selu_proto.functions[0].name, "Selu") 115 self.selu = torch.nn.SELU() 122 y = self.selu(x) 135 def Selu(X): function 150 return g.onnxscript_op(Selu, X).setType(X.type()) [all …]
|
H A D | test_onnxscript_runtime.py | 24 model = torch.nn.SELU() 31 def Selu( function 45 return g.onnxscript_op(Selu, X).setType(X.type()) 48 symbolic_name="aten::selu",
|
/aosp_15_r20/external/tensorflow/tensorflow/python/keras/ |
H A D | activations.py | 146 @keras_export('keras.activations.selu') 148 def selu(x): function 149 """Scaled Exponential Linear Unit (SELU). 151 The Scaled Exponential Linear Unit (SELU) activation function is defined as: 159 Basically, the SELU activation function multiplies `scale` (> 1) with the 175 ... activation='selu')) 177 ... activation='selu')) 179 ... activation='selu')) 197 return nn.selu(x)
|
/aosp_15_r20/external/tensorflow/tensorflow/core/kernels/ |
H A D | unary_ops_composition.cc | 171 // Register compute function for the Relu/Relu6/Elu/Selu. 204 auto selu = functor::Selu<Eigen::DefaultDevice, T>(); \ 205 selu(Eigen::DefaultDevice(), in, *out); \ 255 REGISTER_COMPUTE_FN(Selu); in UnaryOpsCompositionSupport() 320 REGISTER_COMPUTE_FN(Selu); in UnaryOpsCompositionSupport() 384 REGISTER_COMPUTE_FN(Selu); in UnaryOpsCompositionSupport()
|
H A D | relu_op.cc | 75 Name("Selu").Device(DEVICE_CPU).TypeConstraint<type>("T"), \ 81 // Elu and Selu only make sense with float or double. 104 void Selu<GPUDevice, T>::operator()( \ 107 extern template struct Selu<GPUDevice, T>; 120 Name("Selu").Device(DEVICE_GPU).TypeConstraint<type>("T"), \
|
H A D | relu_op_functor.h | 174 struct Selu { struct 175 // Computes Selu activation. 198 // gradients: gradients backpropagated to the Selu op. argument 199 // activations: outputs of the Selu op. 200 // backprops: gradients to backpropagate to the Selu inputs.
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/ |
H A D | nn_grad_test.py | 228 selu = gen_nn_ops.selu(inputs) 229 selu_grad = gradients_impl.gradients(selu, inputs, grad_ys=dummy)[0] 245 selu = gen_nn_ops.selu(inputs) 246 selu_grad = gradients_impl.gradients(selu, inputs, grad_ys=dummy)[0]
|
/aosp_15_r20/external/pytorch/torch/_refs/nn/functional/ |
H A D | __init__.py | 57 "selu", 119 # alpha = - SELU.alpha * SELU.scale, here 120 # SELU.alpha = 1.6732632423543772848170429916717 and 121 # SELU.scale = 1.0507009873554804934193349852946 400 @register_decomposition(aten.selu) 407 def selu(a: TensorLikeType, inplace: bool = False) -> TensorLikeType: function 409 Reference implementation of torch.nn.functional.selu 1278 selu_ = _make_inplace(selu)
|
/aosp_15_r20/external/tensorflow/tensorflow/core/api_def/base_api/ |
H A D | api_def_SeluGrad.pbtxt | 7 The backpropagated gradients to the corresponding Selu operation. 13 The outputs of the corresponding Selu operation. 23 summary: "Computes gradients for the scaled exponential linear (Selu) operation."
|
/aosp_15_r20/external/tensorflow/tensorflow/core/kernels/mlir_generated/ |
H A D | gpu_op_selu.cc | 21 GENERATE_AND_REGISTER_UNARY_GPU_KERNEL(Selu, DT_HALF); 22 GENERATE_AND_REGISTER_UNARY_GPU_KERNEL(Selu, DT_FLOAT); 23 GENERATE_AND_REGISTER_UNARY_GPU_KERNEL(Selu, DT_DOUBLE);
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
H A D | elu_op.cc | 35 XlaOp Selu(XlaOp x) { in Selu() function 82 ctx->SetOutput(0, xla::Selu(ctx->Input(0))); in Compile() 107 REGISTER_XLA_OP(Name("Selu"), SeluOp);
|
/aosp_15_r20/external/pytorch/torch/csrc/api/include/torch/nn/modules/ |
H A D | activation.h | 49 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SELU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 51 /// Applies the selu function element-wise. 52 /// See https://pytorch.org/docs/main/nn.html#torch.nn.SELU to learn 60 /// SELU model(SELUOptions().inplace(true)); 70 /// Pretty prints the `SELU` module into the given `stream`. 79 /// provides, and examples of how to use `SELU` with `torch::nn::SELUOptions`. 82 TORCH_MODULE(SELU);
|
/aosp_15_r20/external/pytorch/torch/nn/modules/ |
H A D | activation.py | 29 "SELU", 613 class SELU(Module): class 614 r"""Applies the SELU function element-wise. 617 \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) 624 ``nonlinearity='linear'`` should be used instead of ``nonlinearity='selu'`` 637 .. image:: ../scripts/activation_images/SELU.png 641 >>> m = nn.SELU() 656 return F.selu(input, self.inplace)
|
H A D | __init__.py | 21 SELU, 300 "SELU",
|
/aosp_15_r20/external/tensorflow/tensorflow/python/kernel_tests/nn_ops/ |
H A D | relu_op_test.py | 519 tf_selu = nn_ops.selu(np_features) 537 nn_ops.selu, [x], delta=1.0 / 1024)) 545 *gradient_checker_v2.compute_gradient(nn_ops.selu, [x])) 555 y = nn_ops.selu(x) 573 y = nn_ops.selu(x)
|
/aosp_15_r20/external/pytorch/torch/csrc/api/include/torch/nn/functional/ |
H A D | activation.h | 49 inline Tensor selu(Tensor input, bool inplace) { in selu() function 53 return torch::selu(input); in selu() 60 /// https://pytorch.org/docs/main/nn.functional.html#torch.nn.functional.selu 69 /// F::selu(input, F::SELUFuncOptions(false)); 71 inline Tensor selu(Tensor input, const SELUFuncOptions& options = {}) { 72 return detail::selu(std::move(input), options.inplace());
|
/aosp_15_r20/external/tensorflow/tensorflow/core/api_def/python_api/ |
H A D | api_def_Selu.pbtxt | 2 graph_op_name: "Selu" 4 name: "nn.selu"
|
/aosp_15_r20/external/tensorflow/tensorflow/core/api_def/java_api/ |
H A D | api_def_Selu.pbtxt | 2 graph_op_name: "Selu" 4 name: "nn.Selu"
|
/aosp_15_r20/external/tensorflow/tensorflow/core/ops/compat/ops_history_v2/ |
H A D | Selu.pbtxt | 2 name: "Selu" 24 name: "Selu"
|
/aosp_15_r20/external/tensorflow/tensorflow/core/ops/compat/ops_history_v1/ |
H A D | Selu.pbtxt | 2 name: "Selu" 24 name: "Selu"
|
/aosp_15_r20/external/pytorch/torch/nn/ |
H A D | init.py | 86 SELU :math:`\frac{3}{4}` 91 you should use ``nonlinearity='linear'`` instead of ``nonlinearity='selu'``. 94 In contrast, the default gain for ``SELU`` sacrifices the normalization 134 elif nonlinearity == "selu":
|
/aosp_15_r20/external/pytorch/torch/csrc/api/include/torch/nn/options/ |
H A D | activation.h | 41 /// Options for the `SELU` module. 45 /// SELU model(SELUOptions().inplace(true)); 55 /// Options for `torch::nn::functional::selu`. 63 /// F::selu(input, F::SELUFuncOptions(false));
|
/aosp_15_r20/external/pytorch/functorch/dim/ |
H A D | op_properties.py | 271 torch.selu, 272 torch.nn.functional.selu,
|
/aosp_15_r20/external/pytorch/docs/source/ |
H A D | onnx_torchscript.rst | 544 model = torch.nn.SELU() 549 def Selu(X): 561 return g.onnxscript_op(Selu, X).setType(X.type()) 567 symbolic_name="aten::selu",
|
/aosp_15_r20/external/pytorch/torch/ao/pruning/_experimental/pruner/ |
H A D | base_structured_sparsifier.py | 53 F.selu, 80 nn.SELU,
|