/aosp_15_r20/external/pytorch/aten/src/ATen/native/cpu/ |
H A D | PaddingKernel.cpp | 16 int ndim; member 30 ndim = padding.size() / 2; in PaddingParams() 32 bool is_batch = input.dim() == ndim + 2; in PaddingParams() 40 for (const auto d : c10::irange(ndim)) { in PaddingParams() 51 if (ndim == 1) { in PaddingParams() 53 } else if (ndim == 2) { in PaddingParams() 61 for (const auto d : c10::irange(ndim)) { in PaddingParams() 145 int ndim = p.ndim; in cpu_padding() local 146 int64_t input_depth = ndim == 3 ? p.ishape[ndim - 3] : 1; in cpu_padding() 147 int64_t input_height = ndim >=2 ? p.ishape[ndim - 2] : 1; in cpu_padding() [all …]
|
H A D | UpSampleMoreKernel.cpp | 106 auto ndim = input_sizes.size(); in cpu_upsample_nearest_backward() local 110 int64_t input_depth = (ndim == 5) ? input_sizes[2] : 1; in cpu_upsample_nearest_backward() 111 int64_t output_depth = (ndim == 5) ? output_sizes[2] : 1; in cpu_upsample_nearest_backward() 112 int64_t input_height = (ndim >= 4) ? input_sizes[ndim - 2] : 1; in cpu_upsample_nearest_backward() 113 int64_t output_height = (ndim >= 4) ? output_sizes[ndim - 2] : 1; in cpu_upsample_nearest_backward() 114 int64_t input_width = input_sizes[ndim - 1]; in cpu_upsample_nearest_backward() 115 int64_t output_width = output_sizes[ndim - 1]; in cpu_upsample_nearest_backward() 207 if (ndim == 3) { in cpu_upsample_nearest_backward() 210 } else if (ndim == 4) { in cpu_upsample_nearest_backward() 215 TORCH_INTERNAL_ASSERT(ndim == 5); in cpu_upsample_nearest_backward() [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/kernels/ |
H A D | strided_slice_op_impl.h | 39 template <typename Device, typename T, int NDIM> 47 template <typename Device, typename T, int NDIM> 55 template <typename Device, typename T, int NDIM> 77 template <typename Device, typename T, int NDIM> 88 Eigen::DSizes<Eigen::DenseIndex, NDIM> begin_di; in HandleStridedSliceCase() 89 Eigen::DSizes<Eigen::DenseIndex, NDIM> sizes_di; in HandleStridedSliceCase() 90 for (int i = 0; i < NDIM; ++i) { in HandleStridedSliceCase() 94 functor::Slice<Device, Proxy, NDIM>()( in HandleStridedSliceCase() 96 result->bit_casted_shaped<Proxy, NDIM>(processing_dims), in HandleStridedSliceCase() 97 context->input(0).bit_casted_tensor<Proxy, NDIM>(), begin_di, sizes_di); in HandleStridedSliceCase() [all …]
|
H A D | tile_ops.cc | 53 template <typename Device, typename T, int NDIM> 55 void operator()(const Device& d, typename TTypes<T, NDIM>::Tensor out, 56 typename TTypes<T, NDIM>::ConstTensor in, 57 const Eigen::DSizes<Eigen::DenseIndex, NDIM>& indices, 58 const Eigen::DSizes<Eigen::DenseIndex, NDIM>& sizes, 70 template <typename Device, typename T, int NDIM, int REDUCEDNDIM> 73 const Device& d, typename TTypes<T, NDIM>::Tensor out, 74 typename TTypes<T, NDIM>::ConstTensor in, 76 const Eigen::DSizes<Eigen::DenseIndex, NDIM>& reshape_dim) const; 101 #define DECLARE_CUDA_DIM(T, NDIM) \ argument [all …]
|
H A D | betainc_op.cc | 91 #define CASE(NDIM) \ in Compute() argument 92 case NDIM: { \ in Compute() 93 functor::Betainc<Device, T, NDIM> functor; \ in Compute() 94 auto a_value = a.shaped<T, NDIM>(a_shaper.x_reshape()); \ in Compute() 95 auto b_value = b.shaped<T, NDIM>(b_shaper.x_reshape()); \ in Compute() 96 auto x_value = x.shaped<T, NDIM>(x_shaper.x_reshape()); \ in Compute() 98 BCast::ToIndexArray<NDIM>(a_shaper.x_bcast()), b_value, \ in Compute() 99 BCast::ToIndexArray<NDIM>(b_shaper.x_bcast()), x_value, \ in Compute() 100 BCast::ToIndexArray<NDIM>(x_shaper.x_bcast()), \ in Compute() 101 output->shaped<T, NDIM>(a_shaper.y_reshape())); \ in Compute() [all …]
|
H A D | slice_op.cc | 195 #define HANDLE_DIM(NDIM) \ in Compute() argument 196 if (input_dims == NDIM) { \ in Compute() 197 HandleCase<NDIM>(context, begin, size, input, result); \ in Compute() 219 template <int NDIM> 223 Eigen::DSizes<Eigen::DenseIndex, NDIM> indices; in HandleCase() 224 Eigen::DSizes<Eigen::DenseIndex, NDIM> sizes; in HandleCase() 225 for (int i = 0; i < NDIM; ++i) { in HandleCase() 230 functor::Slice<Device, T, NDIM>()(context->eigen_device<Device>(), in HandleCase() 231 result->tensor<T, NDIM>(), in HandleCase() 232 input.tensor<T, NDIM>(), indices, sizes); in HandleCase() [all …]
|
H A D | where_op_gpu.cu.h | 39 template <int NDIM, typename TIndex> 41 const TIndex output_rows, const typename Eigen::array<TIndex, NDIM> strides, in PropagateWhereIndicesKernel() 47 TIndex index_value = ldg(output + NDIM * i); in PropagateWhereIndicesKernel() 49 for (int c = 0; c < NDIM; ++c) { in PropagateWhereIndicesKernel() 50 *(output + NDIM * i + c) = index_value / strides[c]; in PropagateWhereIndicesKernel() 200 template <int NDIM> 233 return *(ptr_ + (valid ? (NDIM * n) : 0)); 241 template <typename TIndex, typename T, int NDIM> 242 Eigen::array<TIndex, NDIM> CalculateStrides( 243 typename TTypes<T, NDIM>::ConstTensor input) { [all …]
|
H A D | tile_ops_gpu_impl.h | 24 // DEFINE_TILE_OPS(NDIM) 27 // where NDIM is an integer. 41 #define DEFINE_DIM(T, NDIM) \ argument 42 template struct TileGrad<Eigen::GpuDevice, T, NDIM>; \ 43 template struct ReduceAndReshape<Eigen::GpuDevice, T, NDIM, 1>; 45 #define DEFINE_TILE_OPS(NDIM) \ argument 48 DEFINE_DIM(int16, NDIM) \ 49 DEFINE_DIM(int32, NDIM) \ 50 DEFINE_DIM(int64, NDIM) \ 51 DEFINE_DIM(Eigen::half, NDIM) \ [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/ |
H A D | Pool.h | 128 const int64_t ndim = input.ndimension(); in pool2d_shape_check() local 146 TORCH_CHECK((ndim == 4 && valid_dims && input.size(3) != 0), in pool2d_shape_check() 150 TORCH_CHECK((ndim == 3 && input.size(0) != 0 && valid_dims) || in pool2d_shape_check() 151 (ndim == 4 && valid_dims && input.size(3) != 0), in pool2d_shape_check() 184 const int64_t ndim = input.ndimension(); in max_pool2d_backward_shape_check() local 187 check_dim_size(gradOutput, ndim, ndim-3, nOutputPlane); in max_pool2d_backward_shape_check() 188 check_dim_size(gradOutput, ndim, ndim-2, outputHeight); in max_pool2d_backward_shape_check() 189 check_dim_size(gradOutput, ndim, ndim-1, outputWidth); in max_pool2d_backward_shape_check() 191 check_dim_size(indices, ndim, ndim-3, nOutputPlane); in max_pool2d_backward_shape_check() 192 check_dim_size(indices, ndim, ndim-2, outputHeight); in max_pool2d_backward_shape_check() [all …]
|
H A D | LinearAlgebraUtils.h | 351 const int64_t ndim = self.ndimension(); in _move_to_end() local 354 for (const auto i : c10::irange(ndim)) { in _move_to_end() 364 TORCH_CHECK((int64_t)perm.size() == ndim, in _move_to_end() 365 "duplicate or invalid axis in 'dim' argument for tensor with ndim==", ndim); in _move_to_end() 436 …e std::vector<int64_t> create_dim_backshift_permutation(int64_t dim0, int64_t dim1, int64_t ndim) { in create_dim_backshift_permutation() argument 438 (dim0 != dim1) && (dim0 < ndim) && (dim0 >= 0) && (dim1 < ndim) && (dim1 >= 0), in create_dim_backshift_permutation() 440 std::vector<int64_t> permutation(ndim); in create_dim_backshift_permutation() 442 for (const auto dim_ind : c10::irange(ndim)) { in create_dim_backshift_permutation() 457 int64_t ndim = permutation.size(); in create_reverse_permutation() local 458 std::vector<int64_t> reverse_permutation(ndim); in create_reverse_permutation() [all …]
|
/aosp_15_r20/external/pytorch/torch/distributed/tensor/_ops/ |
H A D | _view_ops.py | 171 def dim_pad_left(ndim: int, min_dims: int) -> DimMap: 172 return (Singleton(),) * max(0, min_dims - ndim) + tuple( 173 InputDim(i) for i in range(ndim) 177 def dim_atleast_3d(ndim: int) -> DimMap: 178 if ndim == 0: 180 elif ndim == 1: 182 elif ndim == 2: 185 return tuple(InputDim(i) for i in range(ndim)) 221 def dim_flatten(ndim: int, start_dim=0, end_dim=-1) -> DimMap: 222 if ndim == 0: [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/keras/engine/ |
H A D | input_spec.py | 46 ndim: Integer, expected rank of the input. 74 ndim=None, argument 87 self.ndim = len(shape) 90 self.ndim = ndim 102 if self.axes and (self.ndim is not None or self.max_ndim is not None): 103 max_dim = (self.ndim if self.ndim else self.max_ndim) - 1 112 ('ndim=' + str(self.ndim)) if self.ndim else '', 122 'ndim': self.ndim, 135 If the InputSpec's shape or ndim is defined, this method will return a fully 144 if spec.ndim is None and spec.shape is None: [all …]
|
/aosp_15_r20/external/python/cpython3/Objects/ |
D | memoryobject.c | 223 /* Fast contiguity test. Caller must ensure suboffsets==NULL and ndim==1. */ 243 with the same logical structure: format, itemsize, ndim and shape 244 are identical, with ndim > 0. 250 /* Assumptions: ndim >= 1. The macro tests for a corner case that should 253 (view->suboffsets && view->suboffsets[dest->ndim-1] >= 0) 258 assert(dest->ndim > 0 && src->ndim > 0); in last_dim_is_contiguous() 261 dest->strides[dest->ndim-1] == dest->itemsize && in last_dim_is_contiguous() 262 src->strides[src->ndim-1] == src->itemsize); in last_dim_is_contiguous() 296 if (dest->ndim != src->ndim) in equiv_shape() 299 for (i = 0; i < dest->ndim; i++) { in equiv_shape() [all …]
|
/aosp_15_r20/external/python/cpython3/Modules/ |
D | _testbuffer.c | 55 #define ND_SCALAR 0x008 /* scalar: ndim = 0 */ 154 base->ndim = 1; in ndbuf_new() 267 if (ndbuf->base.ndim == 0) in init_flags() 473 copy_rec(const Py_ssize_t *shape, Py_ssize_t ndim, Py_ssize_t itemsize, in copy_rec() argument 480 assert(ndim >= 1); in copy_rec() 482 if (ndim == 1) { in copy_rec() 506 copy_rec(shape+1, ndim-1, itemsize, in copy_rec() 520 dest->ndim != src->ndim) in cmp_structure() 523 for (i = 0; i < dest->ndim; i++) { in cmp_structure() 534 ndim and shape. Copying is atomic, the function never fails with [all …]
|
/aosp_15_r20/external/pytorch/torch/ |
H A D | _meta_registrations.py | 171 x_d = self.ndim 172 y_d = other.ndim 203 if self.numel() != 0 and self.ndim != 0: 205 maybe_wrap_dim(dim, self.ndim) 213 maybe_wrap_dim(dim, self.ndim) 219 ndim = self.ndim 221 batch_dims = ndim - signal_ndim 224 dim_permute = list(range(ndim)) 226 is_transformed_dim = [False for _ in range(ndim)] 258 out_strides = [0 for _ in range(ndim)] [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/core/util/sparse/ |
H A D | sparse_tensor_test.cc | 36 GetSimpleIndexTensor(int N, const int NDIM) { in GetSimpleIndexTensor() argument 37 Eigen::Tensor<int64_t, 2, Eigen::RowMajor, Eigen::DenseIndex> ix(N, NDIM); in GetSimpleIndexTensor() 62 const int NDIM = 3; in TEST() local 63 auto ix = GetSimpleIndexTensor(N, NDIM); in TEST() 64 TTypes<int64_t>::Matrix map(ix.data(), N, NDIM); in TEST() 95 const int NDIM = 3; in TEST() local 96 Tensor ix(DT_INT32, TensorShape({N, NDIM})); in TEST() 108 const int NDIM = 3; in TEST() local 109 Tensor ix(DT_INT64, TensorShape({N, NDIM, 1})); in TEST() 121 const int NDIM = 3; in TEST() local [all …]
|
/aosp_15_r20/external/python/cpython3/Lib/test/ |
D | test_buffer.py | 264 def strides_from_shape(ndim, shape, itemsize, layout): argument 267 if ndim == 0: 271 for i in range(ndim-2, -1, -1): 275 for i in range(1, ndim): 321 def getindex(ndim, ind, strides): argument 324 for i in range(ndim): 333 ndim = len(shape) 334 sstrides = strides_from_shape(ndim, shape, 1, 'C') 335 dstrides = strides_from_shape(ndim, shape[::-1], 1, 'C') 338 fr = getindex(ndim, ind, sstrides) [all …]
|
/aosp_15_r20/external/pytorch/torch/_numpy/ |
H A D | _funcs_impl.py | 186 result_ndim = tensors[0].ndim + 1 193 if arr.ndim != 1: 196 axis = arr.ndim - 1 217 axis = _util.normalize_axis_index(axis, tensor.ndim) 266 if ary.ndim == 0: 268 axis = 1 if ary.ndim > 1 else 0 273 if ary.ndim < 2: 279 if ary.ndim < 3: 510 ndim_extra = 2 - x_tensor.ndim 517 ndim_extra = 2 - y_tensor.ndim [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkldnn/xpu/detail/ |
H A D | Conv.cpp | 19 int64_t ndim, in conv_dst_size() argument 27 dnnl::memory::dims dst_size(ndim); in conv_dst_size() 30 for (int d = 2; d < ndim; ++d) { in conv_dst_size() 52 const int64_t ndim, in conv_src_fmt() argument 55 return (ndim == 3) in conv_src_fmt() 57 : ((ndim == 4) ? dnnl::memory::format_tag::nchw in conv_src_fmt() 58 : ((ndim == 5) ? dnnl::memory::format_tag::ncdhw in conv_src_fmt() 61 return (ndim == 3) in conv_src_fmt() 63 : ((ndim == 4) ? dnnl::memory::format_tag::nhwc in conv_src_fmt() 64 : ((ndim == 5) ? dnnl::memory::format_tag::ndhwc in conv_src_fmt() [all …]
|
/aosp_15_r20/external/pytorch/torch/_refs/ |
H A D | __init__.py | 2154 if a.ndim > 64: 2156 … f"Received a tensor with {a.ndim} dimensions, but only tensors with up to 64 dims are supported!" 2173 valid_shape = a.ndim == 0 or builtins.all(a.shape[i] for i in dims) 2184 output_shape = [a.shape[i] if i not in dims else 1 for i in range(a.ndim)] 2185 broadcast_dims = [i for i in range(a.ndim) if i not in dims] 2307 leading_dims = a.ndim - len(shape) 2496 nelem = 1 if a.ndim == 0 else reduce(operator.mul, (a.shape[i] for i in dims), 1) 2564 vec1.ndim == 1, 2565 lambda: f"addr: Expected 1-D argument vec1, but got {vec1.ndim}-D", 2568 vec2.ndim == 1, [all …]
|
/aosp_15_r20/external/pytorch/torch/_refs/nn/functional/ |
H A D | __init__.py | 317 input.ndim >= 2, 318 lambda: f"Expected at least 2 dimensions for input tensor but received {input.ndim}", 646 if input1.ndim != input2.ndim or input1.ndim != target.ndim: 702 input.ndim > 0 and input.ndim <= 3, 703 lambda: f"Expected input dimension to be either [1, 2, 3] but received {input.ndim}.", 707 (input.ndim == 1) or (input.shape[0] == target.shape[0]), 721 num_classes = input.shape[1] if input.ndim > 1 else input.shape[0] 744 if input.ndim == 1: 748 elif input.ndim == 2: 792 input.ndim > 0, [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/compiler/xla/pjrt/ |
H A D | transpose.cc | 540 int ndim = a_dims.size(); in RemoveTrivialDimensions() local 543 std::vector<int> shift(ndim); in RemoveTrivialDimensions() 548 updated_a_dims.reserve(ndim); in RemoveTrivialDimensions() 549 updated_lda.reserve(ndim); in RemoveTrivialDimensions() 550 updated_lda_tile.reserve(ndim); in RemoveTrivialDimensions() 551 updated_a_tiling.reserve(ndim); in RemoveTrivialDimensions() 553 for (int a_dim = 0; a_dim < ndim; ++a_dim) { in RemoveTrivialDimensions() 572 for (int b_dim = 0; b_dim < ndim; ++b_dim) { in RemoveTrivialDimensions() 596 int ndim = a_dims.size(); in CoalesceDimensions() local 599 std::vector<int> shift(ndim, 0); in CoalesceDimensions() [all …]
|
/aosp_15_r20/external/pytorch/torch/testing/_internal/opinfo/definitions/ |
H A D | sparse.py | 132 if sample_input.input.ndim == 0: 142 if sample_input.input.ndim < 2: 146 if sample_input.input.ndim > 2 and (sample_input.input == 0).any(): 181 if sample_input.input.ndim > 2: 188 dense_dim=sample_input.input.ndim - 2, 211 and mask.ndim > 2 232 elif sample.input.ndim > 2: 244 and mask.ndim > 2 261 and mask.ndim > 2 279 sample.input.ndim > 2 [all …]
|
/aosp_15_r20/external/tensorflow/tensorflow/python/framework/ |
H A D | fast_tensor_util.pyx | 10 tensor_proto, np.ndarray[np.uint16_t, ndim=1] nparray): argument 22 tensor_proto, np.ndarray[np.uint16_t, ndim=1] nparray): argument 30 tensor_proto, np.ndarray[np.float32_t, ndim=1] nparray): argument 38 tensor_proto, np.ndarray[np.float64_t, ndim=1] nparray): argument 46 tensor_proto, np.ndarray[np.int32_t, ndim=1] nparray): argument 53 tensor_proto, np.ndarray[np.uint32_t, ndim=1] nparray): argument 60 tensor_proto, np.ndarray[np.int64_t, ndim=1] nparray): argument 67 tensor_proto, np.ndarray[np.uint64_t, ndim=1] nparray): argument 74 tensor_proto, np.ndarray[np.uint8_t, ndim=1] nparray): argument 82 tensor_proto, np.ndarray[np.uint16_t, ndim=1] nparray): argument [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/ |
H A D | TensorIterator.cpp | 46 inline void get_strides(int64_t* strides, ArrayRef<OperandInfo> operands, int64_t ndim) { in get_strides() argument 47 for (const auto dim : c10::irange(ndim)) { in get_strides() 53 if (ndim < 2) { in get_strides() 55 std::fill_n(strides, (2 - ndim) * ntensors, 0); in get_strides() 234 // strides[0] is the fastest moving dimension instead of strides[ndim - 1]. in reorder_dimensions() 237 perm_.resize(ndim()); in reorder_dimensions() 238 if (ndim() == 1) { in reorder_dimensions() 292 for (const auto i : c10::irange(1, ndim())) { in reorder_dimensions() 554 for (const auto dim : c10::irange(ndim())) { in compatible_stride() 567 for (const auto dim : c10::irange(ndim())) { in invert_perm() [all …]
|