/aosp_15_r20/external/pytorch/aten/src/ATen/native/cuda/ |
H A D | group_norm_kernel.cu | 37 T* rstd) { in RowwiseMomentsCUDAKernel() argument 70 rstd[i] = c10::cuda::compat::rsqrt(m2 + static_cast<T_ACC>(eps)); in RowwiseMomentsCUDAKernel() 80 const T* rstd, in ComputeFusedParamsCUDAKernel() argument 91 ? static_cast<T_ACC>(rstd[ng]) in ComputeFusedParamsCUDAKernel() 92 : static_cast<T_ACC>(rstd[ng]) * static_cast<T_ACC>(gamma[c]); in ComputeFusedParamsCUDAKernel() 106 const T* rstd, in Compute1dBackwardFusedParamsCUDAKernel() argument 138 static_cast<T_ACC>(rstd[ng]) * static_cast<T_ACC>(rstd[ng]) * in Compute1dBackwardFusedParamsCUDAKernel() 139 static_cast<T_ACC>(rstd[ng]) * s; in Compute1dBackwardFusedParamsCUDAKernel() 142 sum2 * static_cast<T_ACC>(rstd[ng]) * s; in Compute1dBackwardFusedParamsCUDAKernel() 154 const T* rstd, in GammaBeta1dBackwardCUDAKernel1() argument [all …]
|
H A D | layer_norm_kernel.cu | 59 T_ACC* rstd) { in RowwiseMomentsCUDAKernel() argument 88 rstd[i] = c10::cuda::compat::rsqrt(m2 + eps); in RowwiseMomentsCUDAKernel() 97 const T_ACC* rstd, in LayerNormForwardCUDAKernel() argument 109 static_cast<T_ACC>(rstd[i]) * gamma_v + in LayerNormForwardCUDAKernel() 228 T_ACC* rstd, in vectorized_layer_norm_kernel_impl() argument 280 rstd[i1] = rstd_val; in vectorized_layer_norm_kernel_impl() 293 T_ACC* /*rstd*/, in vectorized_layer_norm_kernel_impl() 307 T_ACC* rstd, in vectorized_layer_norm_kernel() argument 309 vectorized_layer_norm_kernel_impl(N, eps, X, gamma, beta, mean, rstd, Y); in vectorized_layer_norm_kernel() 318 const T_ACC* __restrict__ rstd, in compute_gI() argument [all …]
|
/aosp_15_r20/external/trusty/arm-trusted-firmware/plat/st/stm32mp1/ |
D | stm32mp1_scmi.c | 133 struct stm32_scmi_rstd *rstd; member 141 .rstd = stm32_scmi0_reset_domain, 358 return &resource->rstd[n]; in find_rstd() 368 const struct stm32_scmi_rstd *rstd = find_rstd(agent_id, scmi_id); in plat_scmi_rstd_get_name() local 370 if (rstd == NULL) { in plat_scmi_rstd_get_name() 374 return rstd->name; in plat_scmi_rstd_get_name() 391 const struct stm32_scmi_rstd *rstd = find_rstd(agent_id, scmi_id); in plat_scmi_rstd_autonomous() local 393 if (rstd == NULL) { in plat_scmi_rstd_autonomous() 397 if (!stm32mp_nsec_can_access_reset(rstd->reset_id)) { in plat_scmi_rstd_autonomous() 406 VERBOSE("SCMI reset %lu cycle\n", rstd->reset_id); in plat_scmi_rstd_autonomous() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/functorch/ |
H A D | BatchRulesNorm.cpp | 22 // There's a weird case where mean, rstd can both have shape (0,). in compute_stat_bdim() 69 Tensor rstd; in batch_norm_batch_rule() local 76 rstd = std::get<2>(result); in batch_norm_batch_rule() 103 rstd = std::get<2>(result); in batch_norm_batch_rule() 104 rstd = reshape_dim_outof(0, bdim_size.value(), rstd); // [B0, C] in batch_norm_batch_rule() 123 return std::make_tuple(result0, 0, mean, stats_bdim, rstd, stats_bdim); in batch_norm_batch_rule() 133 const at::Tensor & rstd, std::optional<int64_t> rstd_bdim, in batch_norm_backward_no_weight_bias_batch_rule() argument 146 …grad_out, input, dummy_weight, running_mean_opt, running_var_opt, mean, rstd, training, eps, {true… in batch_norm_backward_no_weight_bias_batch_rule() 153 auto rstd_ = moveBatchDimToFront(rstd, rstd_bdim); in batch_norm_backward_no_weight_bias_batch_rule() 309 Tensor rstd; in native_group_norm_plumbing() local [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cpu/ |
H A D | group_norm_kernel.cpp | 40 Tensor& rstd) { in GroupNormKernelImplInternal() argument 51 PT* rstd_data = rstd.data_ptr<PT>(); in GroupNormKernelImplInternal() 295 Tensor& rstd) { in GroupNormKernelImplChannelsLastInternal() argument 306 PT* rstd_data = rstd.data_ptr<PT>(); in GroupNormKernelImplChannelsLastInternal() 317 // Mean and rstd are collected per each n and g, which involves reduction in GroupNormKernelImplChannelsLastInternal() 418 // step-2: compute mean and rstd in GroupNormKernelImplChannelsLastInternal() 439 // mean/rstd have shape of {N, G}, gamma/beta have shape of {G, D}. in GroupNormKernelImplChannelsLastInternal() 495 Tensor& rstd) { in GroupNormKernelImpl() argument 503 X, gamma, beta, N, C, HxW, group, eps, Y, mean, rstd); in GroupNormKernelImpl() 506 X, gamma, beta, N, C, HxW, group, eps, Y, mean, rstd); in GroupNormKernelImpl() [all …]
|
H A D | layer_norm_kernel.cpp | 37 Tensor* rstd) { in LayerNormKernelImplInternal() argument 44 T* rstd_data = rstd ? rstd->data_ptr<T>() : nullptr; in LayerNormKernelImplInternal() 96 Tensor* rstd) { in layer_norm_kernel_mixed_type() argument 104 param_t* rstd_data = rstd ? rstd->data_ptr<param_t>() : nullptr; in layer_norm_kernel_mixed_type() 155 Tensor* rstd) { in LayerNormKernelImplInternal() argument 158 layer_norm_kernel_mixed_type<T, float>(X, gamma, beta, M, N, eps, Y, mean, rstd); in LayerNormKernelImplInternal() 160 layer_norm_kernel_mixed_type<T, T>(X, gamma, beta, M, N, eps, Y, mean, rstd); in LayerNormKernelImplInternal() 173 Tensor* rstd) { in LayerNormKernelImpl() argument 180 X, gamma, beta, M, N, eps, Y, mean, rstd); in LayerNormKernelImpl() 495 const Tensor& rstd, in LayerNormBackwardKernelImplInternal() argument [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | layer_norm.cpp | 37 at::Tensor& rstd, in layer_norm_with_mean_rstd_out() argument 45 LayerNormKernel(kCPU, input, gamma, beta, M, N, eps, &out, &mean, &rstd); in layer_norm_with_mean_rstd_out() 58 rstd = rstd.view(stat_shape); in layer_norm_with_mean_rstd_out() 72 LayerNormKernel(kCPU, input, gamma, beta, M, N, eps, &out, /*mean=*/nullptr, /*rstd=*/nullptr); in layer_norm_cpu_out() 106 Tensor rstd = at::empty({M}, X->options().dtype(dtype)); in layer_norm_cpu() local 108 layer_norm_with_mean_rstd_out(Y, mean, rstd, *X, normalized_shape, *gamma, *beta, eps, M, N); in layer_norm_cpu() 109 return std::make_tuple(std::move(Y), std::move(mean), std::move(rstd)); in layer_norm_cpu() 117 const Tensor& rstd, in layer_norm_backward_cpu() argument 182 kCPU, dY, *X, mean, rstd, *gamma, M, N, &dX, &dgamma, &dbeta); in layer_norm_backward_cpu() 253 at::Tensor rstd = std::get<2>(outputs); in math_native_layer_norm() local [all …]
|
H A D | group_norm.cpp | 99 Tensor rstd = at::empty({N, group}, X.options().dtype(dtype)); in native_group_norm() local 101 X.device().type(), X, gamma, beta, N, C, HxW, group, eps, Y, mean, rstd); in native_group_norm() 102 return std::make_tuple(Y, mean, rstd); in native_group_norm() 109 const Tensor& rstd, in native_group_norm_backward() argument 123 bool mixed_type = is_mixed_type(X, mean, rstd); in native_group_norm_backward() 125 check_mixed_data_type(X, mean, rstd); in native_group_norm_backward() 165 rstd, in native_group_norm_backward() 254 …at::Tensor rstd = std::get<2>(outputs).to(c10::TensorOptions().dtype(input.scalar_type())).view({N… in math_group_norm() local 255 return std::make_tuple(out, mean, rstd); in math_group_norm()
|
H A D | group_norm.h | 22 Tensor& /* rstd */); 28 const Tensor& /* rstd */,
|
H A D | layer_norm.h | 89 Tensor* /* rstd */); 95 const Tensor& /* rstd */,
|
/aosp_15_r20/external/pytorch/torch/nn/utils/_expanded_weights/ |
H A D | layer_norm_expanded_weights.py | 31 output, mean, rstd = forward_helper( 41 ctx.mean, ctx.rstd = mean, rstd 53 mean, rstd = ctx.mean, ctx.rstd 67 rstd,
|
H A D | group_norm_expanded_weights.py | 34 output, mean, rstd = forward_helper( 41 ctx.mean, ctx.rstd = mean, rstd 52 mean, rstd = ctx.mean, ctx.rstd 77 rstd,
|
H A D | instance_norm_expanded_weights.py | 67 rstd = 1 / torch.sqrt(var + eps) 78 rstd,
|
/aosp_15_r20/external/libxml2/os400/ |
H A D | xmlcatalog.cmd | 21 EXPR(*YES) RSTD(*YES) DFT(*XML) + 36 RSTD(*YES) SPCVAL((*YES '--convert') (*NO '')) + 44 EXPR(*YES) DFT(*YES) RSTD(*YES) PMTCTL(TYPESGML) + 50 RSTD(*YES) SPCVAL((*YES '-v') (*NO '')) + 69 EXPR(*YES) RSTD(*YES) SPCVAL( +
|
H A D | xmllint.cmd | 26 SPCVAL(*DTDURL *DTDFPI) EXPR(*YES) RSTD(*YES) + 37 RSTD(*YES) DFT(*XSD) + 72 RSTD(*YES) DFT(*NONE) + 94 MAX(50) RSTD(*YES) PROMPT('Options') +
|
/aosp_15_r20/external/pytorch/torch/_decomp/ |
H A D | decompositions_for_jvp.py | 118 input: Tensor, rstd: Tensor, inner_dim_indices: List[int], keepdim: bool 125 eps = torch.pow(1 / rstd, 2) - var # this makes me so sad inside 127 rstd = 1 / torch.sqrt(var + eps) 128 return mean, rstd 137 rstd: Tensor, 164 mean_, rstd_ = recompute_mean_var(input, rstd, inner_dim_indices, keepdim=True)
|
H A D | decompositions.py | 1567 rstd: Tensor, 1576 grad_output, input, mean, rstd, allow_cpu_scalar_tensors=False 1579 utils.check_same_shape(mean, rstd, allow_cpu_scalar_tensors=False) 1612 rstd.unsqueeze(-1), 1619 rstd.unsqueeze(-1), 1620 torch.ones((1, group, cpg), device=rstd.device), 1622 c2 = (db_val * mean - ds_val) * rstd * rstd * rstd * s 1623 c3 = -c2 * mean - db_val * rstd * s 1638 * rstd.unsqueeze(-1) 1655 rstd: Tensor, [all …]
|
/aosp_15_r20/external/executorch/backends/vulkan/runtime/graph/ops/glsl/ |
H A D | native_layer_norm.glsl | 69 VEC4_T rstd = pow(var + epsilon, VEC4_T(-0.5)); 70 VEC4_T offset = -rstd * mean; 78 VEC4_T outtex = (v * rstd + offset) * weight + bias; 83 write_texel(t_rstd, lpos, rstd);
|
/aosp_15_r20/external/pytorch/torch/distributed/tensor/_ops/ |
H A D | _math_ops.py | 788 # for the triple return values (out, mean, rstd). 807 # we use OpStrategy because the output (out, mean, rstd) 880 # args must be: grad_out, input, normalized_shape, mean, rstd, 920 # grad_out, rstd, and normalized input, among which rstd 949 # arg: mean, rstd 967 # d_weight = sum(grad_out * (input - mean) / rstd, outer_dim, keepdim=False)
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkldnn/ |
H A D | Normalization.cpp | 107 auto rstd = empty_mkldnn( in mkldnn_layer_norm_last_index_weight_bias_f32() local 115 auto rstd_it = at::native::itensor_from_mkldnn(rstd); in mkldnn_layer_norm_last_index_weight_bias_f32() 129 return std::make_tuple(dst, mean, rstd); in mkldnn_layer_norm_last_index_weight_bias_f32()
|
/aosp_15_r20/external/executorch/backends/vulkan/runtime/graph/ops/impl/ |
H A D | NativeLayerNorm.cpp | 37 vTensorPtr rstd = graph->get_tensor(args[0].refs[2]); in resize_native_layer_norm_node() local 48 rstd->virtual_resize(mean_size); in resize_native_layer_norm_node()
|
/aosp_15_r20/external/executorch/kernels/optimized/cpu/ |
H A D | op_native_layer_norm.cpp | 35 Tensor& rstd) { in layer_norm() argument 50 CTYPE* rstd_data = rstd.mutable_data_ptr<CTYPE>(); in layer_norm()
|
/aosp_15_r20/external/executorch/kernels/portable/cpu/ |
H A D | op_native_layer_norm.cpp | 32 Tensor& rstd) { in layer_norm() argument 45 CTYPE* rstd_data = rstd.mutable_data_ptr<CTYPE>(); in layer_norm()
|
H A D | op_native_group_norm.cpp | 35 Tensor& rstd) { in group_norm() argument 51 CTYPE* rstd_data = rstd.mutable_data_ptr<CTYPE>(); in group_norm()
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mps/operations/ |
H A D | Normalization.mm | 918 const Tensor& rstd, 1055 MPSGraphTensor* rstdTensor = mpsGraphRankedPlaceHolder(mpsGraph, rstd); 1078 // Reshape mean and rstd to [1, M, -1] 1128 // reverseVariance is square of rstd 1180 auto saveVarPlaceholder = Placeholder(cachedGraph->rstdTensor_, rstd);
|