Home
last modified time | relevance | path

Searched full:fill_ (Results 1 – 25 of 305) sorted by relevance

12345678910>>...13

/aosp_15_r20/external/pytorch/test/onnx/
H A Dtest_models.py71 x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
75 x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
101 x = Variable(torch.randn(1, 3, 224, 224).fill_(1.0))
108 x = Variable(torch.randn(BATCH_SIZE, 1, 224, 224).fill_(1.0))
112 x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
116 x = Variable(torch.randn(BATCH_SIZE, 1, 28, 28).fill_(1.0))
122 x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
128 x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
134 x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
140 x = Variable(torch.randn(BATCH_SIZE, 3, 224, 224).fill_(1.0))
[all …]
/aosp_15_r20/external/pytorch/aten/src/ATen/native/
H A DFill.cpp47 Tensor& fill_(Tensor& self, const Scalar& value) { in fill_() function
55 Tensor& fill_(Tensor& self, const Tensor& value) { in fill_() function
56 …TORCH_CHECK(value.dim() == 0, "fill_ only supports 0-dimension value tensor but got tensor with ",… in fill_()
71 …TORCH_CHECK(value.dim() == 0, "fill_ only supports 0-dimension value tensor but got tensor with ",… in fill_quantized_()
80 …TORCH_CHECK(value.dim() == 0, "fill_ only supports 0-dimension value tensor but got tensor with ",… in fill_meta_()
85 return at::empty_like(self).fill_(value); in fill()
89 return at::empty_like(self).fill_(value); in fill()
125 main_diag.fill_(fill_value); in fill_diagonal_()
137 wrap_diag.fill_(fill_value); in fill_diagonal_()
146 return self.fill_(0); in zero_cpu_()
[all …]
H A DTensorCompare.cpp613 indices.resize_({}).fill_(0); in mode_out()
638 values.fill_(self); in minmax_out_impl()
639 indices.fill_(0); in minmax_out_impl()
702 at::fill_(const_cast<Tensor&>(result), std::numeric_limits<double>::quiet_NaN()); in TORCH_IMPL_FUNC()
731 at::fill_(const_cast<Tensor&>(result), wrapped_scalar_tensor(max)); in TORCH_IMPL_FUNC()
745 at::fill_(const_cast<Tensor&>(result), min); in TORCH_IMPL_FUNC()
816 out.fill_(invert); in TORCH_IMPL_FUNC()
844 result.fill_(false); in TORCH_IMPL_FUNC()
852 result.fill_(false); in TORCH_IMPL_FUNC()
H A DReduceOps.cpp482 result.fill_(self); in impl_func_cum_ops()
804 values.fill_(self); in cummax_out()
805 indices.fill_(0); in cummax_out()
839 values.fill_(self); in cummin_out()
840 indices.fill_(0); in cummin_out()
1316 result.fill_(1); in impl_func_prod()
1397 result.fill_(std::numeric_limits<double>::quiet_NaN()); in TORCH_IMPL_FUNC()
1602 result.fill_(identity); in allany_impl()
1734 result.fill_(0); in argmax_argmin_impl()
1884 result.fill_(std::numeric_limits<double>::quiet_NaN()); in std_var_out()
[all …]
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cpu/
H A DReduceAllOpsKernel.cpp42 output.fill_(result); in reduce_all_impl_vec()
62 output.fill_(result); in reduce_all_impl()
74 result.fill_(result_data); in min_all_kernel_impl()
99 result.fill_(result_data); in max_all_kernel_impl()
137 output1.fill_(result.first); in reduce_all_impl_two_outputs()
138 output2.fill_(result.second); in reduce_all_impl_two_outputs()
166 output1.fill_(result.first); in reduce_all_impl_vec_two_outputs()
167 output2.fill_(result.second); in reduce_all_impl_vec_two_outputs()
184 min_result.fill_(min_result_data); in aminmax_allreduce_kernel()
185 max_result.fill_(max_result_data); in aminmax_allreduce_kernel()
/aosp_15_r20/external/pytorch/test/profiler/
H A Dtest_profiler_tree.py278 aten::fill_
286 aten::fill_
345 aten::fill_
356 aten::fill_
385 aten::fill_
396 aten::fill_
466 aten::fill_
501 aten::fill_
586 aten::fill_
633 aten::fill_
[all …]
/aosp_15_r20/external/tensorflow/tensorflow/compiler/mlir/tfrt/tests/jit/
H A Dtf_jitrt_fuse_fill_into_tiled_reduction.mlir22 outs (%fill_ = %fill: tensor<?xf32>)
33 %13 = tensor.extract_slice %fill_[%i] [%12] [1]
45 %15 = tensor.insert_slice %14 into %fill_[%i] [%12] [1]
115 outs (%fill_ = %fill: tensor<8xf32>)
119 %4 = tensor.extract_slice %fill_[%i] [4] [1]
130 %6 = tensor.insert_slice %5 into %fill_[%i] [4] [1]
159 outs (%fill_ = %fill: tensor<?xf32>)
166 %10 = tensor.extract_slice %fill_[%j] [%9] [1]
177 %12 = tensor.insert_slice %11 into %fill_[%j] [%9] [1]
/aosp_15_r20/external/sdv/vsomeip/third_party/boost/format/include/boost/format/
Dinternals.hpp53 Ch fill_; member
108 // If a locale is available, set it first. "os.fill(fill_);" may chrash otherwise. in apply_on()
122 if(fill_ != 0) in apply_on()
123 os.fill(fill_); in apply_on()
135 fill_ = os.fill(); in set_by_stream()
155 fill_=fill; // default is widen(' '), but we cant compute it without the locale in reset()
187 fmtstate_.fill_='0'; in compute_states()
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mps/operations/
H A DBitwiseOps.mm253 output.fill_(c10::Scalar(self.item<int64_t>() & other.item<int64_t>()));
255 output.fill_(c10::Scalar(self.item<int64_t>() | other.item<int64_t>()));
257 output.fill_(c10::Scalar(self.item<int64_t>() ^ other.item<int64_t>()));
259 output.fill_(c10::Scalar(self.item<int64_t>() << other.item<int64_t>()));
261 output.fill_(c10::Scalar(self.item<int64_t>() >> other.item<int64_t>()));
299 output.fill_(c10::Scalar(static_cast<uint8_t>(~self.item<uint8_t>())));
301 output.fill_(c10::Scalar(~self.item<int64_t>()));
/aosp_15_r20/external/pytorch/test/distributed/
H A Dtest_symmetric_memory.py95 buf.fill_(42)
104 buf.fill_(43)
386 ).fill_(self.rank)
422 chunks[r].fill_(r)
455 ).fill_(1)
490 ).fill_(0)
499 x.fill_(1)
/aosp_15_r20/external/pytorch/test/dynamo/
H A Dtest_backends.py57 a = torch.empty(2).fill_(1)
58 b = torch.empty(2).fill_(2)
59 c = torch.empty(2).fill_(3)
89 a = torch.empty(2).fill_(1)
90 b = torch.empty(2).fill_(2)
91 c = torch.empty(2).fill_(3)
H A Dtest_verify_correctness.py73 a = torch.empty(2).fill_(1)
74 b = torch.empty(2).fill_(2)
75 c = torch.empty(2).fill_(3)
H A Dtest_higher_order_ops.py2973 fill_: "f32[12]" = diagonal.fill_(1); diagonal = fill_ = None
3022 fill__1: "f32[12]" = diagonal_1.fill_(1); diagonal_1 = fill__1 = None
3105 fill_: "f32[12]" = diagonal.fill_(1); diagonal = fill_ = None
3156 fill__1: "f32[12]" = diagonal_1.fill_(1); diagonal_1 = fill__1 = None
3282 fill_: "f32[12]" = diagonal.fill_(1); diagonal = fill_ = None
3362 fill_: "f32[12]" = diagonal.fill_(1); diagonal = fill_ = None
3444 fill_: "f32[12]" = diagonal.fill_(1); diagonal = fill_ = None
4617 fill_: "f32[12]" = diagonal.fill_(1); diagonal = fill_ = None
4700 fill_: "f32[12]" = diagonal.fill_(1); diagonal = fill_ = None
4784 fill_: "f32[12]" = diagonal.fill_(1); diagonal = fill_ = None
[all …]
H A Dtest_cudagraphs.py168 x.fill_(2)
186 x.fill_(2)
187 y.fill_(3)
/aosp_15_r20/external/pytorch/aten/src/ATen/native/nested/cuda/
H A DNestedTensorTransformerUtils.cpp358 output_shape.select(1, -1).fill_(head_dim_v); in sdpa_nested_preprocessing_with_broadcast()
361 output_shape.select(1, 1).fill_(output_num_heads); in sdpa_nested_preprocessing_with_broadcast()
366 output_shape.select(1, 0).fill_(q_t.size(1)); in sdpa_nested_preprocessing_with_broadcast()
367 output_shape.select(1, 1).fill_(output_num_heads); in sdpa_nested_preprocessing_with_broadcast()
368 output_shape.select(1, 2).fill_(head_dim_v); in sdpa_nested_preprocessing_with_broadcast()
443 output_shape.select(1, -1).fill_(head_dim_v); in sdpa_nested_preprocessing()
536 output_shape.select(1, -1).fill_(head_dim_v); in sdpa_nested_preprocessing_backward()
/aosp_15_r20/external/pytorch/test/distributed/fsdp/
H A Dtest_fsdp_apply.py40 m.weight.fill_(1.0)
41 m.bias.fill_(1.0)
56 fsdp, lambda param: torch.empty_like(param).fill_(1.0), self.assertNotEqual
63 fsdp, lambda param: torch.empty_like(param).fill_(1.0), self.assertEqual
/aosp_15_r20/system/teeui/libteeui/include/teeui/
H A Dutils.h659 size_t fill_;
662 ConvexObject() : fill_(0) {}
663 explicit constexpr ConvexObject(std::initializer_list<PxPoint> l) : fill_(0) {
666 points_[fill_++] = p;
674 constexpr size_t size() const { return fill_; }
677 constexpr const PxPoint* end() const { return &points_[fill_]; }
690 vCount = fill_;
692 result.fill_ = vCount;
718 if (fill_ < capacity) {
719 points_[fill_++] = p;
/aosp_15_r20/external/pytorch/test/jit/
H A Dtest_remove_mutation.py143 y.fill_(3)
149 FileCheck().check_not("aten::zero_").check_not("aten::fill_").run(graph)
157 x.fill_(y)
163 FileCheck().check_not("aten::fill_").run(graph)
308 inp.fill_(10)
/aosp_15_r20/external/pytorch/test/inductor/
H A Dtest_extension_backend.py130 x = torch.empty(2, 16).to(device=device).fill_(1)
132 y = torch.empty(2, 16).to(device=device).fill_(2)
133 z = torch.empty(2, 16).to(device=device).fill_(3)
134 ref = torch.empty(2, 16).fill_(5)
/aosp_15_r20/external/pytorch/test/export/
H A Dtest_torchbind.py580 ).fill_(-1)
585 ).fill_(-1)
637 ).fill_(-1)
642 ).fill_(-1)
834 ).fill_(-1)
880 ).fill_(-1)
885 ).fill_(-1)
954 ).fill_(-1)
1089 ).fill_(-1)
1094 ).fill_(-1)
[all …]
/aosp_15_r20/external/pytorch/benchmarks/operator_benchmark/pt/
H A Dfill_test.py7 """Microbenchmark for Fill_ operator."""
44 self.set_module_name("fill_")
47 return input_one.fill_(10)
/aosp_15_r20/external/pytorch/aten/src/ATen/
H A DTensorOperators.h19 ::at::empty_like(y, at::MemoryFormat::Preserve).fill_(x).sub_(y)) \
22 ::at::empty_like(y, at::MemoryFormat::Preserve).fill_(x).div_(y)) \
25 ::at::empty_like(y, at::MemoryFormat::Preserve).fill_(x).remainder_(y)) \
/aosp_15_r20/external/pytorch/torch/profiler/
H A D_pattern_matcher.py156 aten::fill_/aten::zero_ | aten::_to_copy
160 and check if we have a aten::fill_/aten::zero_ as we keep going down the tree.
171 "aten::fill_",
207 # Check if we have a aten::fill_ in previous leaf
213 # aten::zero_ is a special optimzation case where fill_ is not called
/aosp_15_r20/external/pytorch/test/distributed/_tensor/
H A Dtest_dtensor.py52 self.net1.weight.fill_(0.5)
53 self.net2.weight.fill_(1)
54 self.net1.bias.fill_(1.5)
55 self.net2.bias.fill_(1.2)
100 value_tensor = torch.empty_like(meta_dtensor.to_local()).fill_(1.2)
109 value_tensor = torch.empty_like(meta_dtensor.to_local()).fill_(1.5)
/aosp_15_r20/external/pytorch/test/
H A Dtest_tensor_creation_ops.py167 x.fill_(n)
786 torch.empty_strided((4, 3, 2), (10, 3, 1), device=device).fill_(1.0),
787 torch.empty_strided((4, 3, 2), (10, 0, 3), device=device).fill_(1.0),
788 torch.empty_strided((4, 3, 2), (10, 1, 2), device=device).fill_(1.0),
789 torch.empty_strided((4, 3, 2), (4, 2, 1), device=device)[:, :, ::2].fill_(1.0),
790 torch.empty_strided((4, 3, 2), (10, 1, 1), device=device).fill_(1.0),
791 torch.empty_strided((4, 1, 1, 2), (10, 0, 0, 2), device=device).fill_(1.0),
792 torch.empty_strided((4, 2, 3), (10, 3, 3), device=device).fill_(1.0))
1560 t.fill_(-1)
1565 t.fill_(-1)
[all …]

12345678910>>...13