/aosp_15_r20/external/tensorflow/tensorflow/python/training/ |
H A D | checkpoint_utils_test.py | 41 def _create_checkpoints(sess, checkpoint_dir): argument 42 checkpoint_prefix = os.path.join(checkpoint_dir, "model") 60 def _create_partition_checkpoints(sess, checkpoint_dir): argument 61 checkpoint_prefix = os.path.join(checkpoint_dir, "model") 84 checkpoint_dir = self.get_temp_dir() + "/no_checkpoints" 87 checkpoint_utils.load_variable(checkpoint_dir, "var1"), []) 90 checkpoint_dir = self.get_temp_dir() 92 _, _, _, _ = _create_checkpoints(session, checkpoint_dir) 95 checkpoint_utils.load_variable(checkpoint_dir, "var5"), []) 98 checkpoint_dir = self.get_temp_dir() [all …]
|
H A D | session_manager_test.py | 86 checkpoint_dir = os.path.join(self.get_temp_dir(), "prepare_session") 89 gfile.DeleteRecursively(checkpoint_dir) 93 gfile.MakeDirs(checkpoint_dir) 104 checkpoint_dir=checkpoint_dir) 106 checkpoint_filename = os.path.join(checkpoint_dir, 112 os.rename(checkpoint_dir, checkpoint_dir2) 113 gfile.MakeDirs(checkpoint_dir) 127 checkpoint_dir=checkpoint_dir, 131 gfile.DeleteRecursively(checkpoint_dir) 132 os.rename(checkpoint_dir2, checkpoint_dir) [all …]
|
H A D | evaluation_test.py | 71 def _train_model(self, checkpoint_dir, num_steps): argument 78 checkpoint_dir: The directory where the checkpoint is written to. 94 checkpoint_dir=checkpoint_dir, 104 checkpoint_dir = os.path.join(self.get_temp_dir(), 108 self._train_model(checkpoint_dir, num_steps=300) 118 checkpoint_path = saver.latest_checkpoint(checkpoint_dir) 130 checkpoint_dir = os.path.join(self.get_temp_dir(), 134 self._train_model(checkpoint_dir, num_steps=300) 150 checkpoint_path = saver.latest_checkpoint(checkpoint_dir) 169 checkpoint_dir = os.path.join(self.get_temp_dir(), 'eval_ops_and_final_ops') [all …]
|
H A D | session_manager.py | 88 sess = sm.prepare_session(master, init_op, saver, checkpoint_dir) 182 checkpoint_dir=None, argument 193 checkpoint_dir: Path to the checkpoint files. The latest checkpoint in the 205 ValueError: If both checkpoint_dir and checkpoint_filename_with_path are 219 if checkpoint_dir and checkpoint_filename_with_path: 220 raise ValueError("Can not provide both checkpoint_dir and " 224 if not saver or not (checkpoint_dir or checkpoint_filename_with_path): 234 ckpt = checkpoint_management.get_checkpoint_state(checkpoint_dir) 240 ckpt = checkpoint_management.get_checkpoint_state(checkpoint_dir) 254 checkpoint_dir=None, argument [all …]
|
H A D | monitored_session.py | 318 checkpoint_dir=None, argument 366 summary_dir = summary_dir or checkpoint_dir 397 checkpoint_dir): 401 checkpoint_dir, 409 os.path.join(checkpoint_dir, tmpdir), 419 checkpoint_dir=checkpoint_dir, 431 checkpoint_dir=None, argument 471 checkpoint_dir: A string. Optional path to a directory where to restore 508 summaries. If None, checkpoint_dir is used instead. 510 `checkpoint_dir`. The GraphDef is saved after the session is created as [all …]
|
H A D | monitored_session_test.py | 294 is_chief=True, checkpoint_dir=logdir) as session: 300 is_chief=True, checkpoint_dir=logdir) as session: 310 checkpoint_dir=logdir, 317 is_chief=True, checkpoint_dir=logdir) as session: 327 checkpoint_dir=logdir, 336 is_chief=True, checkpoint_dir=logdir) as session: 364 checkpoint_dir=test_dir) as session: 373 checkpoint_dir=test_dir) as session: 386 checkpoint_dir=logdir, 404 checkpoint_dir=logdir, [all …]
|
H A D | checkpoint_utils.py | 122 def wait_for_new_checkpoint(checkpoint_dir, argument 129 checkpoint_dir: The directory in which checkpoints are saved. 140 logging.info("Waiting for new checkpoint at %s", checkpoint_dir) 143 checkpoint_path = checkpoint_management.latest_checkpoint(checkpoint_dir) 154 def checkpoints_iterator(checkpoint_dir, argument 184 checkpoint_dir: The directory in which checkpoints are saved. 199 checkpoint_dir, checkpoint_path, timeout=timeout)
|
/aosp_15_r20/external/tensorflow/tensorflow/python/distribute/failure_handling/ |
H A D | gce_failure_handler_test.py | 63 def _make_checkpoint_manager(checkpoint, checkpoint_dir, cluster_resolver): argument 71 checkpoint, directory=checkpoint_dir, max_to_keep=1) 76 checkpoint_dir, cluster_resolver.task_id), 105 checkpoint_dir, argument 157 fh_ckpt, checkpoint_dir, strategy.cluster_resolver) 161 checkpoint_dir, termination_config)) 183 logging.info(gfile.ListDirectory(checkpoint_dir)) 186 for a_file in gfile.ListDirectory(checkpoint_dir) 252 checkpoint_dir = os.path.join(self.get_temp_dir(), 'fh_ckpt/') 266 args=(checkpoint_dir, cluster_spec, input_arg, maintenance_event, [all …]
|
H A D | failure_handler_test.py | 63 def _make_checkpoint_manager(checkpoint, checkpoint_dir, cluster_resolver): argument 70 checkpoint, directory=checkpoint_dir, max_to_keep=1) 75 checkpoint_dir, cluster_resolver.task_id), 117 checkpoint_dir, argument 154 fh_ckpt, checkpoint_dir, strategy.cluster_resolver) 158 checkpoint_dir, termination_config)) 190 for a_file in gfile.ListDirectory(checkpoint_dir) 238 checkpoint_dir = os.path.join(self.get_temp_dir(), 'fh_ckpt') 251 args=(checkpoint_dir, cluster_spec, input_arg, 298 self.worker_fn(checkpoint_dir, cluster_spec, input_arg, [all …]
|
H A D | failure_handling.py | 55 def _non_chief_checkpoint_dir(checkpoint_dir, task_id): argument 57 dirpath = os.path.dirname(checkpoint_dir) 58 base = os.path.basename(checkpoint_dir) 340 that's passed as the `checkpoint_dir` argument. In this way, at the program 365 …f.distribute.experimental.PreemptionCheckpointHandler(cluster_resolver, checkpoint, checkpoint_dir) 394 checkpoint_dir=None, argument 408 a `tf.train.CheckpointManager` to manage it in the `checkpoint_dir`. 409 checkpoint_dir: a directory where the `PreemptionCheckpointHandler` saves 411 created, the latest checkpoint in the `checkpoint_dir` will be restored. 442 checkpoint_lib.Checkpoint) and not checkpoint_dir: [all …]
|
/aosp_15_r20/external/pytorch/test/distributed/checkpoint/ |
H A D | test_dtensor_resharding.py | 20 CHECKPOINT_DIR = "checkpoint" variable 53 CHECKPOINT_DIR = self.temp_dir 68 storage_writer=dist_cp.FileSystemWriter(path=CHECKPOINT_DIR), 79 storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR), 104 CHECKPOINT_DIR = self.temp_dir 120 storage_writer=dist_cp.FileSystemWriter(path=CHECKPOINT_DIR), 129 storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR), 158 CHECKPOINT_DIR = self.temp_dir 170 storage_writer=dist_cp.FileSystemWriter(path=CHECKPOINT_DIR), 185 storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR), [all …]
|
H A D | test_tp_checkpoint.py | 45 CHECKPOINT_DIR = self.temp_dir 62 storage_writer=dcp.FileSystemWriter(CHECKPOINT_DIR), 80 storage_reader=dcp.FileSystemReader(CHECKPOINT_DIR), 92 CHECKPOINT_DIR = self.temp_dir 111 storage_writer=dcp.FileSystemWriter(CHECKPOINT_DIR), 122 storage_reader=dcp.FileSystemReader(CHECKPOINT_DIR),
|
H A D | test_hsdp_checkpoint.py | 79 CHECKPOINT_DIR = self.temp_dir 99 storage_writer=dist_cp.FileSystemWriter(CHECKPOINT_DIR), 118 storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR), 138 CHECKPOINT_DIR = self.temp_dir 155 storage_writer=dist_cp.FileSystemWriter(CHECKPOINT_DIR), 187 storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR),
|
H A D | test_fsdp_optim_state.py | 59 CHECKPOINT_DIR = self.temp_dir 82 storage_writer=dcp.FileSystemWriter(CHECKPOINT_DIR), 103 storage_reader=dcp.FileSystemReader(CHECKPOINT_DIR), 110 storage_reader=dcp.FileSystemReader(CHECKPOINT_DIR),
|
/aosp_15_r20/external/tensorflow/tensorflow/python/distribute/ |
H A D | checkpoint_utils_test.py | 38 def _create_checkpoints(sess, checkpoint_dir): argument 39 checkpoint_prefix = os.path.join(checkpoint_dir, "model") 58 checkpoint_dir = self.get_temp_dir() 60 v1, v2 = _create_checkpoints(session, checkpoint_dir) 61 return checkpoint_dir, v1, v2 76 checkpoint_dir, v1_value, v2_value = self._get_test_object() 84 checkpoint_utils.init_from_checkpoint(checkpoint_dir, { 112 checkpoint_dir, v1_value, _ = self._get_test_object() 120 checkpoint_utils.init_from_checkpoint(checkpoint_dir, {
|
H A D | tpu_strategy_model_parallelism_test.py | 151 checkpoint_dir = self.get_temp_dir() 152 checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") 165 checkpoint_management.latest_checkpoint(checkpoint_dir)) 334 checkpoint_dir = self.get_temp_dir() 335 checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") 356 checkpoint_management.latest_checkpoint(checkpoint_dir))
|
/aosp_15_r20/external/tensorflow/tensorflow/core/kernels/ |
H A D | checkpoint_callback_manager.cc | 49 absl::string_view checkpoint_dir, in TriggerSaveCallbackIfFileNotExist() argument 53 checkpoint_dir, absl::StrCat(checkpoint_id, ".", file_extension)); in TriggerSaveCallbackIfFileNotExist() 84 absl::string_view checkpoint_dir, in TriggerRestoreCallbackIfFileExists() argument 88 checkpoint_dir, absl::StrCat(checkpoint_id, ".", file_extension)); in TriggerRestoreCallbackIfFileExists() 165 std::string checkpoint_dir; in RegisterSaveCallback() local 178 checkpoint_dir = last_saved_checkpoint_id_and_dir_.second; in RegisterSaveCallback() 183 TriggerSaveCallbackIfFileNotExist(checkpoint_id, checkpoint_dir, in RegisterSaveCallback() 199 std::string checkpoint_dir; in RegisterRestoreCallback() local 212 checkpoint_dir = last_restored_checkpoint_id_and_dir_.second; in RegisterRestoreCallback() 217 TriggerRestoreCallbackIfFileExists(checkpoint_id, checkpoint_dir, in RegisterRestoreCallback()
|
/aosp_15_r20/external/tensorflow/tensorflow/python/checkpoint/ |
H A D | checkpoint_management.py | 249 def get_checkpoint_state(checkpoint_dir, latest_filename=None): argument 256 checkpoint_dir: The directory of checkpoints. 267 if isinstance(checkpoint_dir, os.PathLike): 268 checkpoint_dir = os.fspath(checkpoint_dir) 270 coord_checkpoint_filename = _GetCheckpointFilename(checkpoint_dir, 283 + checkpoint_dir) 285 # prepend checkpoint_dir. 287 ckpt.model_checkpoint_path = os.path.join(checkpoint_dir, 291 ckpt.all_model_checkpoint_paths[i] = os.path.join(checkpoint_dir, p) 327 def latest_checkpoint(checkpoint_dir, latest_filename=None): argument [all …]
|
/aosp_15_r20/external/pytorch/torch/distributed/checkpoint/examples/ |
H A D | fsdp_checkpoint_example.py | 23 CHECKPOINT_DIR = f"/scratch/{os.environ['LOGNAME']}/checkpoint" variable 71 # Save the model to CHECKPOINT_DIR 80 storage_writer=dist_cp.FileSystemWriter(CHECKPOINT_DIR), 90 # Load model_2 with parameters saved in CHECKPOINT_DIR 99 storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR), 106 storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR), 125 shutil.rmtree(CHECKPOINT_DIR, ignore_errors=True)
|
H A D | stateful_example.py | 23 CHECKPOINT_DIR = f"~/{os.environ['LOGNAME']}/checkpoint" variable 86 checkpoint_id=CHECKPOINT_DIR, 93 checkpoint_id=CHECKPOINT_DIR, 101 shutil.rmtree(CHECKPOINT_DIR, ignore_errors=True)
|
/aosp_15_r20/external/executorch/examples/models/llama/ |
H A D | export_llama_lib.py | 183 "--checkpoint_dir", 185 … with a sharded checkpoint, not for the standard llama2 model. Note, checkpoint_dir takes preceden… 524 checkpoint_dir = ( 525 canonical_path(args.checkpoint_dir) if args.checkpoint_dir else None 543 checkpoint_dir=checkpoint_dir, 850 checkpoint_dir: Optional[str] = None, 878 checkpoint or checkpoint_dir 879 ) and params_path, "Both checkpoint/checkpoint_dir and params can't be empty" 901 checkpoint_dir=checkpoint_dir,
|
/aosp_15_r20/external/tensorflow/tensorflow/python/keras/distribute/ |
H A D | worker_training_state.py | 44 def __init__(self, model, checkpoint_dir): argument 62 # If this is single-worker training, checkpoint_dir are the same for 66 # save checkpoint, we replace the write_checkpoint_manager's checkpoint_dir 71 # But all workers should restore from the same checkpoint_dir as passed in 75 directory=os.path.join(checkpoint_dir, 'chief'), 78 checkpoint_dir, self._model.distribute_strategy)
|
/aosp_15_r20/device/google/zuma/ |
D | copy_efs_files_to_data.sh | 3 CHECKPOINT_DIR=/data/vendor/copied 7 $BIN_DIR/mkdir -p $CHECKPOINT_DIR 14 tmpdir=$CHECKPOINT_DIR/$partition_name.img 15 build_checkpoint=$CHECKPOINT_DIR/$partition_name
|
/aosp_15_r20/device/google/zumapro/ |
D | copy_efs_files_to_data.sh | 3 CHECKPOINT_DIR=/data/vendor/copied 7 $BIN_DIR/mkdir -p $CHECKPOINT_DIR 14 tmpdir=$CHECKPOINT_DIR/$partition_name.img 15 build_checkpoint=$CHECKPOINT_DIR/$partition_name
|
/aosp_15_r20/external/libopus/dnn/torch/lpcnet/ |
H A D | train_lpcnet.py | 126 checkpoint_dir = os.path.join(args.output, 'checkpoints') variable 127 os.makedirs(checkpoint_dir, exist_ok=True) 253 torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_best.pth')) 256 torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_epoch_{ep}.pth')) 257 torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_last.pth'))
|