xref: /aosp_15_r20/external/XNNPACK/src/subgraph/argmax-pooling-2d.c (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <math.h>
8 #include <stddef.h>
9 #include <stdint.h>
10 
11 #include <xnnpack.h>
12 #include <xnnpack/log.h>
13 #include <xnnpack/operator.h>
14 #include <xnnpack/params.h>
15 #include <xnnpack/subgraph.h>
16 #include <xnnpack/subgraph-validation.h>
17 
18 
create_argmax_pooling_operator(const struct xnn_node * node,const struct xnn_value * values,size_t num_values,struct xnn_operator_data * opdata,const struct xnn_caches * caches)19 static enum xnn_status create_argmax_pooling_operator(
20   const struct xnn_node* node,
21   const struct xnn_value* values,
22   size_t num_values,
23   struct xnn_operator_data* opdata,
24   const struct xnn_caches* caches)
25 {
26   assert(node->compute_type == xnn_compute_type_fp32);
27 
28   assert(node->num_inputs == 1);
29   const uint32_t input_id = node->inputs[0];
30   assert(input_id != XNN_INVALID_VALUE_ID);
31   assert(input_id < num_values);
32 
33   assert(node->num_outputs == 2);
34   const uint32_t output_value_id = node->outputs[0];
35   assert(output_value_id != XNN_INVALID_VALUE_ID);
36   assert(output_value_id < num_values);
37   const uint32_t output_index_id = node->outputs[1];
38   assert(output_index_id != XNN_INVALID_VALUE_ID);
39   assert(output_index_id < num_values);
40 
41   const size_t channel_dim = values[input_id].shape.dim[3];
42   assert(channel_dim == values[output_value_id].shape.dim[3]);
43   assert(channel_dim == values[output_index_id].shape.dim[3]);
44 
45   const enum xnn_status status = xnn_create_argmax_pooling2d_nhwc_f32(
46     node->params.pooling_2d.padding_top,
47     node->params.pooling_2d.padding_right,
48     node->params.pooling_2d.padding_bottom,
49     node->params.pooling_2d.padding_left,
50     node->params.pooling_2d.pooling_height,
51     node->params.pooling_2d.pooling_width,
52     channel_dim /* channels */, channel_dim /* input stride */, channel_dim /* output stride */,
53     node->flags,
54     &opdata->operator_objects[0]);
55   if (status == xnn_status_success) {
56     opdata->batch_size = values[input_id].shape.dim[0];
57     opdata->input_height = values[input_id].shape.dim[1];
58     opdata->input_width = values[input_id].shape.dim[2];
59     opdata->inputs[0] = input_id;
60     opdata->outputs[0] = output_value_id;
61     opdata->outputs[1] = output_index_id;
62   }
63   return status;
64 }
65 
setup_argmax_pooling_operator(const struct xnn_operator_data * opdata,const struct xnn_blob * blobs,size_t num_blobs,pthreadpool_t threadpool)66 static enum xnn_status setup_argmax_pooling_operator(
67   const struct xnn_operator_data* opdata,
68   const struct xnn_blob* blobs,
69   size_t num_blobs,
70   pthreadpool_t threadpool)
71 {
72   const uint32_t input_id = opdata->inputs[0];
73   assert(input_id != XNN_INVALID_VALUE_ID);
74   assert(input_id < num_blobs);
75 
76   const uint32_t output_value_id = opdata->outputs[0];
77   assert(output_value_id != XNN_INVALID_VALUE_ID);
78   assert(output_value_id < num_blobs);
79 
80   const uint32_t output_index_id = opdata->outputs[1];
81   assert(output_index_id != XNN_INVALID_VALUE_ID);
82   assert(output_index_id < num_blobs);
83 
84   const struct xnn_blob* input_blob = blobs + input_id;
85   const void* input_data = input_blob->data;
86   assert(input_data != NULL);
87 
88   const struct xnn_blob* output_value_blob = blobs + output_value_id;
89   void* output_value_data = output_value_blob->data;
90   assert(output_value_data != NULL);
91 
92   const struct xnn_blob* output_index_blob = blobs + output_index_id;
93   void* output_index_data = output_index_blob->data;
94   assert(output_index_data != NULL);
95 
96   return xnn_setup_argmax_pooling2d_nhwc_f32(
97     opdata->operator_objects[0],
98     opdata->batch_size,
99     opdata->input_height,
100     opdata->input_width,
101     input_data,
102     output_value_data,
103     output_index_data,
104     threadpool);
105 }
106 
xnn_define_argmax_pooling_2d(xnn_subgraph_t subgraph,uint32_t input_padding_top,uint32_t input_padding_right,uint32_t input_padding_bottom,uint32_t input_padding_left,uint32_t pooling_height,uint32_t pooling_width,uint32_t input_id,uint32_t output_value_id,uint32_t output_index_id,uint32_t flags)107 enum xnn_status xnn_define_argmax_pooling_2d(
108   xnn_subgraph_t subgraph,
109   uint32_t input_padding_top,
110   uint32_t input_padding_right,
111   uint32_t input_padding_bottom,
112   uint32_t input_padding_left,
113   uint32_t pooling_height,
114   uint32_t pooling_width,
115   uint32_t input_id,
116   uint32_t output_value_id,
117   uint32_t output_index_id,
118   uint32_t flags)
119 {
120   enum xnn_status status;
121   if ((status = xnn_subgraph_check_xnnpack_initialized(xnn_node_type_argmax_pooling_2d)) != xnn_status_success) {
122     return status;
123   }
124 
125   const uint32_t pooling_size = pooling_height * pooling_width;
126   if (pooling_size == 0) {
127     xnn_log_error(
128       "failed to define %s operator with %" PRIu32 "x%" PRIu32 " pooling size: "
129       "pooling size dimensions must be non-zero",
130       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), pooling_width, pooling_height);
131     return xnn_status_invalid_parameter;
132   }
133 
134   if (pooling_size == 1) {
135     xnn_log_error(
136       "failed to define %s operator with 1 pooling element: 1x1 pooling is meaningless",
137       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d));
138     return xnn_status_invalid_parameter;
139   }
140 
141   if ((status = xnn_subgraph_check_input_node_id(xnn_node_type_argmax_pooling_2d, input_id, subgraph->num_values))
142       != xnn_status_success) {
143     return status;
144   }
145 
146   const struct xnn_value* input_value = &subgraph->values[input_id];
147   status = xnn_subgraph_check_input_type_dense(xnn_node_type_argmax_pooling_2d, input_id, input_value);
148   if (status != xnn_status_success) {
149     return status;
150   }
151 
152   switch (input_value->datatype) {
153     case xnn_datatype_fp32:
154       break;
155     default:
156       xnn_log_error(
157         "failed to define %s operator with input ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
158         xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), input_id,
159         xnn_datatype_to_string(input_value->datatype), input_value->datatype);
160       return xnn_status_invalid_parameter;
161   }
162 
163   if (output_value_id >= subgraph->num_values) {
164     xnn_log_error(
165       "failed to define %s operator with output value ID #%" PRIu32 ": invalid Value ID",
166       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), output_value_id);
167     return xnn_status_invalid_parameter;
168   }
169 
170   const struct xnn_value* output_value_value = &subgraph->values[output_value_id];
171   if (output_value_value->type != xnn_value_type_dense_tensor) {
172     xnn_log_error(
173       "failed to define %s operator with output value ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
174       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), output_value_id, output_value_value->type);
175     return xnn_status_invalid_parameter;
176   }
177 
178   switch (output_value_value->datatype) {
179     case xnn_datatype_fp32:
180       break;
181     default:
182       xnn_log_error(
183         "failed to define %s operator with output value ID #%" PRIu32 ": unsupported Value datatype %s (%d)",
184         xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), output_value_id,
185         xnn_datatype_to_string(output_value_value->datatype), output_value_value->datatype);
186       return xnn_status_invalid_parameter;
187   }
188 
189   if (output_index_id >= subgraph->num_values) {
190     xnn_log_error(
191       "failed to define %s operator with output index ID #%" PRIu32 ": invalid Value ID",
192       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), output_index_id);
193     return xnn_status_invalid_parameter;
194   }
195 
196   const struct xnn_value* output_index_value = &subgraph->values[output_index_id];
197   if (output_index_value->type != xnn_value_type_dense_tensor) {
198     xnn_log_error(
199       "failed to define %s operator with output index ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)",
200       xnn_node_type_to_string(xnn_node_type_argmax_pooling_2d), output_index_id, output_index_value->type);
201     return xnn_status_invalid_parameter;
202   }
203 
204   struct xnn_node* node = xnn_subgraph_new_node(subgraph);
205   if (node == NULL) {
206     return xnn_status_out_of_memory;
207   }
208 
209   node->type = xnn_node_type_argmax_pooling_2d;
210   node->compute_type = xnn_compute_type_fp32;
211   node->params.pooling_2d.padding_top = input_padding_top;
212   node->params.pooling_2d.padding_right = input_padding_right;
213   node->params.pooling_2d.padding_bottom = input_padding_bottom;
214   node->params.pooling_2d.padding_left = input_padding_left;
215   node->params.pooling_2d.pooling_height = pooling_height;
216   node->params.pooling_2d.pooling_width = pooling_width;
217   node->num_inputs = 1;
218   node->inputs[0] = input_id;
219   node->num_outputs = 2;
220   node->outputs[0] = output_value_id;
221   node->outputs[1] = output_index_id;
222   node->flags = flags;
223 
224   node->create = create_argmax_pooling_operator;
225   node->setup = setup_argmax_pooling_operator;
226 
227   return xnn_status_success;
228 }
229