/aosp_15_r20/external/pytorch/torch/csrc/jit/passes/ |
H A D | lower_tuples.cpp | 23 prim::TupleUnpack, 103 if (n->kind() != prim::TupleUnpack && n->kind() != prim::TupleIndex && in removeTupleNodes() 115 if (n->kind() == prim::TupleUnpack) { in removeTupleNodes() 273 if (n->kind() == prim::TupleUnpack || n->kind() == prim::TupleIndex || in VisitNode()
|
H A D | lower_tuples.h | 7 // removes tuples where TupleConstruct and TupleUnpack are matched
|
H A D | lift_closures.cpp | 28 subgraph->insertNode(subgraph->create(prim::TupleUnpack, {context}, 0)); in liftClosure()
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/runtime/ |
H A D | operator.cpp | 214 prim::TupleUnpack, prim::CreateObject, prim::GetAttr, in printerHasSpecialCaseFor() 304 prim::TupleUnpack, in aliasAnalysisHasSpecialCaseFor()
|
H A D | vararg_functions.h | 10 void tupleUnpack(Stack& stack);
|
H A D | vararg_functions.cpp | 103 void tupleUnpack(Stack& stack) { in tupleUnpack() function
|
H A D | profiling_graph_executor_impl.cpp | 433 // TupleConstruct / TupleUnpack pairs can still be present at this point in runNoGradOptimizations()
|
H A D | graph_executor.cpp | 940 // TupleConstruct / TupleUnpack pairs can still be present at this point in runNondiffOptimization()
|
H A D | autodiff.cpp | 128 // will be cleaned up later using EliminateDeadCode(block). TupleUnPack node in
|
H A D | register_prim_ops.cpp | 280 TORCH_SELECTIVE_SCHEMA("prim::TupleUnpack(Any tup) -> ..."), 281 [](Stack& stack) { tupleUnpack(stack); }, in __anonbfe5918f0b02()
|
/aosp_15_r20/external/pytorch/test/mobile/model_test/ |
H A D | coverage.yaml | 649 - prim::TupleUnpack 1018 prim::TupleUnpack: 120
|
H A D | model_ops.yaml | 404 prim::TupleUnpack: 235
|
/aosp_15_r20/external/pytorch/aten/src/ATen/core/ |
H A D | interned_strings.h | 89 _(prim, TupleUnpack) \
|
/aosp_15_r20/external/pytorch/test/jit/ |
H A D | test_profiler.py | 214 FileCheck().check("CallFunction").check_next("Tensor = prim::TupleUnpack").run(
|
H A D | test_freezing.py | 2016 # Check if prim::TupleConstruct and prim::TupleUnpack 2019 FileCheck().check_not("prim::TupleUnpack").run(mf.graph)
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/codegen/cuda/ |
H A D | README.md | 70 …28, 512, strides=[2097152, 65536, 512, 1], requires_grad=0, device=cuda:0) = prim::TupleUnpack(%19)
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/runtime/static/ |
H A D | native_ops.cpp | 78 prim::TupleUnpack, 81 if (!sr_schema_check_kind(n, prim::TupleUnpack)) { in __anon75e5f0510502()
|
H A D | passes.cpp | 493 if (cur_node->kind() == prim::TupleUnpack) { in CollectVariadicTupleUnpackFusionCandidates() 515 node->kind() == prim::TupleUnpack && node->inputs().size() == 1); in FuseTupleUnpackBlock()
|
/aosp_15_r20/external/pytorch/torch/csrc/autograd/ |
H A D | python_function.cpp | 955 // Skip TupleUnpack node if created in _append_subgraph() 1063 // If TupleUnpack operator is created, we copy its output type back in _trace_post_record()
|
/aosp_15_r20/external/pytorch/ |
H A D | pt_ops.bzl | 175 "prim::TupleUnpack",
|
/aosp_15_r20/external/pytorch/benchmarks/static_runtime/ |
H A D | test_static_runtime.cc | 2254 TEST(StaticRuntime, TupleUnpack) { in TEST() argument 2832 EXPECT_FALSE(hasNodeWithKind(smodule, "prim::TupleUnpack")); in TEST() 2858 // computation between the TupleUnpack nodes. in TEST() 2862 EXPECT_TRUE(hasNodeWithKind(smodule, "prim::TupleUnpack")); in TEST()
|
H A D | test_static_module.cc | 1238 %b_alias : Tensor, %c_alias : Tensor = prim::TupleUnpack(%tuple) in TEST()
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/serialization/ |
H A D | python_print.cpp | 802 case prim::TupleUnpack: in printNode() 806 // TupleUnpack(unpacked) turns into an assignment op that forces in printNode()
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/passes/quantization/ |
H A D | helper.cpp | 364 } else if (n->kind() == prim::ListUnpack || n->kind() == prim::TupleUnpack) { in getPassThroughInputs()
|
/aosp_15_r20/external/pytorch/torch/csrc/jit/ir/ |
H A D | alias_analysis.cpp | 691 case prim::TupleUnpack: in analyzeImpl()
|