Home
last modified time | relevance | path

Searched full:distributed (Results 1 – 25 of 59940) sorted by relevance

12345678910>>...2398

/aosp_15_r20/external/pytorch/docs/source/
H A Ddistributed.rst4 Distributed communication package - torch.distributed
8 …Please refer to `PyTorch Distributed Overview <https://pytorch.org/tutorials/beginner/dist_overvie…
9 for a brief introduction to all features related to distributed training.
11 .. automodule:: torch.distributed
12 .. currentmodule:: torch.distributed
17 ``torch.distributed`` supports three built-in backends, each with
55 PyTorch distributed package supports Linux (stable), MacOS (stable), and Windows (prototype).
57 distributed (NCCL only when building with CUDA). MPI is an optional backend that can only be
79 - Use the NCCL backend for distributed **GPU** training
80 - Use the Gloo backend for distributed **CPU** training.
[all …]
H A Ddistributed.checkpoint.rst4 Distributed Checkpoint - torch.distributed.checkpoint
8 Distributed Checkpoint (DCP) support loading and saving models from multiple ranks in parallel.
19 .. automodule:: torch.distributed.checkpoint
21 .. currentmodule:: torch.distributed.checkpoint.state_dict_saver
27 .. currentmodule:: torch.distributed.checkpoint.state_dict_loader
32 … of the staging mechanisms used for asynchronous checkpointing (`torch.distributed.checkpoint.asyn…
34 .. automodule:: torch.distributed.checkpoint.staging
36 .. autoclass:: torch.distributed.checkpoint.staging.AsyncStager
39 .. autoclass:: torch.distributed.checkpoint.staging.BlockingAsyncStager
43 .. automodule:: torch.distributed.checkpoint.stateful
[all …]
H A Drpc.rst3 Distributed RPC Framework
6 The distributed RPC framework provides mechanisms for multi-machine model
23 …Please refer to `PyTorch Distributed Overview <https://pytorch.org/tutorials/beginner/dist_overvie…
24 for a brief introduction to all features related to distributed training.
29 The distributed RPC framework makes it easy to run functions remotely, supports
37 :meth:`~torch.distributed.rpc.rpc_sync` (synchronous),
38 :meth:`~torch.distributed.rpc.rpc_async` (asynchronous), and
39 :meth:`~torch.distributed.rpc.remote` (asynchronous and returns a reference
43 caller. The :meth:`~torch.distributed.rpc.remote` API is useful when the
49 :meth:`~torch.distributed.rpc.rpc_sync` and
[all …]
H A Dconf.py102 # torch.distributed.autograd
104 # torch.distributed.checkpoint.state_dict
107 # torch.distributed.elastic.events
110 # torch.distributed.elastic.metrics
112 # torch.distributed.elastic.rendezvous.registry
114 # torch.distributed.launch
118 # torch.distributed.rpc
120 # torch.distributed.run
146 # torch.distributed.algorithms.ddp_comm_hooks
455 # torch.distributed.algorithms.ddp_comm_hooks.ddp_zero_hook
[all …]
H A Ddistributed.tensor.rst1 .. currentmodule:: torch.distributed.tensor
3 torch.distributed.tensor
7 ``torch.distributed.tensor`` is currently in alpha state and under
12 PyTorch DTensor (Distributed Tensor)
15 …Tensor offers simple and flexible tensor sharding primitives that transparently handles distributed
22 * `Tensor Parallel <https://pytorch.org/docs/main/distributed.tensor.parallel.html>`__
25 .. automodule:: torch.distributed.tensor
28 write distributed program as if it's a **single-device program with the same convergence property**…
41 .. currentmodule:: torch.distributed.tensor
45 running them in a single device, allowing proper distributed computation for PyTorch operators.
[all …]
H A Dfsdp.rst4 .. automodule:: torch.distributed.fsdp
6 .. autoclass:: torch.distributed.fsdp.FullyShardedDataParallel
9 .. autoclass:: torch.distributed.fsdp.BackwardPrefetch
12 .. autoclass:: torch.distributed.fsdp.ShardingStrategy
15 .. autoclass:: torch.distributed.fsdp.MixedPrecision
18 .. autoclass:: torch.distributed.fsdp.CPUOffload
21 .. autoclass:: torch.distributed.fsdp.StateDictConfig
24 .. autoclass:: torch.distributed.fsdp.FullStateDictConfig
27 .. autoclass:: torch.distributed.fsdp.ShardedStateDictConfig
30 .. autoclass:: torch.distributed.fsdp.LocalStateDictConfig
[all …]
H A Dindex.rst76 torch.distributed <distributed>
77 torch.distributed.tensor <distributed.tensor>
78 torch.distributed.algorithms.join <distributed.algorithms.join>
79 torch.distributed.elastic <distributed.elastic>
80 torch.distributed.fsdp <fsdp>
81 torch.distributed.tensor.parallel <distributed.tensor.parallel>
82 torch.distributed.optim <distributed.optim>
83 torch.distributed.pipelining <distributed.pipelining>
84 torch.distributed.checkpoint <distributed.checkpoint>
/aosp_15_r20/external/pytorch/test/
H A Dtest_public_bindings.py267 "Inductor/Distributed modules hard fail on windows and macos",
335 "torch.testing._internal.distributed.common_state_dict",
336 "torch.testing._internal.distributed._shard.sharded_tensor",
337 "torch.testing._internal.distributed._shard.test_common",
338 "torch.testing._internal.distributed._tensor.common_dtensor",
339 "torch.testing._internal.distributed.ddp_under_dist_autograd_test",
340 "torch.testing._internal.distributed.distributed_test",
341 "torch.testing._internal.distributed.distributed_utils",
342 "torch.testing._internal.distributed.fake_pg",
343 "torch.testing._internal.distributed.multi_threaded_pg",
[all …]
H A Drun_test.py24 import torch.distributed as dist
83 DISTRIBUTED_TEST_PREFIX = "distributed"
120 FSDP_TEST = [test for test in TESTS if test.startswith("distributed/fsdp")]
123 "distributed/nn/jit/test_instantiator",
124 "distributed/rpc/test_faulty_agent",
125 "distributed/rpc/test_tensorpipe_agent",
126 "distributed/rpc/test_share_memory",
127 "distributed/rpc/cuda/test_tensorpipe_agent",
128 "distributed/pipeline/sync/skip/test_api",
129 "distributed/pipeline/sync/skip/test_gpipe",
[all …]
H A Dallowlist_for_publicAPI.json37 "torch.distributed.tensor.device_mesh": "torch.distributed.device_mesh"
59 "torch.distributed": [
96 "torch.distributed.checkpoint.state_dict": [
130 "torch.distributed.autograd": [
135 "torch.distributed.elastic.events": [
141 "torch.distributed.elastic.events.handlers": [
147 "torch.distributed.elastic.metrics": [
152 "torch.distributed.elastic.multiprocessing": [
159 "torch.distributed.elastic.multiprocessing.redirects": [
165 "torch.distributed.elastic.rendezvous": [
[all …]
/aosp_15_r20/external/pytorch/torch/distributed/
H A DCONTRIBUTING.md1 # Contributing to PyTorch Distributed
5Distributed Overview](https://pytorch.org/tutorials//beginner/dist_overview.html) is a great start…
7 In this document, we mostly focus on some of the code structure for PyTorch distributed and impleme…
11distributed%22+label%3A%22topic%3A+bootcamp%22) and [here](https://github.com/pytorch/pytorch/issu…
22 - API layer: [torch/distributed/distributed_c10d.py](https://github.com/pytorch/pytorch/blob/main/t…
23 …Python Bindings: [torch/csrc/distributed/c10d/init.cpp](https://github.com/pytorch/pytorch/blob/ma…
24 …entations: [torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp](https://github.com/pytorch/pytorch/b…
28 - API layer: ([torch/distributed/_tensor/api.py](https://github.com/pytorch/pytorch/blob/main/torch…
31 #### Distributed Data Parallel (DDP)
33 … API layer: [torch/nn/parallel/distributed.py](https://github.com/pytorch/pytorch/blob/main/torch/…
[all …]
H A Dlaunch.py3 Module ``torch.distributed.launch``.
5 ``torch.distributed.launch`` is a module that spawns up multiple distributed
12 The utility can be used for single-node distributed training, in which one or
15 each distributed process will be operating on a single GPU. This can achieve
17 multi-node distributed training, by spawning up multiple processes on each node
18 for well-improved multi-node distributed training performance as well.
23 In both cases of single-node distributed training or multi-node distributed
32 1. Single-Node multi-process distributed training
36 python -m torch.distributed.launch --nproc-per-node=NUM_GPUS_YOU_HAVE
40 2. Multi-Node multi-process distributed training: (e.g. two nodes)
[all …]
/aosp_15_r20/external/pytorch/docs/source/rpc/
H A Ddistributed_autograd.rst5 Distributed Autograd Design
8 This note will present the detailed design for distributed autograd and walk
10 :ref:`autograd-mechanics` and the :ref:`distributed-rpc-framework` before
17 nodes. This can be implemented using :mod:`torch.distributed.rpc` as follows:
22 import torch.distributed.rpc as rpc
41 The main motivation behind distributed autograd is to enable running a backward
42 pass on such distributed models with the ``loss`` that we've computed and
54 For distributed autograd, we need to keep track of all RPCs during the forward
70 - For :ref:`rref`, whenever we call :meth:`torch.distributed.rpc.RRef.to_here`
80 Distributed Autograd Context
[all …]
H A Drref.rst10 :ref:`distributed-rpc-framework` before proceeding.
17 counting under the hood. Conceptually, it can be considered as a distributed
19 :meth:`~torch.distributed.rpc.remote`. Each RRef is owned by the callee worker
20 of the :meth:`~torch.distributed.rpc.remote` call (i.e., owner) and can be used
24 :meth:`~torch.distributed.rpc.remote` call.
31 :meth:`~torch.distributed.rpc.rpc_sync`,
32 :meth:`~torch.distributed.rpc.rpc_async` or
33 :meth:`~torch.distributed.rpc.remote` invocation, and the owner will be notified
50 :meth:`~torch.distributed.rpc.rpc_sync`,
51 :meth:`~torch.distributed.rpc.rpc_async` or
[all …]
/aosp_15_r20/external/pytorch/.ci/pytorch/
H A Dmultigpu-test.sh16 time python test/run_test.py --verbose -i distributed/test_c10d_common
17 time python test/run_test.py --verbose -i distributed/test_c10d_gloo
18 time python test/run_test.py --verbose -i distributed/test_c10d_nccl
19 time python test/run_test.py --verbose -i distributed/test_c10d_spawn_gloo
20 time python test/run_test.py --verbose -i distributed/test_c10d_spawn_nccl
21 time python test/run_test.py --verbose -i distributed/test_compute_comm_reordering
22 time python test/run_test.py --verbose -i distributed/test_store
23 time python test/run_test.py --verbose -i distributed/test_symmetric_memory
24 time python test/run_test.py --verbose -i distributed/test_pg_wrapper
25 time python test/run_test.py --verbose -i distributed/rpc/cuda/test_tensorpipe_agent
[all …]
/aosp_15_r20/external/pytorch/
H A Dbuild_variables.bzl491 "torch/csrc/distributed/c10d/Backend.cpp",
492 "torch/csrc/distributed/c10d/Backoff.cpp",
493 "torch/csrc/distributed/c10d/DMAConnectivity.cpp",
494 "torch/csrc/distributed/c10d/control_collectives/StoreCollectives.cpp",
495 "torch/csrc/distributed/c10d/FileStore.cpp",
496 "torch/csrc/distributed/c10d/Functional.cpp",
497 "torch/csrc/distributed/c10d/GlooDeviceFactory.cpp",
498 "torch/csrc/distributed/c10d/GroupRegistry.cpp",
499 "torch/csrc/distributed/c10d/Ops.cpp",
500 "torch/csrc/distributed/c10d/ParamCommsUtils.cpp",
[all …]
H A D.lintrunner.toml72 'distributed/c10d/*DMAConnectivity.*',
73 'distributed/c10d/*SymmetricMemory.*',
244 'torch/csrc/distributed/**/*',
552 'torch/csrc/distributed/c10d/init.cpp',
718 'torch/distributed/run.py',
872 'test/distributed/argparse_util_test.py',
873 'test/distributed/bin/test_script.py',
874 'test/distributed/elastic/agent/server/test/local_elastic_agent_test.py',
875 'test/distributed/elastic/multiprocessing/bin/test_script.py',
876 'test/distributed/elastic/multiprocessing/bin/zombie_test.py',
[all …]
/aosp_15_r20/external/pytorch/torch/csrc/distributed/rpc/
H A Drequest_callback_impl.cpp1 #include <torch/csrc/distributed/rpc/request_callback_impl.h>
4 #include <torch/csrc/distributed/autograd/context/container.h>
5 #include <torch/csrc/distributed/autograd/context/context.h>
6 #include <torch/csrc/distributed/autograd/engine/dist_engine.h>
7 #include <torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_req.h>
8 #include <torch/csrc/distributed/autograd/rpc_messages/cleanup_autograd_context_resp.h>
9 #include <torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_req.h>
10 #include <torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_resp.h>
11 #include <torch/csrc/distributed/autograd/rpc_messages/rpc_with_autograd.h>
12 #include <torch/csrc/distributed/autograd/rpc_messages/rpc_with_profiling_req.h>
[all …]
H A Dinit.cpp3 #include <torch/csrc/distributed/rpc/profiler/remote_profiler_manager.h>
4 #include <torch/csrc/distributed/rpc/profiler/server_process_global_profiler.h>
5 #include <torch/csrc/distributed/rpc/py_rref.h>
6 #include <torch/csrc/distributed/rpc/python_functions.h>
7 #include <torch/csrc/distributed/rpc/python_rpc_handler.h>
8 #include <torch/csrc/distributed/rpc/request_callback_impl.h>
9 #include <torch/csrc/distributed/rpc/rpc_agent.h>
10 #include <torch/csrc/distributed/rpc/rref_context.h>
11 #include <torch/csrc/distributed/rpc/tensorpipe_agent.h>
12 #include <torch/csrc/distributed/rpc/torchscript_functions.h>
[all …]
/aosp_15_r20/external/pytorch/torch/distributed/tensor/
H A DREADME.md6 We propose distributed tensor primitives to allow easier distributed computation authoring in SPMD(…
13 from torch.distributed._tensor import init_device_mesh, Shard, distribute_tensor
18 # i.e. torch.distributed.init_process_group(backend="nccl", world_size=world_size)
28 Today there are mainly three ways to scale up distributed training: Data Parallel, Tensor Parallel …
30distributed program just like authoring in a single node/device, without worrying about how to do
32 …s one of the basic building blocks for distributed program translations and describes the layout o…
39 …SPMD programming model and the foundational building block for compiler-based distributed training.
45 …DistributedTensor API and a module level API to create a `nn.Module` with “distributed” parameters.
57 from torch.distributed._tensor import DTensor, Shard, Replicate, distribute_tensor, distribute_modu…
67 # distributed tensor returned will be sharded across the dimension specified in placements
[all …]
/aosp_15_r20/external/pytorch/torch/distributed/rpc/
H A Dapi.py92 "torch.distributed.rpc.init_rpc first."
175 >>> # xdoctest: +SKIP("distributed")
178 >>> import torch.distributed.rpc as rpc
198 This is similar to torch.distributed.all_gather(), but is using RPC. It
334 :meth:`~torch.distributed.rpc.rpc_async`, ``future.wait()`` should not
347 on both workers. Refer to :meth:`~torch.distributed.init_process_group`
358 >>> import torch.distributed.rpc as rpc
366 >>> import torch.distributed.rpc as rpc
423 Get :class:`~torch.distributed.rpc.WorkerInfo` of a given worker name.
424 Use this :class:`~torch.distributed.rpc.WorkerInfo` to avoid passing an
[all …]
/aosp_15_r20/prebuilts/vndk/v34/common/NOTICE_FILES/external/freetype/
DLICENSE303 modified, and distributed under the terms of the FreeType project
314 modified, and distributed under the terms of the FreeType project
325 modified, and distributed under the terms of the FreeType project
336 modified, and distributed under the terms of the FreeType project
347 modified, and distributed under the terms of the FreeType project
358 modified and distributed under the terms of the FreeType project
369 modified, and distributed under the terms of the FreeType project
380 and distributed under the terms of the FreeType project license,
393 modified, and distributed under the terms of the FreeType project
405 modified, and distributed under the terms of the FreeType project
[all …]
/aosp_15_r20/external/freetype/
H A DLICENSE303 modified, and distributed under the terms of the FreeType project
314 modified, and distributed under the terms of the FreeType project
325 modified, and distributed under the terms of the FreeType project
336 modified, and distributed under the terms of the FreeType project
347 modified, and distributed under the terms of the FreeType project
358 modified and distributed under the terms of the FreeType project
369 modified, and distributed under the terms of the FreeType project
380 and distributed under the terms of the FreeType project license,
393 modified, and distributed under the terms of the FreeType project
405 modified, and distributed under the terms of the FreeType project
[all …]
/aosp_15_r20/external/pytorch/torch/csrc/distributed/autograd/
H A Dutils.cpp5 #include <torch/csrc/distributed/autograd/context/container.h>
6 #include <torch/csrc/distributed/autograd/functions/recvrpc_backward.h>
7 #include <torch/csrc/distributed/autograd/functions/sendrpc_backward.h>
8 #include <torch/csrc/distributed/autograd/utils.h>
9 #include <torch/csrc/distributed/rpc/profiler/remote_profiler_manager.h>
10 #include <torch/csrc/distributed/rpc/rpc_agent.h>
11 #include <torch/csrc/distributed/rpc/types.h>
14 namespace distributed { namespace
17 using torch::distributed::autograd::AutogradMetadata;
18 using torch::distributed::autograd::RpcWithAutograd;
[all …]
/aosp_15_r20/libcore/ojluni/src/main/
H A DLICENSE69 placed by the copyright holder saying it may be distributed under the terms of
141 code, which must be distributed under the terms of Sections 1 and 2 above
147 corresponding source code, to be distributed under the terms of Sections 1
161 distributed need not include anything that is normally distributed (in either
214 distributed through that system in reliance on consistent application of that
292 This program is distributed in the hope that it will be useful, but WITHOUT
336 Certain source files distributed by Oracle America and/or its affiliates are
373 This code is distributed in the hope that it will be useful, but WITHOUT
399 This code is distributed in the hope that it will be useful, but WITHOUT
425 This code is distributed in the hope that it will be useful, but WITHOUT
[all …]

12345678910>>...2398