/aosp_15_r20/external/executorch/exir/dialects/edge/ |
H A D | edge.yaml | 3611 - fill_value: T1 3614 - fill_value: T1 3617 - fill_value: T1 3620 - fill_value: T1 3623 - fill_value: T1 3626 - fill_value: T1 3629 - fill_value: T1 3632 - fill_value: T1 3635 - fill_value: T1 3656 fill_value: T2 [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/kernels/image/ |
H A D | image_ops.h | 133 const Interpolation interpolation, const T fill_value) 137 fill_value_(fill_value) {} 180 const DenseIndex channel, const T fill_value) const { 182 DenseIndex(std::round(x)), channel, fill_value); 187 const DenseIndex channel, const T fill_value) const { 197 channel, fill_value)) + 200 channel, fill_value)); 206 channel, fill_value)) + 209 channel, fill_value)); 217 const DenseIndex channel, const T fill_value) const { [all …]
|
H A D | image_ops.cc | 88 T fill_value(0); in DoImageProjectiveTransformOp() local 93 errors::InvalidArgument("fill_value must be a scalar", in DoImageProjectiveTransformOp() 95 fill_value = static_cast<T>(*(fill_value_t.scalar<float>().data())); in DoImageProjectiveTransformOp() 110 fill_value); in DoImageProjectiveTransformOp() 205 const TYPE fill_value) const; \ 253 .HostMemory("fill_value"), \
|
/aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/pool2d/neon/nchw/ |
H A D | all.cpp | 97 …const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min :… in pooling3_fp16_neon_nchw() local 109 … x_val, y_val_0, reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()), fill_value); in pooling3_fp16_neon_nchw() 111 … x_val, y_val_1, reinterpret_cast<const float16_t *>(src_middle_ptr + in.offset()), fill_value); in pooling3_fp16_neon_nchw() 113 … x_val, y_val_2, reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()), fill_value); in pooling3_fp16_neon_nchw() 207 … const T fill_value = (pool_info.pool_type == PoolingType::MAX) ? float_min : 0.f; in pooling2_nchw_maxpool_indices() local 215 … x_val, y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value); in pooling2_nchw_maxpool_indices() 217 … x_val, y_val_1, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value); in pooling2_nchw_maxpool_indices() 263 const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f; in pooling2_fp16_neon_nchw() local 277 … x_val, y_val_0, in_top_ptr, fill_value); in pooling2_fp16_neon_nchw() 279 … x_val, y_val_1, in_bottom_ptr, fill_value); in pooling2_fp16_neon_nchw() [all …]
|
/aosp_15_r20/external/executorch/backends/apple/mps/operators/ |
H A D | constant_ops.py | 54 fill_value = cast(float, node.args[1]) 56 fill_value = 0 58 fill_value = cast(float, node.args[0]) 60 if fill_value == float("-inf"): 61 fill_value = "-inf" 62 elif fill_value == float("inf"): 63 fill_value = "inf" 75 fill_value=fill_value, 96 raise AssertionError("Full op requires at least size & fill_value args") 100 mps_node.mpsnode_union.fill_value = cast(float, node.args[1])
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/operator_upgraders/ |
H A D | upgraders_entry.cpp | 94 def full_names_0_4(size:List[int], fill_value:number, *, names:Optional[List[str]]=None, 97 …return torch.full(size, fill_value, names=names, dtype=dtype, layout=layout, device=device, pin_me… 100 def full_0_4(size:List[int], fill_value:number, *, dtype:Optional[int]=None, 104 fill_value = float(fill_value) 105 …return torch.full(size, fill_value, dtype=dtype, layout=layout, device=device, pin_memory=pin_memo… 108 def full_out_0_4(size:List[int], fill_value:number, *, out:Tensor) -> Tensor: 109 return torch.full(size, fill_value, out=out)
|
H A D | version_map.cpp | 77 …"aten::full(int[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device?… 81 …"aten::full.names(int[] size, Scalar fill_value, *, Dimname[]? names, ScalarType? dtype=None, Layo… 85 "aten::full.out(int[] size, Scalar fill_value, *, Tensor(a!) out) -> Tensor(a!)"}}},
|
/aosp_15_r20/external/pytorch/torch/masked/ |
H A D | _ops.py | 503 def _sparse_coo_where(mask: Tensor, input: Tensor, fill_value: Tensor) -> Tensor: 508 _sparse_coo_where(mask, input, fill_value).to_dense(fill_value) == 509 torch.where(mask.to_dense(), input.to_dense(), torch.full(input.shape, fill_value)) 512 tensor, and `to_dense(fill_value)` is like `to_dense()` except 513 that the unspecified elements are mapped to `fill_value` rather 523 elements are replaced with fill_value. 580 where_mask_values, where_input_values, fill_value 821 def _sparse_csr_where(mask: Tensor, input: Tensor, fill_value: Tensor) -> Tensor: 825 mask.to_sparse_coo(), input.to_sparse_coo(), fill_value 829 def _where(mask: Tensor, input: Tensor, fill_value: Tensor) -> Tensor: [all …]
|
/aosp_15_r20/external/XNNPACK/test/ |
H A D | pad-microkernel-tester.h | 118 uint32_t fill_value = 0; in Test() local 119 memcpy(&fill_value, fill_pattern.data(), sizeof(fill_value)); in Test() 129 fill_value); in Test() 139 << ", fill value 0x" << std::hex << std::setw(8) << std::setfill('0') << fill_value in Test() 149 << ", fill value 0x" << std::hex << std::setw(8) << std::setfill('0') << fill_value in Test() 159 << ", fill value 0x" << std::hex << std::setw(8) << std::setfill('0') << fill_value in Test()
|
H A D | fill-microkernel-tester.h | 82 uint32_t fill_value = 0; in Test() local 83 memcpy(&fill_value, fill_pattern.data(), sizeof(fill_value)); in Test() 91 fill_value); in Test() 99 << ", fill value 0x" << std::hex << std::setw(8) << std::setfill('0') << fill_value in Test()
|
/aosp_15_r20/external/pytorch/test/ |
H A D | test_masked.py | 319 @parametrize("sparse_kind,fill_value", [('coo', 0), ('hybrid_coo', 0), 322 name_fn=lambda sparse_kind, fill_value: f'{sparse_kind}_fill_value_{fill_value}') 323 def test_where(self, sparse_kind, fill_value): argument 380 F = fill_value 400 … torch.tensor(fill_value, dtype=input.dtype, device=input.device)) 425 # torch.where(mask.to_dense(), input.to_dense(), fill_value) 426 # == where(mask, input, fill_value).to_dense(fill_value)
|
H A D | test_matmul_cuda.py | 567 fill_value = 0.5 568 x = torch.full((M, K), fill_value, device=device) 569 y = torch.full((N, K), fill_value, device=device) 586 out_fp8.to(torch.float32), torch.full((M, N), K * (fill_value**2), device=device) 593 fill_value = 0.5 594 x = torch.full((M, K), fill_value, device=device) 595 y = torch.full((N, K), fill_value, device=device)
|
/aosp_15_r20/external/pytorch/torch/distributed/_shard/sharded_tensor/ |
H A D | __init__.py | 124 fill_value=1, 178 fill_value=0, 192 fill_value, argument 203 Creates a :class:`ShardedTensor` filled with fill_value. The tensor's dtype 204 is inferred from fill_value. If dtype is specified, it will override the 205 inferred type from fill_value. Needs to be called on all ranks in an SPMD fashion. 211 fill_value (Scalar) - the value to fill the output tensor with. 241 torch.nn.init.constant_(sharded_tensor, fill_value) # type: ignore[arg-type]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | TensorFactories.cpp | 585 const Scalar& fill_value, in infer_full_options() argument 589 if (fill_value.isBoolean()) { in infer_full_options() 591 } else if (fill_value.isIntegral(false)) { in infer_full_options() 593 } else if (fill_value.isComplex()) { in infer_full_options() 608 Tensor full(IntArrayRef size, const Scalar& fill_value, in full() argument 619 auto result = at::empty(size, infer_full_options(fill_value, options)); in full() 620 return result.fill_(fill_value); in full() 623 Tensor& full_out(IntArrayRef size, const Scalar& fill_value, Tensor& result) { in full_out() argument 628 return result.fill_(fill_value); in full_out() 633 const Scalar& fill_value, in full_like() argument [all …]
|
H A D | Fill.cpp | 96 Tensor& fill_diagonal_(Tensor& self, const Scalar& fill_value, bool wrap) { in fill_diagonal_() argument 125 main_diag.fill_(fill_value); in fill_diagonal_() 137 wrap_diag.fill_(fill_value); in fill_diagonal_()
|
/aosp_15_r20/external/ComputeLibrary/src/cpu/kernels/pool2d/neon/ |
H A D | quantized.h | 424 …const T fill_value = (pool_info.pool_type == PoolingType::MAX) ? std::numeric_limits<T>::min() : T… in pooling2_quantized_neon_nchw() local 433 … x_val, y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value); in pooling2_quantized_neon_nchw() 435 … x_val, y_val_1, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value); in pooling2_quantized_neon_nchw() 560 …const T fill_value = (pool_info.pool_type == PoolingType::AVG) ? T(0) : std::numeric_limits<T>::… in pooling3_quantized_neon_nchw() local 571 … x_val, y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value); in pooling3_quantized_neon_nchw() 573 … x_val, y_val_1, reinterpret_cast<const T *>(src_middle_ptr + in.offset()), fill_value); in pooling3_quantized_neon_nchw() 575 … x_val, y_val_2, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value); in pooling3_quantized_neon_nchw() 716 …const T fill_value = (pool_info.pool_type == PoolingType::AVG) ? T(0)… in poolingMxN_quantized_neon_nchw() local 741 … const T data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr; in poolingMxN_quantized_neon_nchw() 758 … const T data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *in_ptr; in poolingMxN_quantized_neon_nchw()
|
/aosp_15_r20/external/executorch/extension/tensor/ |
H A D | tensor_ptr_maker.h | 357 * @param fill_value The value to fill the tensor with. 365 executorch::aten::Scalar fill_value, 376 * @param fill_value The value to fill the tensor with. 384 executorch::aten::Scalar fill_value, 394 fill_value, 403 * @param fill_value The value used to fill the tensor. 410 executorch::aten::Scalar fill_value, 414 return full_strided(std::move(sizes), {}, fill_value, type, dynamism);
|
/aosp_15_r20/external/ComputeLibrary/src/core/CPP/kernels/ |
H A D | CPPUpsampleKernel.cpp | 89 const uint8_t fill_value = _output->info()->quantization_info().uniform().offset; in run() local 90 std::fill_n(_output->buffer(), _output->info()->total_size(), fill_value); in run() 95 const int8_t fill_value = _output->info()->quantization_info().uniform().offset; in run() local 96 std::fill_n(_output->buffer(), _output->info()->total_size(), fill_value); in run()
|
/aosp_15_r20/external/executorch/backends/cadence/reference/operators/ |
H A D | op_full.cpp | 22 const Scalar& fill_value, in full_out() argument 26 ScalarType val_type = utils::get_scalar_dtype(fill_value); in full_out() 34 ET_EXTRACT_SCALAR(fill_value, val); in full_out()
|
/aosp_15_r20/external/executorch/kernels/portable/cpu/ |
H A D | op_full.cpp | 22 const Scalar& fill_value, in full_out() argument 26 ScalarType val_type = utils::get_scalar_dtype(fill_value); in full_out() 41 utils::extract_scalar(fill_value, &val); in full_out()
|
H A D | op_full_like.cpp | 22 const Scalar& fill_value, in full_like_out() argument 50 ScalarType val_type = utils::get_scalar_dtype(fill_value); in full_like_out() 57 utils::extract_scalar(fill_value, &val); in full_like_out()
|
/aosp_15_r20/external/pytorch/torch/distributed/tensor/ |
H A D | _api.py | 937 fill_value = kwargs.pop("fill_value", 0) 938 local_tensor = init_op(local_shape, fill_value, **kwargs) 1060 fill_value, argument 1069 Returns a :class:`DTensor` filled with ``fill_value`` according to ``device_mesh`` and 1076 fill_value(Scalar): the value to fill the output tensor with. 1096 fill_value=fill_value,
|
/aosp_15_r20/external/pytorch/torch/csrc/api/include/torch/nn/functional/ |
H A D | padding.h | 30 std::optional<double> fill_value; in pad() local 32 fill_value = value; in pad() 34 return at::_pad_enum(input, pad, static_cast<int64_t>(mode_enum), fill_value); in pad()
|
/aosp_15_r20/external/pytorch/torch/_inductor/fx_passes/ |
H A D | fuse_attention.py | 375 fill_value = torch.full((), -float("inf"), dtype=query.dtype, device=query.device) 377 return torch.softmax(scores.masked_fill(attn_mask, fill_value), dim=-1) @ v 440 fill_value = torch.full((), -float("inf"), dtype=query.dtype, device=query.device) 444 torch.softmax(scores.masked_fill(attn_mask, fill_value), dim=-1), dropout_p 540 fill_value = torch.full((), -float("inf"), dtype=query.dtype, device=query.device) 541 attn_mask = torch.where(causal_mask, attn_mask, fill_value)
|
/aosp_15_r20/external/tensorflow/tensorflow/python/ops/numpy_ops/ |
H A D | np_array_ops_test.py | 256 fill_value = fn1(f) 259 np_array_ops.full(shape, fill_value), np.full(shape, fill_value)) 262 np_array_ops.full(shape, fill_value, dtype=dtype), 263 np.full(shape, fill_value, dtype=dtype)) 282 fill_value = fn1(f) 285 np_array_ops.full_like(arr, fill_value), 286 np.full_like(arr, fill_value)) 289 np_array_ops.full_like(arr, fill_value, dtype=dtype), 290 np.full_like(arr, fill_value, dtype=dtype))
|