/aosp_15_r20/external/pytorch/torch/nn/utils/ |
H A D | memory_format.py | 5 def convert_conv2d_weight_memory_format(module, memory_format): argument 6 r"""Convert ``memory_format`` of ``nn.Conv2d.weight`` to ``memory_format``. 9 Note that it only changes the memory_format, but not the semantics of each dimensions. 14 Calling ``model.to(memory_format=torch.channels_last)`` is more aggressive 17 necessarily benefit from conversion to specified ``memory_format``. 27 from memory_format conversion. 40 ``memory_format``. 49 memory_format: user specified ``memory_format``, 70 module.weight.detach().clone().contiguous(memory_format=memory_format) 73 weight_data.size(), memory_format=memory_format [all …]
|
/aosp_15_r20/external/pytorch/test/ |
H A D | test_mkldnn_fusion.py | 73 for memory_format, enabled in [ 92 groups=groups).to(memory_format=memory_format) 93 … x = torch.randn(batch_size, iC, input_size, input_size).to(memory_format=memory_format) 114 for memory_format, enabled in [ 121 … m = M(unary_fn, 3, oC, bias, kernel_size=(3, 3)).to(memory_format=memory_format) 122 x = torch.randn(1, 3, 224, 224).to(memory_format=memory_format) 141 for module, dim, memory_format in [ 164 groups=groups).to(memory_format=memory_format) 168 x = torch.randn(input_sizes).to(memory_format=memory_format) 245 for bias, dilation, groups, memory_format in options: [all …]
|
H A D | test_prims.py | 242 for shapes, memory_format in pairs: 245 … expected = torch.empty(shape, device=device, dtype=dtype, memory_format=memory_format) 246 actual = refs.empty(shape, device=device, dtype=dtype, memory_format=memory_format) 251 expected = torch.clone(a, memory_format=memory_format) 252 actual = torch.clone(a, memory_format=memory_format) 257 expected = a.contiguous(memory_format=memory_format) 258 actual = refs.contiguous(a, memory_format=memory_format) 363 a = torch.zeros([2] * ndim).to(memory_format=mf) 365 self.assertTrue(res.is_contiguous(memory_format=mf)) 371 self.assertTrue(a.is_contiguous(memory_format=torch.channels_last)) [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cudnn/ |
H A D | ConvShared.cpp | 85 << " memory_format = " << params.memory_format << "\n" in operator <<() 113 at::MemoryFormat memory_format) { in setConvolutionParams() argument 120 params->memory_format = memory_format; in setConvolutionParams() 162 ((params.memory_format == at::MemoryFormat::ChannelsLast) || in repro_from_args() 163 (params.memory_format == at::MemoryFormat::ChannelsLast3d)) in repro_from_args() 164 ? ".to(memory_format=torch." + channels_last_xd + ")" in repro_from_args() 220 auto memory_format = output->suggest_memory_format(); in cudnn_convolution_forward_out() local 224 Tensor weight_contig = weight->contiguous(memory_format); in cudnn_convolution_forward_out() 225 Tensor input_contig = input->contiguous(memory_format); in cudnn_convolution_forward_out() 252 auto memory_format = cudnn_conv_suggest_memory_format(input_t, weight_t); in cudnn_convolution() local [all …]
|
/aosp_15_r20/external/pytorch/torch/distributed/_shard/sharded_tensor/ |
H A D | metadata.py | 24 memory_format: torch.memory_format = field(default=torch.contiguous_format) variable in TensorProperties 28 # Since torch.memory_format cannot be pickled! 29 memory_format = self.memory_format 30 if memory_format == torch.contiguous_format: 32 elif memory_format == torch.channels_last: 34 elif memory_format == torch.preserve_format: 37 raise RuntimeError(f"Invalid torch.memory_format: {memory_format}") 60 memory_format = torch.contiguous_format 62 memory_format = torch.channels_last 64 memory_format = torch.preserve_format [all …]
|
H A D | __init__.py | 33 memory_format=torch.contiguous_format, argument 56 memory_format (:class:`torch.memory_format`, optional): the desired memory format of 75 memory_format=memory_format, 88 memory_format=torch.contiguous_format, argument 129 memory_format=memory_format, 142 memory_format=torch.contiguous_format, argument 183 memory_format=memory_format, 198 memory_format=torch.contiguous_format, argument 237 memory_format=memory_format, 252 memory_format=torch.contiguous_format, argument [all …]
|
H A D | api.py | 223 memory_format (:class:`torch.memory_format`, optional): the desired memory format of 252 memory_format=torch.contiguous_format, argument 263 if memory_format != torch.contiguous_format: 265 "Only torch.contiguous_format memory_format is currently supported" 268 self._metadata.tensor_properties.memory_format = memory_format 495 self, memory_format=torch.preserve_format, process_group=None argument 511 memory_format != torch.preserve_format 512 and memory_format != torch.contiguous_format 530 cpu_tensor = shard.tensor.cpu(memory_format=memory_format) # type: ignore[call-arg] 553 memory_format=torch.preserve_format, argument [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/miopen/ |
H A D | Conv_miopen.cpp | 667 auto memory_format = output->suggest_memory_format(); in miopen_convolution_add_bias_() local 671 at::Tensor bias_contig = bias->reshape(shape).contiguous(memory_format); in miopen_convolution_add_bias_() 673 bias_contig.resize_(bias_contig.sizes(), memory_format ); in miopen_convolution_add_bias_() 763 auto memory_format = at::MemoryFormat::Contiguous; in miopen_convolution_forward() local 765 …memory_format = (weight->ndimension() == 5) ? /*at::MemoryFormat::ChannelsLast3d*/at::MemoryFormat… in miopen_convolution_forward() 771 input->options().memory_format(memory_format)); in miopen_convolution_forward() 782 Tensor weight_contig = weight->contiguous(memory_format); in miopen_convolution_forward() 784 weight_contig.resize_(weight_contig.sizes(), memory_format); in miopen_convolution_forward() 785 Tensor input_contig = input->contiguous(memory_format); in miopen_convolution_forward() 786 input_contig.resize_(input_contig.sizes(), memory_format); in miopen_convolution_forward() [all …]
|
/aosp_15_r20/external/pytorch/torch/distributed/checkpoint/ |
H A D | metadata.py | 52 memory_format: torch.memory_format = field(default=torch.contiguous_format) variable in TensorProperties 57 # Since torch.memory_format cannot be pickled! 58 memory_format = self.memory_format 59 if memory_format == torch.contiguous_format: 61 elif memory_format == torch.channels_last: 63 elif memory_format == torch.preserve_format: 66 raise RuntimeError(f"Invalid torch.memory_format: {memory_format}") 89 memory_format = torch.contiguous_format 91 memory_format = torch.channels_last 93 memory_format = torch.preserve_format [all …]
|
/aosp_15_r20/external/pytorch/test/nn/ |
H A D | test_dropout.py | 95 def _test_dropout(self, cls, device, input, memory_format=torch.contiguous_format): argument 100 input_var = input.clone(memory_format=memory_format).requires_grad_() 102 self.assertTrue(output.is_contiguous(memory_format=memory_format)) 105 self.assertTrue(input_var.grad.is_contiguous(memory_format=memory_format)) 109 input_var = input.clone(memory_format=memory_format).requires_grad_() 111 self.assertTrue(output.is_contiguous(memory_format=memory_format)) 114 self.assertTrue(input_var.grad.is_contiguous(memory_format=memory_format)) 127 self, cls, device, memory_format=torch.contiguous_format argument 137 2, 3, 3, 6, device=device, memory_format=memory_format 145 self.assertTrue(out.is_contiguous(memory_format=memory_format)) [all …]
|
H A D | test_pooling.py | 223 input = input.contiguous(memory_format=torch.channels_last).requires_grad_() 236 self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) 248 input = input.contiguous(memory_format=torch.channels_last) 263 self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) 270 self, device, dtype, mod, memory_format argument 273 input = input.to(device).to(memory_format=memory_format).requires_grad_() 283 self.assertTrue(out2.is_contiguous(memory_format=memory_format)) 319 input = input.contiguous(memory_format=torch.channels_last).requires_grad_() 333 self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) 344 input = input.contiguous(memory_format=torch.channels_last).requires_grad_() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | DilatedMaxPool2d.cpp | 49 const auto memory_format = input.suggest_memory_format(); in TORCH_META_FUNC() local 50 if (memory_format == at::MemoryFormat::ChannelsLast) { in TORCH_META_FUNC() 53 } else if (memory_format == at::MemoryFormat::Contiguous) { in TORCH_META_FUNC() 74 outputHeight, outputWidth, memory_format); in TORCH_META_FUNC() 79 … {nInputPlane, outputHeight, outputWidth}, {}, input.options().memory_format(memory_format), maybe… in TORCH_META_FUNC() 81 … {nInputPlane, outputHeight, outputWidth}, {}, input.options().memory_format(memory_format).dtype(… in TORCH_META_FUNC() 83 …, nInputPlane, outputHeight, outputWidth}, {}, input.options().memory_format(memory_format), maybe… in TORCH_META_FUNC() 85 …, nInputPlane, outputHeight, outputWidth}, {}, input.options().memory_format(memory_format).dtype(… in TORCH_META_FUNC() 125 const auto memory_format = input.suggest_memory_format(); in TORCH_META_FUNC() local 126 if (memory_format == at::MemoryFormat::ChannelsLast) { in TORCH_META_FUNC() [all …]
|
/aosp_15_r20/external/pytorch/tools/autograd/templates/ |
H A D | python_variable_methods.cpp | 248 static Tensor dispatch_contiguous(const Tensor & self, at::MemoryFormat memory_format) { in dispatch_contiguous() argument 251 return self.contiguous(memory_format); in dispatch_contiguous() 258 "contiguous(*, MemoryFormat memory_format=contiguous_format)", in THPVariable_contiguous() 268 auto memory_format = r.memoryformat(0); in THPVariable_contiguous() local 270 if (self_.is_contiguous(memory_format)) { in THPVariable_contiguous() 281 jit::tracer::addInputs(node, "memory_format", memory_format); in THPVariable_contiguous() 288 return THPVariable_Wrap(dispatch_contiguous(self_, memory_format)); in THPVariable_contiguous() 407 …return self.to(self.options().device(device).memory_format(optional_memory_format), non_blocking, … in dispatch_to() 412 return self.to(self.options().memory_format(optional_memory_format), non_blocking, copy); in dispatch_to() 431 "cpu(*, MemoryFormat? memory_format=None)" in THPVariable_cpu() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cpu/ |
H A D | AdaptiveMaxPoolKernel.cpp | 93 auto memory_format = at::MemoryFormat::ChannelsLast; in cpu_adaptive_max_pool2d_channels_last() local 94 auto input = input_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() 95 auto output = output_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() 96 auto indices = indices_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() 193 if (!output_.is_contiguous(memory_format)) { in cpu_adaptive_max_pool2d_channels_last() 196 if (!indices_.is_contiguous(memory_format)) { in cpu_adaptive_max_pool2d_channels_last() 210 auto memory_format = at::MemoryFormat::ChannelsLast; in cpu_adaptive_max_pool2d_channels_last() local 211 auto input = input_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() 212 auto output = output_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() 213 auto indices = indices_.contiguous(memory_format); in cpu_adaptive_max_pool2d_channels_last() [all …]
|
H A D | AdaptiveAvgPoolKernel.cpp | 76 auto memory_format = at::MemoryFormat::ChannelsLast; in cpu_adaptive_avg_pool2d_channels_last() local 77 auto input = input_.contiguous(memory_format); in cpu_adaptive_avg_pool2d_channels_last() 78 auto output = output_.contiguous(memory_format); in cpu_adaptive_avg_pool2d_channels_last() 152 if (!output_.is_contiguous(memory_format)) { in cpu_adaptive_avg_pool2d_channels_last() 163 auto memory_format = at::MemoryFormat::ChannelsLast; in cpu_adaptive_avg_pool2d_channels_last() local 164 auto input = input_.contiguous(memory_format); in cpu_adaptive_avg_pool2d_channels_last() 165 auto output = output_.contiguous(memory_format); in cpu_adaptive_avg_pool2d_channels_last() 251 if (!output_.is_contiguous(memory_format)) { in cpu_adaptive_avg_pool2d_channels_last() 310 auto memory_format = at::MemoryFormat::ChannelsLast; in cpu_adaptive_avg_pool2d_backward_channels_last() local 311 auto grad_input = grad_input_.contiguous(memory_format); in cpu_adaptive_avg_pool2d_backward_channels_last() [all …]
|
/aosp_15_r20/external/pytorch/torch/csrc/lazy/ts_backend/ops/ |
H A D | to_copy.h | 26 const std::optional<at::MemoryFormat>& memory_format, in ToCopy() argument 39 memory_format)), 46 memory_format(memory_format) {} 55 const std::optional<at::MemoryFormat>& memory_format) const { in CanBeReused() argument 61 this->memory_format == memory_format); in CanBeReused() 88 if (memory_format.has_value()) { in ToString() 89 ss << ", memory_format=" << memory_format.value(); in ToString() 91 ss << ", memory_format=null"; in ToString() 110 kwarguments.emplace_back("memory_format", memory_format); in Lower() 123 std::optional<at::MemoryFormat> memory_format; variable
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/nested/ |
H A D | NestedTensorFactories.cpp | 20 .memory_format(optional_memory_format); in verify_empty_parameters() 23 auto memory_format = in verify_empty_parameters() local 26 memory_format == MemoryFormat::Preserve || memory_format == MemoryFormat::Contiguous, in verify_empty_parameters() 28 memory_format, in verify_empty_parameters() 47 auto memory_format = options.memory_format_opt().value_or(MemoryFormat::Preserve); in empty_like_nested() local 48 if (memory_format == MemoryFormat::Contiguous) { in empty_like_nested() 57 memory_format == MemoryFormat::Preserve, in empty_like_nested() 105 // memory_format is handled separately due to MemoryFormat::Preserve logic in _to_copy_nested() 106 options = self.options().merge_in(options).memory_format(std::nullopt); in _to_copy_nested() 107 auto memory_format = optional_memory_format.value_or(MemoryFormat::Preserve); in _to_copy_nested() local [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkldnn/ |
H A D | Conv.cpp | 158 auto memory_format = at::MemoryFormat::Contiguous; in mkldnn_convolution_memory_format() local 160 memory_format = dims == 4 ? at::MemoryFormat::ChannelsLast : at::MemoryFormat::ChannelsLast3d; in mkldnn_convolution_memory_format() 162 return memory_format; in mkldnn_convolution_memory_format() 177 auto memory_format = mkldnn_convolution_memory_format(input_t.ndimension(), is_channels_last); in _mkldnn_convolution_out() local 178 auto input = input_t.is_mkldnn() ? input_t : input_t.contiguous(memory_format); in _mkldnn_convolution_out() 179 auto weight = weight_t.is_mkldnn() ? weight_t : weight_t.contiguous(memory_format); in _mkldnn_convolution_out() 246 auto memory_format = in _mkldnn_convolution() local 253 output.resize_(output_sizes, memory_format); in _mkldnn_convolution() 401 auto memory_format = in mkldnn_convolution_pointwise_binary() local 403 auto input = input_t.contiguous(memory_format); in mkldnn_convolution_pointwise_binary() [all …]
|
/aosp_15_r20/external/executorch/kernels/test/ |
H A D | op_full_like_test.cpp | 32 optional<MemoryFormat> memory_format, in op_full_like_out() argument 35 context_, self, fill_value, memory_format, out); in op_full_like_out() 45 MemoryFormat memory_format = MemoryFormat::Contiguous; in test_full_like_out() local 48 op_full_like_out(in, value, memory_format, out); in test_full_like_out() 52 op_full_like_out(in, value, memory_format, out); in test_full_like_out() 63 MemoryFormat memory_format; in test_full_like_out_mismatched_shape() local 66 context_, op_full_like_out(in, value, memory_format, out)); in test_full_like_out_mismatched_shape() 77 MemoryFormat memory_format = MemoryFormat::Contiguous; in test_full_like_out() local 80 op_full_like_out(in, value, memory_format, out); in test_full_like_out() 84 op_full_like_out(in, value, memory_format, out); in test_full_like_out() [all …]
|
/aosp_15_r20/external/pytorch/torch/_inductor/ |
H A D | decomposition.py | 514 memory_format: Optional[torch.memory_format] = None, argument 515 ) -> torch.memory_format: 517 if memory_format is torch.preserve_format or memory_format is None: 520 return memory_format 529 memory_format: Optional[torch.memory_format] = None, argument 537 ).to(memory_format=get_like_layout(self, memory_format)) 546 memory_format: Optional[torch.memory_format] = None, argument 554 ).to(memory_format=get_like_layout(self, memory_format)) 567 memory_format: torch.memory_format = torch.preserve_format, argument 576 ).to(memory_format=get_like_layout(self, memory_format)) [all …]
|
/aosp_15_r20/external/executorch/exir/ |
H A D | dim_order_utils.py | 12 Set of simple utilities for translating between torch.memory_format and dim_order 34 def get_memory_format(dim_order: Optional[List[int]]) -> torch.memory_format: 36 Given a dim_order try to map it to torch.memory_format 48 f"Failed to map a given dim_order: {dim_order} to a torch.memory_format" 53 memory_format: Optional[torch.memory_format], ndim: int argument 56 Given a memory_format and a tensor rank, generate a dim_order 58 if memory_format in [None, torch.preserve_format]: 60 elif memory_format == torch.contiguous_format: 62 elif memory_format == torch.channels_last: 66 f"Failed to generate dim_order for a given memory format: {memory_format}"
|
/aosp_15_r20/external/pytorch/aten/src/ATen/cudnn/ |
H A D | Descriptors.cpp | 36 void TensorDescriptor::set(const at::Tensor &t, at::MemoryFormat memory_format, size_t pad) { in set() argument 38 memory_format == at::MemoryFormat::ChannelsLast || in set() 39 memory_format == at::MemoryFormat::ChannelsLast3d); in set() 43 auto memory_format = t.suggest_memory_format(); in set() local 45 memory_format == at::MemoryFormat::ChannelsLast || in set() 46 memory_format == at::MemoryFormat::ChannelsLast3d); in set() 124 void FilterDescriptor::set(const at::Tensor &t, const at::MemoryFormat memory_format, int64_t pad) { in set() argument 132 TORCH_CHECK(t.is_contiguous(memory_format), in set() 133 "cuDNN filters (a.k.a. weights) must be contiguous in desired memory_format\n", in set() 136 "cuDNN suggested memory_format: ", memory_format); in set() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mps/operations/ |
H A D | Convolution.mm | 69 c10::MemoryFormat memory_format, 96 c10::MemoryFormat memory_format, 111 …descriptor_.dataLayout = (memory_format == at::MemoryFormat::Contiguous) ? MPSGraphTensorNamedData… 153 auto memory_format = input_t.suggest_memory_format(); 154 bool is_channels_last = (memory_format == at::MemoryFormat::ChannelsLast) && !is3DConv; 162 is_macOS_15_0_or_newer ? memory_format : MemoryFormat::Contiguous); 197 switch (memory_format) { 230 MPSShape* inputShape = mps::getMPSShape(input_t, memory_format); 231 MPSShape* outputShape = mps::getMPSShape(output_t, memory_format); 235 …if (input_t.is_contiguous(memory_format) && output_t.is_contiguous(memory_format) && is_macOS_15_0… [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/functorch/ |
H A D | BatchRulesUnaryOps.cpp | 17 std::optional<MemoryFormat> memory_format) { in clone_batch_rule() argument 25 TORCH_CHECK(!memory_format.has_value() || memory_format == MemoryFormat::Preserve in clone_batch_rule() 26 || memory_format == MemoryFormat::Contiguous, in clone_batch_rule() 27 "NYI: Tensor.clone(memory_format) inside vmap is only supported with ", in clone_batch_rule() 28 "memory_format torch.preserve_format or torch.contiguous_format (got ", in clone_batch_rule() 29 *memory_format, ")"); in clone_batch_rule() 31 if (memory_format == MemoryFormat::Contiguous) { in clone_batch_rule() 42 auto result = at::clone(self_, memory_format); in clone_batch_rule() 46 TORCH_INTERNAL_ASSERT(!memory_format.has_value() || memory_format == MemoryFormat::Preserve); in clone_batch_rule() 47 auto result = at::clone(self, memory_format); in clone_batch_rule()
|
/aosp_15_r20/external/pytorch/torch/_C/ |
H A D | _nn.pyi.in | 6 from torch import memory_format, Tensor 43 memory_format: memory_format, 44 ) -> Tuple[_device, _dtype, _bool, memory_format]: ... 51 memory_format: memory_format, 52 ) -> Tuple[_device, _dtype, _bool, memory_format]: ... 59 memory_format: memory_format, 60 ) -> Tuple[_device, _dtype, _bool, memory_format]: ...
|