1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include <linux/iversion.h>
7
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_dir2.h"
18 #include "xfs_attr.h"
19 #include "xfs_bit.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iunlink_item.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_bmap.h"
27 #include "xfs_bmap_util.h"
28 #include "xfs_errortag.h"
29 #include "xfs_error.h"
30 #include "xfs_quota.h"
31 #include "xfs_filestream.h"
32 #include "xfs_trace.h"
33 #include "xfs_icache.h"
34 #include "xfs_symlink.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_log.h"
37 #include "xfs_bmap_btree.h"
38 #include "xfs_reflink.h"
39 #include "xfs_ag.h"
40 #include "xfs_log_priv.h"
41 #include "xfs_health.h"
42 #include "xfs_pnfs.h"
43 #include "xfs_parent.h"
44 #include "xfs_xattr.h"
45 #include "xfs_inode_util.h"
46 #include "xfs_metafile.h"
47
48 struct kmem_cache *xfs_inode_cache;
49
50 /*
51 * These two are wrapper routines around the xfs_ilock() routine used to
52 * centralize some grungy code. They are used in places that wish to lock the
53 * inode solely for reading the extents. The reason these places can't just
54 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
55 * bringing in of the extents from disk for a file in b-tree format. If the
56 * inode is in b-tree format, then we need to lock the inode exclusively until
57 * the extents are read in. Locking it exclusively all the time would limit
58 * our parallelism unnecessarily, though. What we do instead is check to see
59 * if the extents have been read in yet, and only lock the inode exclusively
60 * if they have not.
61 *
62 * The functions return a value which should be given to the corresponding
63 * xfs_iunlock() call.
64 */
65 uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)66 xfs_ilock_data_map_shared(
67 struct xfs_inode *ip)
68 {
69 uint lock_mode = XFS_ILOCK_SHARED;
70
71 if (xfs_need_iread_extents(&ip->i_df))
72 lock_mode = XFS_ILOCK_EXCL;
73 xfs_ilock(ip, lock_mode);
74 return lock_mode;
75 }
76
77 uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)78 xfs_ilock_attr_map_shared(
79 struct xfs_inode *ip)
80 {
81 uint lock_mode = XFS_ILOCK_SHARED;
82
83 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
84 lock_mode = XFS_ILOCK_EXCL;
85 xfs_ilock(ip, lock_mode);
86 return lock_mode;
87 }
88
89 /*
90 * You can't set both SHARED and EXCL for the same lock,
91 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
92 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
93 * to set in lock_flags.
94 */
95 static inline void
xfs_lock_flags_assert(uint lock_flags)96 xfs_lock_flags_assert(
97 uint lock_flags)
98 {
99 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
100 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
101 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
102 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
103 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
104 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
105 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
106 ASSERT(lock_flags != 0);
107 }
108
109 /*
110 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
111 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
112 * various combinations of the locks to be obtained.
113 *
114 * The 3 locks should always be ordered so that the IO lock is obtained first,
115 * the mmap lock second and the ilock last in order to prevent deadlock.
116 *
117 * Basic locking order:
118 *
119 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
120 *
121 * mmap_lock locking order:
122 *
123 * i_rwsem -> page lock -> mmap_lock
124 * mmap_lock -> invalidate_lock -> page_lock
125 *
126 * The difference in mmap_lock locking order mean that we cannot hold the
127 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
128 * can fault in pages during copy in/out (for buffered IO) or require the
129 * mmap_lock in get_user_pages() to map the user pages into the kernel address
130 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
131 * fault because page faults already hold the mmap_lock.
132 *
133 * Hence to serialise fully against both syscall and mmap based IO, we need to
134 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
135 * both taken in places where we need to invalidate the page cache in a race
136 * free manner (e.g. truncate, hole punch and other extent manipulation
137 * functions).
138 */
139 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)140 xfs_ilock(
141 xfs_inode_t *ip,
142 uint lock_flags)
143 {
144 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
145
146 xfs_lock_flags_assert(lock_flags);
147
148 if (lock_flags & XFS_IOLOCK_EXCL) {
149 down_write_nested(&VFS_I(ip)->i_rwsem,
150 XFS_IOLOCK_DEP(lock_flags));
151 } else if (lock_flags & XFS_IOLOCK_SHARED) {
152 down_read_nested(&VFS_I(ip)->i_rwsem,
153 XFS_IOLOCK_DEP(lock_flags));
154 }
155
156 if (lock_flags & XFS_MMAPLOCK_EXCL) {
157 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
158 XFS_MMAPLOCK_DEP(lock_flags));
159 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
160 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
161 XFS_MMAPLOCK_DEP(lock_flags));
162 }
163
164 if (lock_flags & XFS_ILOCK_EXCL)
165 down_write_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 else if (lock_flags & XFS_ILOCK_SHARED)
167 down_read_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168 }
169
170 /*
171 * This is just like xfs_ilock(), except that the caller
172 * is guaranteed not to sleep. It returns 1 if it gets
173 * the requested locks and 0 otherwise. If the IO lock is
174 * obtained but the inode lock cannot be, then the IO lock
175 * is dropped before returning.
176 *
177 * ip -- the inode being locked
178 * lock_flags -- this parameter indicates the inode's locks to be
179 * to be locked. See the comment for xfs_ilock() for a list
180 * of valid values.
181 */
182 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)183 xfs_ilock_nowait(
184 xfs_inode_t *ip,
185 uint lock_flags)
186 {
187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
188
189 xfs_lock_flags_assert(lock_flags);
190
191 if (lock_flags & XFS_IOLOCK_EXCL) {
192 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
193 goto out;
194 } else if (lock_flags & XFS_IOLOCK_SHARED) {
195 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
196 goto out;
197 }
198
199 if (lock_flags & XFS_MMAPLOCK_EXCL) {
200 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
201 goto out_undo_iolock;
202 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
203 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
204 goto out_undo_iolock;
205 }
206
207 if (lock_flags & XFS_ILOCK_EXCL) {
208 if (!down_write_trylock(&ip->i_lock))
209 goto out_undo_mmaplock;
210 } else if (lock_flags & XFS_ILOCK_SHARED) {
211 if (!down_read_trylock(&ip->i_lock))
212 goto out_undo_mmaplock;
213 }
214 return 1;
215
216 out_undo_mmaplock:
217 if (lock_flags & XFS_MMAPLOCK_EXCL)
218 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
219 else if (lock_flags & XFS_MMAPLOCK_SHARED)
220 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
221 out_undo_iolock:
222 if (lock_flags & XFS_IOLOCK_EXCL)
223 up_write(&VFS_I(ip)->i_rwsem);
224 else if (lock_flags & XFS_IOLOCK_SHARED)
225 up_read(&VFS_I(ip)->i_rwsem);
226 out:
227 return 0;
228 }
229
230 /*
231 * xfs_iunlock() is used to drop the inode locks acquired with
232 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
233 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
234 * that we know which locks to drop.
235 *
236 * ip -- the inode being unlocked
237 * lock_flags -- this parameter indicates the inode's locks to be
238 * to be unlocked. See the comment for xfs_ilock() for a list
239 * of valid values for this parameter.
240 *
241 */
242 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)243 xfs_iunlock(
244 xfs_inode_t *ip,
245 uint lock_flags)
246 {
247 xfs_lock_flags_assert(lock_flags);
248
249 if (lock_flags & XFS_IOLOCK_EXCL)
250 up_write(&VFS_I(ip)->i_rwsem);
251 else if (lock_flags & XFS_IOLOCK_SHARED)
252 up_read(&VFS_I(ip)->i_rwsem);
253
254 if (lock_flags & XFS_MMAPLOCK_EXCL)
255 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
256 else if (lock_flags & XFS_MMAPLOCK_SHARED)
257 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
258
259 if (lock_flags & XFS_ILOCK_EXCL)
260 up_write(&ip->i_lock);
261 else if (lock_flags & XFS_ILOCK_SHARED)
262 up_read(&ip->i_lock);
263
264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
265 }
266
267 /*
268 * give up write locks. the i/o lock cannot be held nested
269 * if it is being demoted.
270 */
271 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)272 xfs_ilock_demote(
273 xfs_inode_t *ip,
274 uint lock_flags)
275 {
276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
277 ASSERT((lock_flags &
278 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
279
280 if (lock_flags & XFS_ILOCK_EXCL)
281 downgrade_write(&ip->i_lock);
282 if (lock_flags & XFS_MMAPLOCK_EXCL)
283 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
284 if (lock_flags & XFS_IOLOCK_EXCL)
285 downgrade_write(&VFS_I(ip)->i_rwsem);
286
287 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
288 }
289
290 void
xfs_assert_ilocked(struct xfs_inode * ip,uint lock_flags)291 xfs_assert_ilocked(
292 struct xfs_inode *ip,
293 uint lock_flags)
294 {
295 /*
296 * Sometimes we assert the ILOCK is held exclusively, but we're in
297 * a workqueue, so lockdep doesn't know we're the owner.
298 */
299 if (lock_flags & XFS_ILOCK_SHARED)
300 rwsem_assert_held(&ip->i_lock);
301 else if (lock_flags & XFS_ILOCK_EXCL)
302 rwsem_assert_held_write_nolockdep(&ip->i_lock);
303
304 if (lock_flags & XFS_MMAPLOCK_SHARED)
305 rwsem_assert_held(&VFS_I(ip)->i_mapping->invalidate_lock);
306 else if (lock_flags & XFS_MMAPLOCK_EXCL)
307 rwsem_assert_held_write(&VFS_I(ip)->i_mapping->invalidate_lock);
308
309 if (lock_flags & XFS_IOLOCK_SHARED)
310 rwsem_assert_held(&VFS_I(ip)->i_rwsem);
311 else if (lock_flags & XFS_IOLOCK_EXCL)
312 rwsem_assert_held_write(&VFS_I(ip)->i_rwsem);
313 }
314
315 /*
316 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
317 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
318 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
319 * errors and warnings.
320 */
321 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
322 static bool
xfs_lockdep_subclass_ok(int subclass)323 xfs_lockdep_subclass_ok(
324 int subclass)
325 {
326 return subclass < MAX_LOCKDEP_SUBCLASSES;
327 }
328 #else
329 #define xfs_lockdep_subclass_ok(subclass) (true)
330 #endif
331
332 /*
333 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
334 * value. This can be called for any type of inode lock combination, including
335 * parent locking. Care must be taken to ensure we don't overrun the subclass
336 * storage fields in the class mask we build.
337 */
338 static inline uint
xfs_lock_inumorder(uint lock_mode,uint subclass)339 xfs_lock_inumorder(
340 uint lock_mode,
341 uint subclass)
342 {
343 uint class = 0;
344
345 ASSERT(!(lock_mode & XFS_ILOCK_PARENT));
346 ASSERT(xfs_lockdep_subclass_ok(subclass));
347
348 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
349 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
350 class += subclass << XFS_IOLOCK_SHIFT;
351 }
352
353 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
354 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
355 class += subclass << XFS_MMAPLOCK_SHIFT;
356 }
357
358 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
359 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
360 class += subclass << XFS_ILOCK_SHIFT;
361 }
362
363 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
364 }
365
366 /*
367 * The following routine will lock n inodes in exclusive mode. We assume the
368 * caller calls us with the inodes in i_ino order.
369 *
370 * We need to detect deadlock where an inode that we lock is in the AIL and we
371 * start waiting for another inode that is locked by a thread in a long running
372 * transaction (such as truncate). This can result in deadlock since the long
373 * running trans might need to wait for the inode we just locked in order to
374 * push the tail and free space in the log.
375 *
376 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
377 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
378 * lock more than one at a time, lockdep will report false positives saying we
379 * have violated locking orders.
380 */
381 void
xfs_lock_inodes(struct xfs_inode ** ips,int inodes,uint lock_mode)382 xfs_lock_inodes(
383 struct xfs_inode **ips,
384 int inodes,
385 uint lock_mode)
386 {
387 int attempts = 0;
388 uint i;
389 int j;
390 bool try_lock;
391 struct xfs_log_item *lp;
392
393 /*
394 * Currently supports between 2 and 5 inodes with exclusive locking. We
395 * support an arbitrary depth of locking here, but absolute limits on
396 * inodes depend on the type of locking and the limits placed by
397 * lockdep annotations in xfs_lock_inumorder. These are all checked by
398 * the asserts.
399 */
400 ASSERT(ips && inodes >= 2 && inodes <= 5);
401 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
402 XFS_ILOCK_EXCL));
403 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
404 XFS_ILOCK_SHARED)));
405 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
406 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
407 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
408 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
409
410 if (lock_mode & XFS_IOLOCK_EXCL) {
411 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
412 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
413 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
414
415 again:
416 try_lock = false;
417 i = 0;
418 for (; i < inodes; i++) {
419 ASSERT(ips[i]);
420
421 if (i && (ips[i] == ips[i - 1])) /* Already locked */
422 continue;
423
424 /*
425 * If try_lock is not set yet, make sure all locked inodes are
426 * not in the AIL. If any are, set try_lock to be used later.
427 */
428 if (!try_lock) {
429 for (j = (i - 1); j >= 0 && !try_lock; j--) {
430 lp = &ips[j]->i_itemp->ili_item;
431 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
432 try_lock = true;
433 }
434 }
435
436 /*
437 * If any of the previous locks we have locked is in the AIL,
438 * we must TRY to get the second and subsequent locks. If
439 * we can't get any, we must release all we have
440 * and try again.
441 */
442 if (!try_lock) {
443 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444 continue;
445 }
446
447 /* try_lock means we have an inode locked that is in the AIL. */
448 ASSERT(i != 0);
449 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450 continue;
451
452 /*
453 * Unlock all previous guys and try again. xfs_iunlock will try
454 * to push the tail if the inode is in the AIL.
455 */
456 attempts++;
457 for (j = i - 1; j >= 0; j--) {
458 /*
459 * Check to see if we've already unlocked this one. Not
460 * the first one going back, and the inode ptr is the
461 * same.
462 */
463 if (j != (i - 1) && ips[j] == ips[j + 1])
464 continue;
465
466 xfs_iunlock(ips[j], lock_mode);
467 }
468
469 if ((attempts % 5) == 0) {
470 delay(1); /* Don't just spin the CPU */
471 }
472 goto again;
473 }
474 }
475
476 /*
477 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
478 * mmaplock must be double-locked separately since we use i_rwsem and
479 * invalidate_lock for that. We now support taking one lock EXCL and the
480 * other SHARED.
481 */
482 void
xfs_lock_two_inodes(struct xfs_inode * ip0,uint ip0_mode,struct xfs_inode * ip1,uint ip1_mode)483 xfs_lock_two_inodes(
484 struct xfs_inode *ip0,
485 uint ip0_mode,
486 struct xfs_inode *ip1,
487 uint ip1_mode)
488 {
489 int attempts = 0;
490 struct xfs_log_item *lp;
491
492 ASSERT(hweight32(ip0_mode) == 1);
493 ASSERT(hweight32(ip1_mode) == 1);
494 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
495 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
496 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
497 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
498 ASSERT(ip0->i_ino != ip1->i_ino);
499
500 if (ip0->i_ino > ip1->i_ino) {
501 swap(ip0, ip1);
502 swap(ip0_mode, ip1_mode);
503 }
504
505 again:
506 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
507
508 /*
509 * If the first lock we have locked is in the AIL, we must TRY to get
510 * the second lock. If we can't get it, we must release the first one
511 * and try again.
512 */
513 lp = &ip0->i_itemp->ili_item;
514 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
515 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
516 xfs_iunlock(ip0, ip0_mode);
517 if ((++attempts % 5) == 0)
518 delay(1); /* Don't just spin the CPU */
519 goto again;
520 }
521 } else {
522 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
523 }
524 }
525
526 /*
527 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
528 * is allowed, otherwise it has to be an exact match. If a CI match is found,
529 * ci_name->name will point to a the actual name (caller must free) or
530 * will be set to NULL if an exact match is found.
531 */
532 int
xfs_lookup(struct xfs_inode * dp,const struct xfs_name * name,struct xfs_inode ** ipp,struct xfs_name * ci_name)533 xfs_lookup(
534 struct xfs_inode *dp,
535 const struct xfs_name *name,
536 struct xfs_inode **ipp,
537 struct xfs_name *ci_name)
538 {
539 xfs_ino_t inum;
540 int error;
541
542 trace_xfs_lookup(dp, name);
543
544 if (xfs_is_shutdown(dp->i_mount))
545 return -EIO;
546 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
547 return -EIO;
548
549 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
550 if (error)
551 goto out_unlock;
552
553 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
554 if (error)
555 goto out_free_name;
556
557 /*
558 * Fail if a directory entry in the regular directory tree points to
559 * a metadata file.
560 */
561 if (XFS_IS_CORRUPT(dp->i_mount, xfs_is_metadir_inode(*ipp))) {
562 xfs_fs_mark_sick(dp->i_mount, XFS_SICK_FS_METADIR);
563 error = -EFSCORRUPTED;
564 goto out_irele;
565 }
566
567 return 0;
568
569 out_irele:
570 xfs_irele(*ipp);
571 out_free_name:
572 if (ci_name)
573 kfree(ci_name->name);
574 out_unlock:
575 *ipp = NULL;
576 return error;
577 }
578
579 /*
580 * Initialise a newly allocated inode and return the in-core inode to the
581 * caller locked exclusively.
582 *
583 * Caller is responsible for unlocking the inode manually upon return
584 */
585 int
xfs_icreate(struct xfs_trans * tp,xfs_ino_t ino,const struct xfs_icreate_args * args,struct xfs_inode ** ipp)586 xfs_icreate(
587 struct xfs_trans *tp,
588 xfs_ino_t ino,
589 const struct xfs_icreate_args *args,
590 struct xfs_inode **ipp)
591 {
592 struct xfs_mount *mp = tp->t_mountp;
593 struct xfs_inode *ip = NULL;
594 int error;
595
596 /*
597 * Get the in-core inode with the lock held exclusively to prevent
598 * others from looking at until we're done.
599 */
600 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
601 if (error)
602 return error;
603
604 ASSERT(ip != NULL);
605 xfs_trans_ijoin(tp, ip, 0);
606 xfs_inode_init(tp, args, ip);
607
608 /* now that we have an i_mode we can setup the inode structure */
609 xfs_setup_inode(ip);
610
611 *ipp = ip;
612 return 0;
613 }
614
615 /* Return dquots for the ids that will be assigned to a new file. */
616 int
xfs_icreate_dqalloc(const struct xfs_icreate_args * args,struct xfs_dquot ** udqpp,struct xfs_dquot ** gdqpp,struct xfs_dquot ** pdqpp)617 xfs_icreate_dqalloc(
618 const struct xfs_icreate_args *args,
619 struct xfs_dquot **udqpp,
620 struct xfs_dquot **gdqpp,
621 struct xfs_dquot **pdqpp)
622 {
623 struct inode *dir = VFS_I(args->pip);
624 kuid_t uid = GLOBAL_ROOT_UID;
625 kgid_t gid = GLOBAL_ROOT_GID;
626 prid_t prid = 0;
627 unsigned int flags = XFS_QMOPT_QUOTALL;
628
629 if (args->idmap) {
630 /*
631 * The uid/gid computation code must match what the VFS uses to
632 * assign i_[ug]id. INHERIT adjusts the gid computation for
633 * setgid/grpid systems.
634 */
635 uid = mapped_fsuid(args->idmap, i_user_ns(dir));
636 gid = mapped_fsgid(args->idmap, i_user_ns(dir));
637 prid = xfs_get_initial_prid(args->pip);
638 flags |= XFS_QMOPT_INHERIT;
639 }
640
641 *udqpp = *gdqpp = *pdqpp = NULL;
642
643 return xfs_qm_vop_dqalloc(args->pip, uid, gid, prid, flags, udqpp,
644 gdqpp, pdqpp);
645 }
646
647 int
xfs_create(const struct xfs_icreate_args * args,struct xfs_name * name,struct xfs_inode ** ipp)648 xfs_create(
649 const struct xfs_icreate_args *args,
650 struct xfs_name *name,
651 struct xfs_inode **ipp)
652 {
653 struct xfs_inode *dp = args->pip;
654 struct xfs_dir_update du = {
655 .dp = dp,
656 .name = name,
657 };
658 struct xfs_mount *mp = dp->i_mount;
659 struct xfs_trans *tp = NULL;
660 struct xfs_dquot *udqp;
661 struct xfs_dquot *gdqp;
662 struct xfs_dquot *pdqp;
663 struct xfs_trans_res *tres;
664 xfs_ino_t ino;
665 bool unlock_dp_on_error = false;
666 bool is_dir = S_ISDIR(args->mode);
667 uint resblks;
668 int error;
669
670 trace_xfs_create(dp, name);
671
672 if (xfs_is_shutdown(mp))
673 return -EIO;
674 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
675 return -EIO;
676
677 /* Make sure that we have allocated dquot(s) on disk. */
678 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
679 if (error)
680 return error;
681
682 if (is_dir) {
683 resblks = xfs_mkdir_space_res(mp, name->len);
684 tres = &M_RES(mp)->tr_mkdir;
685 } else {
686 resblks = xfs_create_space_res(mp, name->len);
687 tres = &M_RES(mp)->tr_create;
688 }
689
690 error = xfs_parent_start(mp, &du.ppargs);
691 if (error)
692 goto out_release_dquots;
693
694 /*
695 * Initially assume that the file does not exist and
696 * reserve the resources for that case. If that is not
697 * the case we'll drop the one we have and get a more
698 * appropriate transaction later.
699 */
700 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
701 &tp);
702 if (error == -ENOSPC) {
703 /* flush outstanding delalloc blocks and retry */
704 xfs_flush_inodes(mp);
705 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
706 resblks, &tp);
707 }
708 if (error)
709 goto out_parent;
710
711 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
712 unlock_dp_on_error = true;
713
714 /*
715 * A newly created regular or special file just has one directory
716 * entry pointing to them, but a directory also the "." entry
717 * pointing to itself.
718 */
719 error = xfs_dialloc(&tp, args, &ino);
720 if (!error)
721 error = xfs_icreate(tp, ino, args, &du.ip);
722 if (error)
723 goto out_trans_cancel;
724
725 /*
726 * Now we join the directory inode to the transaction. We do not do it
727 * earlier because xfs_dialloc might commit the previous transaction
728 * (and release all the locks). An error from here on will result in
729 * the transaction cancel unlocking dp so don't do it explicitly in the
730 * error path.
731 */
732 xfs_trans_ijoin(tp, dp, 0);
733
734 error = xfs_dir_create_child(tp, resblks, &du);
735 if (error)
736 goto out_trans_cancel;
737
738 /*
739 * If this is a synchronous mount, make sure that the
740 * create transaction goes to disk before returning to
741 * the user.
742 */
743 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
744 xfs_trans_set_sync(tp);
745
746 /*
747 * Attach the dquot(s) to the inodes and modify them incore.
748 * These ids of the inode couldn't have changed since the new
749 * inode has been locked ever since it was created.
750 */
751 xfs_qm_vop_create_dqattach(tp, du.ip, udqp, gdqp, pdqp);
752
753 error = xfs_trans_commit(tp);
754 if (error)
755 goto out_release_inode;
756
757 xfs_qm_dqrele(udqp);
758 xfs_qm_dqrele(gdqp);
759 xfs_qm_dqrele(pdqp);
760
761 *ipp = du.ip;
762 xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
763 xfs_iunlock(dp, XFS_ILOCK_EXCL);
764 xfs_parent_finish(mp, du.ppargs);
765 return 0;
766
767 out_trans_cancel:
768 xfs_trans_cancel(tp);
769 out_release_inode:
770 /*
771 * Wait until after the current transaction is aborted to finish the
772 * setup of the inode and release the inode. This prevents recursive
773 * transactions and deadlocks from xfs_inactive.
774 */
775 if (du.ip) {
776 xfs_iunlock(du.ip, XFS_ILOCK_EXCL);
777 xfs_finish_inode_setup(du.ip);
778 xfs_irele(du.ip);
779 }
780 out_parent:
781 xfs_parent_finish(mp, du.ppargs);
782 out_release_dquots:
783 xfs_qm_dqrele(udqp);
784 xfs_qm_dqrele(gdqp);
785 xfs_qm_dqrele(pdqp);
786
787 if (unlock_dp_on_error)
788 xfs_iunlock(dp, XFS_ILOCK_EXCL);
789 return error;
790 }
791
792 int
xfs_create_tmpfile(const struct xfs_icreate_args * args,struct xfs_inode ** ipp)793 xfs_create_tmpfile(
794 const struct xfs_icreate_args *args,
795 struct xfs_inode **ipp)
796 {
797 struct xfs_inode *dp = args->pip;
798 struct xfs_mount *mp = dp->i_mount;
799 struct xfs_inode *ip = NULL;
800 struct xfs_trans *tp = NULL;
801 struct xfs_dquot *udqp;
802 struct xfs_dquot *gdqp;
803 struct xfs_dquot *pdqp;
804 struct xfs_trans_res *tres;
805 xfs_ino_t ino;
806 uint resblks;
807 int error;
808
809 ASSERT(args->flags & XFS_ICREATE_TMPFILE);
810
811 if (xfs_is_shutdown(mp))
812 return -EIO;
813
814 /* Make sure that we have allocated dquot(s) on disk. */
815 error = xfs_icreate_dqalloc(args, &udqp, &gdqp, &pdqp);
816 if (error)
817 return error;
818
819 resblks = XFS_IALLOC_SPACE_RES(mp);
820 tres = &M_RES(mp)->tr_create_tmpfile;
821
822 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
823 &tp);
824 if (error)
825 goto out_release_dquots;
826
827 error = xfs_dialloc(&tp, args, &ino);
828 if (!error)
829 error = xfs_icreate(tp, ino, args, &ip);
830 if (error)
831 goto out_trans_cancel;
832
833 if (xfs_has_wsync(mp))
834 xfs_trans_set_sync(tp);
835
836 /*
837 * Attach the dquot(s) to the inodes and modify them incore.
838 * These ids of the inode couldn't have changed since the new
839 * inode has been locked ever since it was created.
840 */
841 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
842
843 error = xfs_iunlink(tp, ip);
844 if (error)
845 goto out_trans_cancel;
846
847 error = xfs_trans_commit(tp);
848 if (error)
849 goto out_release_inode;
850
851 xfs_qm_dqrele(udqp);
852 xfs_qm_dqrele(gdqp);
853 xfs_qm_dqrele(pdqp);
854
855 *ipp = ip;
856 xfs_iunlock(ip, XFS_ILOCK_EXCL);
857 return 0;
858
859 out_trans_cancel:
860 xfs_trans_cancel(tp);
861 out_release_inode:
862 /*
863 * Wait until after the current transaction is aborted to finish the
864 * setup of the inode and release the inode. This prevents recursive
865 * transactions and deadlocks from xfs_inactive.
866 */
867 if (ip) {
868 xfs_iunlock(ip, XFS_ILOCK_EXCL);
869 xfs_finish_inode_setup(ip);
870 xfs_irele(ip);
871 }
872 out_release_dquots:
873 xfs_qm_dqrele(udqp);
874 xfs_qm_dqrele(gdqp);
875 xfs_qm_dqrele(pdqp);
876
877 return error;
878 }
879
880 int
xfs_link(struct xfs_inode * tdp,struct xfs_inode * sip,struct xfs_name * target_name)881 xfs_link(
882 struct xfs_inode *tdp,
883 struct xfs_inode *sip,
884 struct xfs_name *target_name)
885 {
886 struct xfs_dir_update du = {
887 .dp = tdp,
888 .name = target_name,
889 .ip = sip,
890 };
891 struct xfs_mount *mp = tdp->i_mount;
892 struct xfs_trans *tp;
893 int error, nospace_error = 0;
894 int resblks;
895
896 trace_xfs_link(tdp, target_name);
897
898 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
899
900 if (xfs_is_shutdown(mp))
901 return -EIO;
902 if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
903 return -EIO;
904
905 error = xfs_qm_dqattach(sip);
906 if (error)
907 goto std_return;
908
909 error = xfs_qm_dqattach(tdp);
910 if (error)
911 goto std_return;
912
913 error = xfs_parent_start(mp, &du.ppargs);
914 if (error)
915 goto std_return;
916
917 resblks = xfs_link_space_res(mp, target_name->len);
918 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
919 &tp, &nospace_error);
920 if (error)
921 goto out_parent;
922
923 /*
924 * We don't allow reservationless or quotaless hardlinking when parent
925 * pointers are enabled because we can't back out if the xattrs must
926 * grow.
927 */
928 if (du.ppargs && nospace_error) {
929 error = nospace_error;
930 goto error_return;
931 }
932
933 /*
934 * If we are using project inheritance, we only allow hard link
935 * creation in our tree when the project IDs are the same; else
936 * the tree quota mechanism could be circumvented.
937 */
938 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
939 tdp->i_projid != sip->i_projid)) {
940 /*
941 * Project quota setup skips special files which can
942 * leave inodes in a PROJINHERIT directory without a
943 * project ID set. We need to allow links to be made
944 * to these "project-less" inodes because userspace
945 * expects them to succeed after project ID setup,
946 * but everything else should be rejected.
947 */
948 if (!special_file(VFS_I(sip)->i_mode) ||
949 sip->i_projid != 0) {
950 error = -EXDEV;
951 goto error_return;
952 }
953 }
954
955 error = xfs_dir_add_child(tp, resblks, &du);
956 if (error)
957 goto error_return;
958
959 /*
960 * If this is a synchronous mount, make sure that the
961 * link transaction goes to disk before returning to
962 * the user.
963 */
964 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
965 xfs_trans_set_sync(tp);
966
967 error = xfs_trans_commit(tp);
968 xfs_iunlock(tdp, XFS_ILOCK_EXCL);
969 xfs_iunlock(sip, XFS_ILOCK_EXCL);
970 xfs_parent_finish(mp, du.ppargs);
971 return error;
972
973 error_return:
974 xfs_trans_cancel(tp);
975 xfs_iunlock(tdp, XFS_ILOCK_EXCL);
976 xfs_iunlock(sip, XFS_ILOCK_EXCL);
977 out_parent:
978 xfs_parent_finish(mp, du.ppargs);
979 std_return:
980 if (error == -ENOSPC && nospace_error)
981 error = nospace_error;
982 return error;
983 }
984
985 /* Clear the reflink flag and the cowblocks tag if possible. */
986 static void
xfs_itruncate_clear_reflink_flags(struct xfs_inode * ip)987 xfs_itruncate_clear_reflink_flags(
988 struct xfs_inode *ip)
989 {
990 struct xfs_ifork *dfork;
991 struct xfs_ifork *cfork;
992
993 if (!xfs_is_reflink_inode(ip))
994 return;
995 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
996 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
997 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
998 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
999 if (cfork->if_bytes == 0)
1000 xfs_inode_clear_cowblocks_tag(ip);
1001 }
1002
1003 /*
1004 * Free up the underlying blocks past new_size. The new size must be smaller
1005 * than the current size. This routine can be used both for the attribute and
1006 * data fork, and does not modify the inode size, which is left to the caller.
1007 *
1008 * The transaction passed to this routine must have made a permanent log
1009 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1010 * given transaction and start new ones, so make sure everything involved in
1011 * the transaction is tidy before calling here. Some transaction will be
1012 * returned to the caller to be committed. The incoming transaction must
1013 * already include the inode, and both inode locks must be held exclusively.
1014 * The inode must also be "held" within the transaction. On return the inode
1015 * will be "held" within the returned transaction. This routine does NOT
1016 * require any disk space to be reserved for it within the transaction.
1017 *
1018 * If we get an error, we must return with the inode locked and linked into the
1019 * current transaction. This keeps things simple for the higher level code,
1020 * because it always knows that the inode is locked and held in the transaction
1021 * that returns to it whether errors occur or not. We don't mark the inode
1022 * dirty on error so that transactions can be easily aborted if possible.
1023 */
1024 int
xfs_itruncate_extents_flags(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size,int flags)1025 xfs_itruncate_extents_flags(
1026 struct xfs_trans **tpp,
1027 struct xfs_inode *ip,
1028 int whichfork,
1029 xfs_fsize_t new_size,
1030 int flags)
1031 {
1032 struct xfs_mount *mp = ip->i_mount;
1033 struct xfs_trans *tp = *tpp;
1034 xfs_fileoff_t first_unmap_block;
1035 int error = 0;
1036
1037 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1038 if (atomic_read(&VFS_I(ip)->i_count))
1039 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL);
1040 ASSERT(new_size <= XFS_ISIZE(ip));
1041 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1042 ASSERT(ip->i_itemp != NULL);
1043 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1044 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1045
1046 trace_xfs_itruncate_extents_start(ip, new_size);
1047
1048 flags |= xfs_bmapi_aflag(whichfork);
1049
1050 /*
1051 * Since it is possible for space to become allocated beyond
1052 * the end of the file (in a crash where the space is allocated
1053 * but the inode size is not yet updated), simply remove any
1054 * blocks which show up between the new EOF and the maximum
1055 * possible file size.
1056 *
1057 * We have to free all the blocks to the bmbt maximum offset, even if
1058 * the page cache can't scale that far.
1059 */
1060 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1061 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1062 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1063 return 0;
1064 }
1065
1066 error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1067 XFS_MAX_FILEOFF);
1068 if (error)
1069 goto out;
1070
1071 if (whichfork == XFS_DATA_FORK) {
1072 /* Remove all pending CoW reservations. */
1073 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1074 first_unmap_block, XFS_MAX_FILEOFF, true);
1075 if (error)
1076 goto out;
1077
1078 xfs_itruncate_clear_reflink_flags(ip);
1079 }
1080
1081 /*
1082 * Always re-log the inode so that our permanent transaction can keep
1083 * on rolling it forward in the log.
1084 */
1085 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1086
1087 trace_xfs_itruncate_extents_end(ip, new_size);
1088
1089 out:
1090 *tpp = tp;
1091 return error;
1092 }
1093
1094 /*
1095 * Mark all the buffers attached to this directory stale. In theory we should
1096 * never be freeing a directory with any blocks at all, but this covers the
1097 * case where we've recovered a directory swap with a "temporary" directory
1098 * created by online repair and now need to dump it.
1099 */
1100 STATIC void
xfs_inactive_dir(struct xfs_inode * dp)1101 xfs_inactive_dir(
1102 struct xfs_inode *dp)
1103 {
1104 struct xfs_iext_cursor icur;
1105 struct xfs_bmbt_irec got;
1106 struct xfs_mount *mp = dp->i_mount;
1107 struct xfs_da_geometry *geo = mp->m_dir_geo;
1108 struct xfs_ifork *ifp = xfs_ifork_ptr(dp, XFS_DATA_FORK);
1109 xfs_fileoff_t off;
1110
1111 /*
1112 * Invalidate each directory block. All directory blocks are of
1113 * fsbcount length and alignment, so we only need to walk those same
1114 * offsets. We hold the only reference to this inode, so we must wait
1115 * for the buffer locks.
1116 */
1117 for_each_xfs_iext(ifp, &icur, &got) {
1118 for (off = round_up(got.br_startoff, geo->fsbcount);
1119 off < got.br_startoff + got.br_blockcount;
1120 off += geo->fsbcount) {
1121 struct xfs_buf *bp = NULL;
1122 xfs_fsblock_t fsbno;
1123 int error;
1124
1125 fsbno = (off - got.br_startoff) + got.br_startblock;
1126 error = xfs_buf_incore(mp->m_ddev_targp,
1127 XFS_FSB_TO_DADDR(mp, fsbno),
1128 XFS_FSB_TO_BB(mp, geo->fsbcount),
1129 XBF_LIVESCAN, &bp);
1130 if (error)
1131 continue;
1132
1133 xfs_buf_stale(bp);
1134 xfs_buf_relse(bp);
1135 }
1136 }
1137 }
1138
1139 /*
1140 * xfs_inactive_truncate
1141 *
1142 * Called to perform a truncate when an inode becomes unlinked.
1143 */
1144 STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1145 xfs_inactive_truncate(
1146 struct xfs_inode *ip)
1147 {
1148 struct xfs_mount *mp = ip->i_mount;
1149 struct xfs_trans *tp;
1150 int error;
1151
1152 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1153 if (error) {
1154 ASSERT(xfs_is_shutdown(mp));
1155 return error;
1156 }
1157 xfs_ilock(ip, XFS_ILOCK_EXCL);
1158 xfs_trans_ijoin(tp, ip, 0);
1159
1160 /*
1161 * Log the inode size first to prevent stale data exposure in the event
1162 * of a system crash before the truncate completes. See the related
1163 * comment in xfs_vn_setattr_size() for details.
1164 */
1165 ip->i_disk_size = 0;
1166 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1167
1168 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1169 if (error)
1170 goto error_trans_cancel;
1171
1172 ASSERT(ip->i_df.if_nextents == 0);
1173
1174 error = xfs_trans_commit(tp);
1175 if (error)
1176 goto error_unlock;
1177
1178 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1179 return 0;
1180
1181 error_trans_cancel:
1182 xfs_trans_cancel(tp);
1183 error_unlock:
1184 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185 return error;
1186 }
1187
1188 /*
1189 * xfs_inactive_ifree()
1190 *
1191 * Perform the inode free when an inode is unlinked.
1192 */
1193 STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1194 xfs_inactive_ifree(
1195 struct xfs_inode *ip)
1196 {
1197 struct xfs_mount *mp = ip->i_mount;
1198 struct xfs_trans *tp;
1199 int error;
1200
1201 /*
1202 * We try to use a per-AG reservation for any block needed by the finobt
1203 * tree, but as the finobt feature predates the per-AG reservation
1204 * support a degraded file system might not have enough space for the
1205 * reservation at mount time. In that case try to dip into the reserved
1206 * pool and pray.
1207 *
1208 * Send a warning if the reservation does happen to fail, as the inode
1209 * now remains allocated and sits on the unlinked list until the fs is
1210 * repaired.
1211 */
1212 if (unlikely(mp->m_finobt_nores)) {
1213 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1214 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1215 &tp);
1216 } else {
1217 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1218 }
1219 if (error) {
1220 if (error == -ENOSPC) {
1221 xfs_warn_ratelimited(mp,
1222 "Failed to remove inode(s) from unlinked list. "
1223 "Please free space, unmount and run xfs_repair.");
1224 } else {
1225 ASSERT(xfs_is_shutdown(mp));
1226 }
1227 return error;
1228 }
1229
1230 /*
1231 * We do not hold the inode locked across the entire rolling transaction
1232 * here. We only need to hold it for the first transaction that
1233 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1234 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1235 * here breaks the relationship between cluster buffer invalidation and
1236 * stale inode invalidation on cluster buffer item journal commit
1237 * completion, and can result in leaving dirty stale inodes hanging
1238 * around in memory.
1239 *
1240 * We have no need for serialising this inode operation against other
1241 * operations - we freed the inode and hence reallocation is required
1242 * and that will serialise on reallocating the space the deferops need
1243 * to free. Hence we can unlock the inode on the first commit of
1244 * the transaction rather than roll it right through the deferops. This
1245 * avoids relogging the XFS_ISTALE inode.
1246 *
1247 * We check that xfs_ifree() hasn't grown an internal transaction roll
1248 * by asserting that the inode is still locked when it returns.
1249 */
1250 xfs_ilock(ip, XFS_ILOCK_EXCL);
1251 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1252
1253 error = xfs_ifree(tp, ip);
1254 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1255 if (error) {
1256 /*
1257 * If we fail to free the inode, shut down. The cancel
1258 * might do that, we need to make sure. Otherwise the
1259 * inode might be lost for a long time or forever.
1260 */
1261 if (!xfs_is_shutdown(mp)) {
1262 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1263 __func__, error);
1264 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1265 }
1266 xfs_trans_cancel(tp);
1267 return error;
1268 }
1269
1270 /*
1271 * Credit the quota account(s). The inode is gone.
1272 */
1273 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1274
1275 return xfs_trans_commit(tp);
1276 }
1277
1278 /*
1279 * Returns true if we need to update the on-disk metadata before we can free
1280 * the memory used by this inode. Updates include freeing post-eof
1281 * preallocations; freeing COW staging extents; and marking the inode free in
1282 * the inobt if it is on the unlinked list.
1283 */
1284 bool
xfs_inode_needs_inactive(struct xfs_inode * ip)1285 xfs_inode_needs_inactive(
1286 struct xfs_inode *ip)
1287 {
1288 struct xfs_mount *mp = ip->i_mount;
1289 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1290
1291 /*
1292 * If the inode is already free, then there can be nothing
1293 * to clean up here.
1294 */
1295 if (VFS_I(ip)->i_mode == 0)
1296 return false;
1297
1298 /*
1299 * If this is a read-only mount, don't do this (would generate I/O)
1300 * unless we're in log recovery and cleaning the iunlinked list.
1301 */
1302 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1303 return false;
1304
1305 /* If the log isn't running, push inodes straight to reclaim. */
1306 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1307 return false;
1308
1309 /* Metadata inodes require explicit resource cleanup. */
1310 if (xfs_is_internal_inode(ip))
1311 return false;
1312
1313 /* Want to clean out the cow blocks if there are any. */
1314 if (cow_ifp && cow_ifp->if_bytes > 0)
1315 return true;
1316
1317 /* Unlinked files must be freed. */
1318 if (VFS_I(ip)->i_nlink == 0)
1319 return true;
1320
1321 /*
1322 * This file isn't being freed, so check if there are post-eof blocks
1323 * to free.
1324 *
1325 * Note: don't bother with iolock here since lockdep complains about
1326 * acquiring it in reclaim context. We have the only reference to the
1327 * inode at this point anyways.
1328 */
1329 return xfs_can_free_eofblocks(ip);
1330 }
1331
1332 /*
1333 * Save health status somewhere, if we're dumping an inode with uncorrected
1334 * errors and online repair isn't running.
1335 */
1336 static inline void
xfs_inactive_health(struct xfs_inode * ip)1337 xfs_inactive_health(
1338 struct xfs_inode *ip)
1339 {
1340 struct xfs_mount *mp = ip->i_mount;
1341 struct xfs_perag *pag;
1342 unsigned int sick;
1343 unsigned int checked;
1344
1345 xfs_inode_measure_sickness(ip, &sick, &checked);
1346 if (!sick)
1347 return;
1348
1349 trace_xfs_inode_unfixed_corruption(ip, sick);
1350
1351 if (sick & XFS_SICK_INO_FORGET)
1352 return;
1353
1354 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1355 if (!pag) {
1356 /* There had better still be a perag structure! */
1357 ASSERT(0);
1358 return;
1359 }
1360
1361 xfs_ag_mark_sick(pag, XFS_SICK_AG_INODES);
1362 xfs_perag_put(pag);
1363 }
1364
1365 /*
1366 * xfs_inactive
1367 *
1368 * This is called when the vnode reference count for the vnode
1369 * goes to zero. If the file has been unlinked, then it must
1370 * now be truncated. Also, we clear all of the read-ahead state
1371 * kept for the inode here since the file is now closed.
1372 */
1373 int
xfs_inactive(xfs_inode_t * ip)1374 xfs_inactive(
1375 xfs_inode_t *ip)
1376 {
1377 struct xfs_mount *mp;
1378 int error = 0;
1379 int truncate = 0;
1380
1381 /*
1382 * If the inode is already free, then there can be nothing
1383 * to clean up here.
1384 */
1385 if (VFS_I(ip)->i_mode == 0) {
1386 ASSERT(ip->i_df.if_broot_bytes == 0);
1387 goto out;
1388 }
1389
1390 mp = ip->i_mount;
1391 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1392
1393 xfs_inactive_health(ip);
1394
1395 /*
1396 * If this is a read-only mount, don't do this (would generate I/O)
1397 * unless we're in log recovery and cleaning the iunlinked list.
1398 */
1399 if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1400 goto out;
1401
1402 /* Metadata inodes require explicit resource cleanup. */
1403 if (xfs_is_internal_inode(ip))
1404 goto out;
1405
1406 /* Try to clean out the cow blocks if there are any. */
1407 if (xfs_inode_has_cow_data(ip)) {
1408 error = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1409 if (error)
1410 goto out;
1411 }
1412
1413 if (VFS_I(ip)->i_nlink != 0) {
1414 /*
1415 * Note: don't bother with iolock here since lockdep complains
1416 * about acquiring it in reclaim context. We have the only
1417 * reference to the inode at this point anyways.
1418 */
1419 if (xfs_can_free_eofblocks(ip))
1420 error = xfs_free_eofblocks(ip);
1421
1422 goto out;
1423 }
1424
1425 if (S_ISREG(VFS_I(ip)->i_mode) &&
1426 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1427 xfs_inode_has_filedata(ip)))
1428 truncate = 1;
1429
1430 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1431 /*
1432 * If this inode is being inactivated during a quotacheck and
1433 * has not yet been scanned by quotacheck, we /must/ remove
1434 * the dquots from the inode before inactivation changes the
1435 * block and inode counts. Most probably this is a result of
1436 * reloading the incore iunlinked list to purge unrecovered
1437 * unlinked inodes.
1438 */
1439 xfs_qm_dqdetach(ip);
1440 } else {
1441 error = xfs_qm_dqattach(ip);
1442 if (error)
1443 goto out;
1444 }
1445
1446 if (S_ISDIR(VFS_I(ip)->i_mode) && ip->i_df.if_nextents > 0) {
1447 xfs_inactive_dir(ip);
1448 truncate = 1;
1449 }
1450
1451 if (S_ISLNK(VFS_I(ip)->i_mode))
1452 error = xfs_inactive_symlink(ip);
1453 else if (truncate)
1454 error = xfs_inactive_truncate(ip);
1455 if (error)
1456 goto out;
1457
1458 /*
1459 * If there are attributes associated with the file then blow them away
1460 * now. The code calls a routine that recursively deconstructs the
1461 * attribute fork. If also blows away the in-core attribute fork.
1462 */
1463 if (xfs_inode_has_attr_fork(ip)) {
1464 error = xfs_attr_inactive(ip);
1465 if (error)
1466 goto out;
1467 }
1468
1469 ASSERT(ip->i_forkoff == 0);
1470
1471 /*
1472 * Free the inode.
1473 */
1474 error = xfs_inactive_ifree(ip);
1475
1476 out:
1477 /*
1478 * We're done making metadata updates for this inode, so we can release
1479 * the attached dquots.
1480 */
1481 xfs_qm_dqdetach(ip);
1482 return error;
1483 }
1484
1485 /*
1486 * Find an inode on the unlinked list. This does not take references to the
1487 * inode as we have existence guarantees by holding the AGI buffer lock and that
1488 * only unlinked, referenced inodes can be on the unlinked inode list. If we
1489 * don't find the inode in cache, then let the caller handle the situation.
1490 */
1491 struct xfs_inode *
xfs_iunlink_lookup(struct xfs_perag * pag,xfs_agino_t agino)1492 xfs_iunlink_lookup(
1493 struct xfs_perag *pag,
1494 xfs_agino_t agino)
1495 {
1496 struct xfs_inode *ip;
1497
1498 rcu_read_lock();
1499 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1500 if (!ip) {
1501 /* Caller can handle inode not being in memory. */
1502 rcu_read_unlock();
1503 return NULL;
1504 }
1505
1506 /*
1507 * Inode in RCU freeing limbo should not happen. Warn about this and
1508 * let the caller handle the failure.
1509 */
1510 if (WARN_ON_ONCE(!ip->i_ino)) {
1511 rcu_read_unlock();
1512 return NULL;
1513 }
1514 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1515 rcu_read_unlock();
1516 return ip;
1517 }
1518
1519 /*
1520 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1521 * to @prev_agino. Caller must hold the AGI to synchronize with other changes
1522 * to the unlinked list.
1523 */
1524 int
xfs_iunlink_reload_next(struct xfs_trans * tp,struct xfs_buf * agibp,xfs_agino_t prev_agino,xfs_agino_t next_agino)1525 xfs_iunlink_reload_next(
1526 struct xfs_trans *tp,
1527 struct xfs_buf *agibp,
1528 xfs_agino_t prev_agino,
1529 xfs_agino_t next_agino)
1530 {
1531 struct xfs_perag *pag = agibp->b_pag;
1532 struct xfs_mount *mp = pag_mount(pag);
1533 struct xfs_inode *next_ip = NULL;
1534 int error;
1535
1536 ASSERT(next_agino != NULLAGINO);
1537
1538 #ifdef DEBUG
1539 rcu_read_lock();
1540 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1541 ASSERT(next_ip == NULL);
1542 rcu_read_unlock();
1543 #endif
1544
1545 xfs_info_ratelimited(mp,
1546 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.",
1547 next_agino, pag_agno(pag));
1548
1549 /*
1550 * Use an untrusted lookup just to be cautious in case the AGI has been
1551 * corrupted and now points at a free inode. That shouldn't happen,
1552 * but we'd rather shut down now since we're already running in a weird
1553 * situation.
1554 */
1555 error = xfs_iget(mp, tp, xfs_agino_to_ino(pag, next_agino),
1556 XFS_IGET_UNTRUSTED, 0, &next_ip);
1557 if (error) {
1558 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1559 return error;
1560 }
1561
1562 /* If this is not an unlinked inode, something is very wrong. */
1563 if (VFS_I(next_ip)->i_nlink != 0) {
1564 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
1565 error = -EFSCORRUPTED;
1566 goto rele;
1567 }
1568
1569 next_ip->i_prev_unlinked = prev_agino;
1570 trace_xfs_iunlink_reload_next(next_ip);
1571 rele:
1572 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1573 if (xfs_is_quotacheck_running(mp) && next_ip)
1574 xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1575 xfs_irele(next_ip);
1576 return error;
1577 }
1578
1579 /*
1580 * Look up the inode number specified and if it is not already marked XFS_ISTALE
1581 * mark it stale. We should only find clean inodes in this lookup that aren't
1582 * already stale.
1583 */
1584 static void
xfs_ifree_mark_inode_stale(struct xfs_perag * pag,struct xfs_inode * free_ip,xfs_ino_t inum)1585 xfs_ifree_mark_inode_stale(
1586 struct xfs_perag *pag,
1587 struct xfs_inode *free_ip,
1588 xfs_ino_t inum)
1589 {
1590 struct xfs_mount *mp = pag_mount(pag);
1591 struct xfs_inode_log_item *iip;
1592 struct xfs_inode *ip;
1593
1594 retry:
1595 rcu_read_lock();
1596 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
1597
1598 /* Inode not in memory, nothing to do */
1599 if (!ip) {
1600 rcu_read_unlock();
1601 return;
1602 }
1603
1604 /*
1605 * because this is an RCU protected lookup, we could find a recently
1606 * freed or even reallocated inode during the lookup. We need to check
1607 * under the i_flags_lock for a valid inode here. Skip it if it is not
1608 * valid, the wrong inode or stale.
1609 */
1610 spin_lock(&ip->i_flags_lock);
1611 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
1612 goto out_iflags_unlock;
1613
1614 /*
1615 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
1616 * other inodes that we did not find in the list attached to the buffer
1617 * and are not already marked stale. If we can't lock it, back off and
1618 * retry.
1619 */
1620 if (ip != free_ip) {
1621 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1622 spin_unlock(&ip->i_flags_lock);
1623 rcu_read_unlock();
1624 delay(1);
1625 goto retry;
1626 }
1627 }
1628 ip->i_flags |= XFS_ISTALE;
1629
1630 /*
1631 * If the inode is flushing, it is already attached to the buffer. All
1632 * we needed to do here is mark the inode stale so buffer IO completion
1633 * will remove it from the AIL.
1634 */
1635 iip = ip->i_itemp;
1636 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
1637 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
1638 ASSERT(iip->ili_last_fields);
1639 goto out_iunlock;
1640 }
1641
1642 /*
1643 * Inodes not attached to the buffer can be released immediately.
1644 * Everything else has to go through xfs_iflush_abort() on journal
1645 * commit as the flock synchronises removal of the inode from the
1646 * cluster buffer against inode reclaim.
1647 */
1648 if (!iip || list_empty(&iip->ili_item.li_bio_list))
1649 goto out_iunlock;
1650
1651 __xfs_iflags_set(ip, XFS_IFLUSHING);
1652 spin_unlock(&ip->i_flags_lock);
1653 rcu_read_unlock();
1654
1655 /* we have a dirty inode in memory that has not yet been flushed. */
1656 spin_lock(&iip->ili_lock);
1657 iip->ili_last_fields = iip->ili_fields;
1658 iip->ili_fields = 0;
1659 iip->ili_fsync_fields = 0;
1660 spin_unlock(&iip->ili_lock);
1661 ASSERT(iip->ili_last_fields);
1662
1663 if (ip != free_ip)
1664 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1665 return;
1666
1667 out_iunlock:
1668 if (ip != free_ip)
1669 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1670 out_iflags_unlock:
1671 spin_unlock(&ip->i_flags_lock);
1672 rcu_read_unlock();
1673 }
1674
1675 /*
1676 * A big issue when freeing the inode cluster is that we _cannot_ skip any
1677 * inodes that are in memory - they all must be marked stale and attached to
1678 * the cluster buffer.
1679 */
1680 static int
xfs_ifree_cluster(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_inode * free_ip,struct xfs_icluster * xic)1681 xfs_ifree_cluster(
1682 struct xfs_trans *tp,
1683 struct xfs_perag *pag,
1684 struct xfs_inode *free_ip,
1685 struct xfs_icluster *xic)
1686 {
1687 struct xfs_mount *mp = free_ip->i_mount;
1688 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1689 struct xfs_buf *bp;
1690 xfs_daddr_t blkno;
1691 xfs_ino_t inum = xic->first_ino;
1692 int nbufs;
1693 int i, j;
1694 int ioffset;
1695 int error;
1696
1697 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1698
1699 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
1700 /*
1701 * The allocation bitmap tells us which inodes of the chunk were
1702 * physically allocated. Skip the cluster if an inode falls into
1703 * a sparse region.
1704 */
1705 ioffset = inum - xic->first_ino;
1706 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
1707 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
1708 continue;
1709 }
1710
1711 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1712 XFS_INO_TO_AGBNO(mp, inum));
1713
1714 /*
1715 * We obtain and lock the backing buffer first in the process
1716 * here to ensure dirty inodes attached to the buffer remain in
1717 * the flushing state while we mark them stale.
1718 *
1719 * If we scan the in-memory inodes first, then buffer IO can
1720 * complete before we get a lock on it, and hence we may fail
1721 * to mark all the active inodes on the buffer stale.
1722 */
1723 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1724 mp->m_bsize * igeo->blocks_per_cluster,
1725 XBF_UNMAPPED, &bp);
1726 if (error)
1727 return error;
1728
1729 /*
1730 * This buffer may not have been correctly initialised as we
1731 * didn't read it from disk. That's not important because we are
1732 * only using to mark the buffer as stale in the log, and to
1733 * attach stale cached inodes on it.
1734 *
1735 * For the inode that triggered the cluster freeing, this
1736 * attachment may occur in xfs_inode_item_precommit() after we
1737 * have marked this buffer stale. If this buffer was not in
1738 * memory before xfs_ifree_cluster() started, it will not be
1739 * marked XBF_DONE and this will cause problems later in
1740 * xfs_inode_item_precommit() when we trip over a (stale, !done)
1741 * buffer to attached to the transaction.
1742 *
1743 * Hence we have to mark the buffer as XFS_DONE here. This is
1744 * safe because we are also marking the buffer as XBF_STALE and
1745 * XFS_BLI_STALE. That means it will never be dispatched for
1746 * IO and it won't be unlocked until the cluster freeing has
1747 * been committed to the journal and the buffer unpinned. If it
1748 * is written, we want to know about it, and we want it to
1749 * fail. We can acheive this by adding a write verifier to the
1750 * buffer.
1751 */
1752 bp->b_flags |= XBF_DONE;
1753 bp->b_ops = &xfs_inode_buf_ops;
1754
1755 /*
1756 * Now we need to set all the cached clean inodes as XFS_ISTALE,
1757 * too. This requires lookups, and will skip inodes that we've
1758 * already marked XFS_ISTALE.
1759 */
1760 for (i = 0; i < igeo->inodes_per_cluster; i++)
1761 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1762
1763 xfs_trans_stale_inode_buf(tp, bp);
1764 xfs_trans_binval(tp, bp);
1765 }
1766 return 0;
1767 }
1768
1769 /*
1770 * This is called to return an inode to the inode free list. The inode should
1771 * already be truncated to 0 length and have no pages associated with it. This
1772 * routine also assumes that the inode is already a part of the transaction.
1773 *
1774 * The on-disk copy of the inode will have been added to the list of unlinked
1775 * inodes in the AGI. We need to remove the inode from that list atomically with
1776 * respect to freeing it here.
1777 */
1778 int
xfs_ifree(struct xfs_trans * tp,struct xfs_inode * ip)1779 xfs_ifree(
1780 struct xfs_trans *tp,
1781 struct xfs_inode *ip)
1782 {
1783 struct xfs_mount *mp = ip->i_mount;
1784 struct xfs_perag *pag;
1785 struct xfs_icluster xic = { 0 };
1786 struct xfs_inode_log_item *iip = ip->i_itemp;
1787 int error;
1788
1789 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1790 ASSERT(VFS_I(ip)->i_nlink == 0);
1791 ASSERT(ip->i_df.if_nextents == 0);
1792 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1793 ASSERT(ip->i_nblocks == 0);
1794
1795 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1796
1797 error = xfs_inode_uninit(tp, pag, ip, &xic);
1798 if (error)
1799 goto out;
1800
1801 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
1802 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
1803
1804 /* Don't attempt to replay owner changes for a deleted inode */
1805 spin_lock(&iip->ili_lock);
1806 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
1807 spin_unlock(&iip->ili_lock);
1808
1809 if (xic.deleted)
1810 error = xfs_ifree_cluster(tp, pag, ip, &xic);
1811 out:
1812 xfs_perag_put(pag);
1813 return error;
1814 }
1815
1816 /*
1817 * This is called to unpin an inode. The caller must have the inode locked
1818 * in at least shared mode so that the buffer cannot be subsequently pinned
1819 * once someone is waiting for it to be unpinned.
1820 */
1821 static void
xfs_iunpin(struct xfs_inode * ip)1822 xfs_iunpin(
1823 struct xfs_inode *ip)
1824 {
1825 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
1826
1827 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1828
1829 /* Give the log a push to start the unpinning I/O */
1830 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
1831
1832 }
1833
1834 static void
__xfs_iunpin_wait(struct xfs_inode * ip)1835 __xfs_iunpin_wait(
1836 struct xfs_inode *ip)
1837 {
1838 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1839 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1840
1841 xfs_iunpin(ip);
1842
1843 do {
1844 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1845 if (xfs_ipincount(ip))
1846 io_schedule();
1847 } while (xfs_ipincount(ip));
1848 finish_wait(wq, &wait.wq_entry);
1849 }
1850
1851 void
xfs_iunpin_wait(struct xfs_inode * ip)1852 xfs_iunpin_wait(
1853 struct xfs_inode *ip)
1854 {
1855 if (xfs_ipincount(ip))
1856 __xfs_iunpin_wait(ip);
1857 }
1858
1859 /*
1860 * Removing an inode from the namespace involves removing the directory entry
1861 * and dropping the link count on the inode. Removing the directory entry can
1862 * result in locking an AGF (directory blocks were freed) and removing a link
1863 * count can result in placing the inode on an unlinked list which results in
1864 * locking an AGI.
1865 *
1866 * The big problem here is that we have an ordering constraint on AGF and AGI
1867 * locking - inode allocation locks the AGI, then can allocate a new extent for
1868 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
1869 * removes the inode from the unlinked list, requiring that we lock the AGI
1870 * first, and then freeing the inode can result in an inode chunk being freed
1871 * and hence freeing disk space requiring that we lock an AGF.
1872 *
1873 * Hence the ordering that is imposed by other parts of the code is AGI before
1874 * AGF. This means we cannot remove the directory entry before we drop the inode
1875 * reference count and put it on the unlinked list as this results in a lock
1876 * order of AGF then AGI, and this can deadlock against inode allocation and
1877 * freeing. Therefore we must drop the link counts before we remove the
1878 * directory entry.
1879 *
1880 * This is still safe from a transactional point of view - it is not until we
1881 * get to xfs_defer_finish() that we have the possibility of multiple
1882 * transactions in this operation. Hence as long as we remove the directory
1883 * entry and drop the link count in the first transaction of the remove
1884 * operation, there are no transactional constraints on the ordering here.
1885 */
1886 int
xfs_remove(struct xfs_inode * dp,struct xfs_name * name,struct xfs_inode * ip)1887 xfs_remove(
1888 struct xfs_inode *dp,
1889 struct xfs_name *name,
1890 struct xfs_inode *ip)
1891 {
1892 struct xfs_dir_update du = {
1893 .dp = dp,
1894 .name = name,
1895 .ip = ip,
1896 };
1897 struct xfs_mount *mp = dp->i_mount;
1898 struct xfs_trans *tp = NULL;
1899 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
1900 int dontcare;
1901 int error = 0;
1902 uint resblks;
1903
1904 trace_xfs_remove(dp, name);
1905
1906 if (xfs_is_shutdown(mp))
1907 return -EIO;
1908 if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
1909 return -EIO;
1910
1911 error = xfs_qm_dqattach(dp);
1912 if (error)
1913 goto std_return;
1914
1915 error = xfs_qm_dqattach(ip);
1916 if (error)
1917 goto std_return;
1918
1919 error = xfs_parent_start(mp, &du.ppargs);
1920 if (error)
1921 goto std_return;
1922
1923 /*
1924 * We try to get the real space reservation first, allowing for
1925 * directory btree deletion(s) implying possible bmap insert(s). If we
1926 * can't get the space reservation then we use 0 instead, and avoid the
1927 * bmap btree insert(s) in the directory code by, if the bmap insert
1928 * tries to happen, instead trimming the LAST block from the directory.
1929 *
1930 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
1931 * the directory code can handle a reservationless update and we don't
1932 * want to prevent a user from trying to free space by deleting things.
1933 */
1934 resblks = xfs_remove_space_res(mp, name->len);
1935 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
1936 &tp, &dontcare);
1937 if (error) {
1938 ASSERT(error != -ENOSPC);
1939 goto out_parent;
1940 }
1941
1942 error = xfs_dir_remove_child(tp, resblks, &du);
1943 if (error)
1944 goto out_trans_cancel;
1945
1946 /*
1947 * If this is a synchronous mount, make sure that the
1948 * remove transaction goes to disk before returning to
1949 * the user.
1950 */
1951 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1952 xfs_trans_set_sync(tp);
1953
1954 error = xfs_trans_commit(tp);
1955 if (error)
1956 goto out_unlock;
1957
1958 if (is_dir && xfs_inode_is_filestream(ip))
1959 xfs_filestream_deassociate(ip);
1960
1961 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1962 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1963 xfs_parent_finish(mp, du.ppargs);
1964 return 0;
1965
1966 out_trans_cancel:
1967 xfs_trans_cancel(tp);
1968 out_unlock:
1969 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1970 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1971 out_parent:
1972 xfs_parent_finish(mp, du.ppargs);
1973 std_return:
1974 return error;
1975 }
1976
1977 static inline void
xfs_iunlock_rename(struct xfs_inode ** i_tab,int num_inodes)1978 xfs_iunlock_rename(
1979 struct xfs_inode **i_tab,
1980 int num_inodes)
1981 {
1982 int i;
1983
1984 for (i = num_inodes - 1; i >= 0; i--) {
1985 /* Skip duplicate inodes if src and target dps are the same */
1986 if (!i_tab[i] || (i > 0 && i_tab[i] == i_tab[i - 1]))
1987 continue;
1988 xfs_iunlock(i_tab[i], XFS_ILOCK_EXCL);
1989 }
1990 }
1991
1992 /*
1993 * Enter all inodes for a rename transaction into a sorted array.
1994 */
1995 #define __XFS_SORT_INODES 5
1996 STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)1997 xfs_sort_for_rename(
1998 struct xfs_inode *dp1, /* in: old (source) directory inode */
1999 struct xfs_inode *dp2, /* in: new (target) directory inode */
2000 struct xfs_inode *ip1, /* in: inode of old entry */
2001 struct xfs_inode *ip2, /* in: inode of new entry */
2002 struct xfs_inode *wip, /* in: whiteout inode */
2003 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2004 int *num_inodes) /* in/out: inodes in array */
2005 {
2006 int i;
2007
2008 ASSERT(*num_inodes == __XFS_SORT_INODES);
2009 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2010
2011 /*
2012 * i_tab contains a list of pointers to inodes. We initialize
2013 * the table here & we'll sort it. We will then use it to
2014 * order the acquisition of the inode locks.
2015 *
2016 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2017 */
2018 i = 0;
2019 i_tab[i++] = dp1;
2020 i_tab[i++] = dp2;
2021 i_tab[i++] = ip1;
2022 if (ip2)
2023 i_tab[i++] = ip2;
2024 if (wip)
2025 i_tab[i++] = wip;
2026 *num_inodes = i;
2027
2028 xfs_sort_inodes(i_tab, *num_inodes);
2029 }
2030
2031 void
xfs_sort_inodes(struct xfs_inode ** i_tab,unsigned int num_inodes)2032 xfs_sort_inodes(
2033 struct xfs_inode **i_tab,
2034 unsigned int num_inodes)
2035 {
2036 int i, j;
2037
2038 ASSERT(num_inodes <= __XFS_SORT_INODES);
2039
2040 /*
2041 * Sort the elements via bubble sort. (Remember, there are at
2042 * most 5 elements to sort, so this is adequate.)
2043 */
2044 for (i = 0; i < num_inodes; i++) {
2045 for (j = 1; j < num_inodes; j++) {
2046 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino)
2047 swap(i_tab[j], i_tab[j - 1]);
2048 }
2049 }
2050 }
2051
2052 /*
2053 * xfs_rename_alloc_whiteout()
2054 *
2055 * Return a referenced, unlinked, unlocked inode that can be used as a
2056 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2057 * crash between allocating the inode and linking it into the rename transaction
2058 * recovery will free the inode and we won't leak it.
2059 */
2060 static int
xfs_rename_alloc_whiteout(struct mnt_idmap * idmap,struct xfs_name * src_name,struct xfs_inode * dp,struct xfs_inode ** wip)2061 xfs_rename_alloc_whiteout(
2062 struct mnt_idmap *idmap,
2063 struct xfs_name *src_name,
2064 struct xfs_inode *dp,
2065 struct xfs_inode **wip)
2066 {
2067 struct xfs_icreate_args args = {
2068 .idmap = idmap,
2069 .pip = dp,
2070 .mode = S_IFCHR | WHITEOUT_MODE,
2071 .flags = XFS_ICREATE_TMPFILE,
2072 };
2073 struct xfs_inode *tmpfile;
2074 struct qstr name;
2075 int error;
2076
2077 error = xfs_create_tmpfile(&args, &tmpfile);
2078 if (error)
2079 return error;
2080
2081 name.name = src_name->name;
2082 name.len = src_name->len;
2083 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2084 if (error) {
2085 xfs_finish_inode_setup(tmpfile);
2086 xfs_irele(tmpfile);
2087 return error;
2088 }
2089
2090 /*
2091 * Prepare the tmpfile inode as if it were created through the VFS.
2092 * Complete the inode setup and flag it as linkable. nlink is already
2093 * zero, so we can skip the drop_nlink.
2094 */
2095 xfs_setup_iops(tmpfile);
2096 xfs_finish_inode_setup(tmpfile);
2097 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2098
2099 *wip = tmpfile;
2100 return 0;
2101 }
2102
2103 /*
2104 * xfs_rename
2105 */
2106 int
xfs_rename(struct mnt_idmap * idmap,struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)2107 xfs_rename(
2108 struct mnt_idmap *idmap,
2109 struct xfs_inode *src_dp,
2110 struct xfs_name *src_name,
2111 struct xfs_inode *src_ip,
2112 struct xfs_inode *target_dp,
2113 struct xfs_name *target_name,
2114 struct xfs_inode *target_ip,
2115 unsigned int flags)
2116 {
2117 struct xfs_dir_update du_src = {
2118 .dp = src_dp,
2119 .name = src_name,
2120 .ip = src_ip,
2121 };
2122 struct xfs_dir_update du_tgt = {
2123 .dp = target_dp,
2124 .name = target_name,
2125 .ip = target_ip,
2126 };
2127 struct xfs_dir_update du_wip = { };
2128 struct xfs_mount *mp = src_dp->i_mount;
2129 struct xfs_trans *tp;
2130 struct xfs_inode *inodes[__XFS_SORT_INODES];
2131 int i;
2132 int num_inodes = __XFS_SORT_INODES;
2133 bool new_parent = (src_dp != target_dp);
2134 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2135 int spaceres;
2136 bool retried = false;
2137 int error, nospace_error = 0;
2138
2139 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2140
2141 if ((flags & RENAME_EXCHANGE) && !target_ip)
2142 return -EINVAL;
2143
2144 /*
2145 * If we are doing a whiteout operation, allocate the whiteout inode
2146 * we will be placing at the target and ensure the type is set
2147 * appropriately.
2148 */
2149 if (flags & RENAME_WHITEOUT) {
2150 error = xfs_rename_alloc_whiteout(idmap, src_name, target_dp,
2151 &du_wip.ip);
2152 if (error)
2153 return error;
2154
2155 /* setup target dirent info as whiteout */
2156 src_name->type = XFS_DIR3_FT_CHRDEV;
2157 }
2158
2159 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, du_wip.ip,
2160 inodes, &num_inodes);
2161
2162 error = xfs_parent_start(mp, &du_src.ppargs);
2163 if (error)
2164 goto out_release_wip;
2165
2166 if (du_wip.ip) {
2167 error = xfs_parent_start(mp, &du_wip.ppargs);
2168 if (error)
2169 goto out_src_ppargs;
2170 }
2171
2172 if (target_ip) {
2173 error = xfs_parent_start(mp, &du_tgt.ppargs);
2174 if (error)
2175 goto out_wip_ppargs;
2176 }
2177
2178 retry:
2179 nospace_error = 0;
2180 spaceres = xfs_rename_space_res(mp, src_name->len, target_ip != NULL,
2181 target_name->len, du_wip.ip != NULL);
2182 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2183 if (error == -ENOSPC) {
2184 nospace_error = error;
2185 spaceres = 0;
2186 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2187 &tp);
2188 }
2189 if (error)
2190 goto out_tgt_ppargs;
2191
2192 /*
2193 * We don't allow reservationless renaming when parent pointers are
2194 * enabled because we can't back out if the xattrs must grow.
2195 */
2196 if (du_src.ppargs && nospace_error) {
2197 error = nospace_error;
2198 xfs_trans_cancel(tp);
2199 goto out_tgt_ppargs;
2200 }
2201
2202 /*
2203 * Attach the dquots to the inodes
2204 */
2205 error = xfs_qm_vop_rename_dqattach(inodes);
2206 if (error) {
2207 xfs_trans_cancel(tp);
2208 goto out_tgt_ppargs;
2209 }
2210
2211 /*
2212 * Lock all the participating inodes. Depending upon whether
2213 * the target_name exists in the target directory, and
2214 * whether the target directory is the same as the source
2215 * directory, we can lock from 2 to 5 inodes.
2216 */
2217 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2218
2219 /*
2220 * Join all the inodes to the transaction.
2221 */
2222 xfs_trans_ijoin(tp, src_dp, 0);
2223 if (new_parent)
2224 xfs_trans_ijoin(tp, target_dp, 0);
2225 xfs_trans_ijoin(tp, src_ip, 0);
2226 if (target_ip)
2227 xfs_trans_ijoin(tp, target_ip, 0);
2228 if (du_wip.ip)
2229 xfs_trans_ijoin(tp, du_wip.ip, 0);
2230
2231 /*
2232 * If we are using project inheritance, we only allow renames
2233 * into our tree when the project IDs are the same; else the
2234 * tree quota mechanism would be circumvented.
2235 */
2236 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2237 target_dp->i_projid != src_ip->i_projid)) {
2238 error = -EXDEV;
2239 goto out_trans_cancel;
2240 }
2241
2242 /* RENAME_EXCHANGE is unique from here on. */
2243 if (flags & RENAME_EXCHANGE) {
2244 error = xfs_dir_exchange_children(tp, &du_src, &du_tgt,
2245 spaceres);
2246 if (error)
2247 goto out_trans_cancel;
2248 goto out_commit;
2249 }
2250
2251 /*
2252 * Try to reserve quota to handle an expansion of the target directory.
2253 * We'll allow the rename to continue in reservationless mode if we hit
2254 * a space usage constraint. If we trigger reservationless mode, save
2255 * the errno if there isn't any free space in the target directory.
2256 */
2257 if (spaceres != 0) {
2258 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2259 0, false);
2260 if (error == -EDQUOT || error == -ENOSPC) {
2261 if (!retried) {
2262 xfs_trans_cancel(tp);
2263 xfs_iunlock_rename(inodes, num_inodes);
2264 xfs_blockgc_free_quota(target_dp, 0);
2265 retried = true;
2266 goto retry;
2267 }
2268
2269 nospace_error = error;
2270 spaceres = 0;
2271 error = 0;
2272 }
2273 if (error)
2274 goto out_trans_cancel;
2275 }
2276
2277 /*
2278 * We don't allow quotaless renaming when parent pointers are enabled
2279 * because we can't back out if the xattrs must grow.
2280 */
2281 if (du_src.ppargs && nospace_error) {
2282 error = nospace_error;
2283 goto out_trans_cancel;
2284 }
2285
2286 /*
2287 * Lock the AGI buffers we need to handle bumping the nlink of the
2288 * whiteout inode off the unlinked list and to handle dropping the
2289 * nlink of the target inode. Per locking order rules, do this in
2290 * increasing AG order and before directory block allocation tries to
2291 * grab AGFs because we grab AGIs before AGFs.
2292 *
2293 * The (vfs) caller must ensure that if src is a directory then
2294 * target_ip is either null or an empty directory.
2295 */
2296 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2297 if (inodes[i] == du_wip.ip ||
2298 (inodes[i] == target_ip &&
2299 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2300 struct xfs_perag *pag;
2301 struct xfs_buf *bp;
2302
2303 pag = xfs_perag_get(mp,
2304 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2305 error = xfs_read_agi(pag, tp, 0, &bp);
2306 xfs_perag_put(pag);
2307 if (error)
2308 goto out_trans_cancel;
2309 }
2310 }
2311
2312 error = xfs_dir_rename_children(tp, &du_src, &du_tgt, spaceres,
2313 &du_wip);
2314 if (error)
2315 goto out_trans_cancel;
2316
2317 if (du_wip.ip) {
2318 /*
2319 * Now we have a real link, clear the "I'm a tmpfile" state
2320 * flag from the inode so it doesn't accidentally get misused in
2321 * future.
2322 */
2323 VFS_I(du_wip.ip)->i_state &= ~I_LINKABLE;
2324 }
2325
2326 out_commit:
2327 /*
2328 * If this is a synchronous mount, make sure that the rename
2329 * transaction goes to disk before returning to the user.
2330 */
2331 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2332 xfs_trans_set_sync(tp);
2333
2334 error = xfs_trans_commit(tp);
2335 nospace_error = 0;
2336 goto out_unlock;
2337
2338 out_trans_cancel:
2339 xfs_trans_cancel(tp);
2340 out_unlock:
2341 xfs_iunlock_rename(inodes, num_inodes);
2342 out_tgt_ppargs:
2343 xfs_parent_finish(mp, du_tgt.ppargs);
2344 out_wip_ppargs:
2345 xfs_parent_finish(mp, du_wip.ppargs);
2346 out_src_ppargs:
2347 xfs_parent_finish(mp, du_src.ppargs);
2348 out_release_wip:
2349 if (du_wip.ip)
2350 xfs_irele(du_wip.ip);
2351 if (error == -ENOSPC && nospace_error)
2352 error = nospace_error;
2353 return error;
2354 }
2355
2356 static int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf * bp)2357 xfs_iflush(
2358 struct xfs_inode *ip,
2359 struct xfs_buf *bp)
2360 {
2361 struct xfs_inode_log_item *iip = ip->i_itemp;
2362 struct xfs_dinode *dip;
2363 struct xfs_mount *mp = ip->i_mount;
2364 int error;
2365
2366 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED);
2367 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
2368 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
2369 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2370 ASSERT(iip->ili_item.li_buf == bp);
2371
2372 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
2373
2374 /*
2375 * We don't flush the inode if any of the following checks fail, but we
2376 * do still update the log item and attach to the backing buffer as if
2377 * the flush happened. This is a formality to facilitate predictable
2378 * error handling as the caller will shutdown and fail the buffer.
2379 */
2380 error = -EFSCORRUPTED;
2381 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2382 mp, XFS_ERRTAG_IFLUSH_1)) {
2383 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2384 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
2385 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2386 goto flush_out;
2387 }
2388 if (ip->i_df.if_format == XFS_DINODE_FMT_META_BTREE) {
2389 if (!S_ISREG(VFS_I(ip)->i_mode) ||
2390 !(ip->i_diflags2 & XFS_DIFLAG2_METADATA)) {
2391 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2392 "%s: Bad %s meta btree inode %Lu, ptr "PTR_FMT,
2393 __func__, xfs_metafile_type_str(ip->i_metatype),
2394 ip->i_ino, ip);
2395 goto flush_out;
2396 }
2397 } else if (S_ISREG(VFS_I(ip)->i_mode)) {
2398 if (XFS_TEST_ERROR(
2399 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2400 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
2401 mp, XFS_ERRTAG_IFLUSH_3)) {
2402 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2403 "%s: Bad regular inode %llu, ptr "PTR_FMT,
2404 __func__, ip->i_ino, ip);
2405 goto flush_out;
2406 }
2407 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
2408 if (XFS_TEST_ERROR(
2409 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
2410 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
2411 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
2412 mp, XFS_ERRTAG_IFLUSH_4)) {
2413 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2414 "%s: Bad directory inode %llu, ptr "PTR_FMT,
2415 __func__, ip->i_ino, ip);
2416 goto flush_out;
2417 }
2418 }
2419 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
2420 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
2421 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2422 "%s: detected corrupt incore inode %llu, "
2423 "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
2424 __func__, ip->i_ino,
2425 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
2426 ip->i_nblocks, ip);
2427 goto flush_out;
2428 }
2429 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
2430 mp, XFS_ERRTAG_IFLUSH_6)) {
2431 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2432 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
2433 __func__, ip->i_ino, ip->i_forkoff, ip);
2434 goto flush_out;
2435 }
2436
2437 if (xfs_inode_has_attr_fork(ip) &&
2438 ip->i_af.if_format == XFS_DINODE_FMT_META_BTREE) {
2439 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2440 "%s: meta btree in inode %Lu attr fork, ptr "PTR_FMT,
2441 __func__, ip->i_ino, ip);
2442 goto flush_out;
2443 }
2444
2445 /*
2446 * Inode item log recovery for v2 inodes are dependent on the flushiter
2447 * count for correct sequencing. We bump the flush iteration count so
2448 * we can detect flushes which postdate a log record during recovery.
2449 * This is redundant as we now log every change and hence this can't
2450 * happen but we need to still do it to ensure backwards compatibility
2451 * with old kernels that predate logging all inode changes.
2452 */
2453 if (!xfs_has_v3inodes(mp))
2454 ip->i_flushiter++;
2455
2456 /*
2457 * If there are inline format data / attr forks attached to this inode,
2458 * make sure they are not corrupt.
2459 */
2460 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
2461 xfs_ifork_verify_local_data(ip))
2462 goto flush_out;
2463 if (xfs_inode_has_attr_fork(ip) &&
2464 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
2465 xfs_ifork_verify_local_attr(ip))
2466 goto flush_out;
2467
2468 /*
2469 * Copy the dirty parts of the inode into the on-disk inode. We always
2470 * copy out the core of the inode, because if the inode is dirty at all
2471 * the core must be.
2472 */
2473 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
2474
2475 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2476 if (!xfs_has_v3inodes(mp)) {
2477 if (ip->i_flushiter == DI_MAX_FLUSH)
2478 ip->i_flushiter = 0;
2479 }
2480
2481 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
2482 if (xfs_inode_has_attr_fork(ip))
2483 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
2484
2485 /*
2486 * We've recorded everything logged in the inode, so we'd like to clear
2487 * the ili_fields bits so we don't log and flush things unnecessarily.
2488 * However, we can't stop logging all this information until the data
2489 * we've copied into the disk buffer is written to disk. If we did we
2490 * might overwrite the copy of the inode in the log with all the data
2491 * after re-logging only part of it, and in the face of a crash we
2492 * wouldn't have all the data we need to recover.
2493 *
2494 * What we do is move the bits to the ili_last_fields field. When
2495 * logging the inode, these bits are moved back to the ili_fields field.
2496 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
2497 * we know that the information those bits represent is permanently on
2498 * disk. As long as the flush completes before the inode is logged
2499 * again, then both ili_fields and ili_last_fields will be cleared.
2500 */
2501 error = 0;
2502 flush_out:
2503 spin_lock(&iip->ili_lock);
2504 iip->ili_last_fields = iip->ili_fields;
2505 iip->ili_fields = 0;
2506 iip->ili_fsync_fields = 0;
2507 set_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
2508 spin_unlock(&iip->ili_lock);
2509
2510 /*
2511 * Store the current LSN of the inode so that we can tell whether the
2512 * item has moved in the AIL from xfs_buf_inode_iodone().
2513 */
2514 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2515 &iip->ili_item.li_lsn);
2516
2517 /* generate the checksum. */
2518 xfs_dinode_calc_crc(mp, dip);
2519 if (error)
2520 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
2521 return error;
2522 }
2523
2524 /*
2525 * Non-blocking flush of dirty inode metadata into the backing buffer.
2526 *
2527 * The caller must have a reference to the inode and hold the cluster buffer
2528 * locked. The function will walk across all the inodes on the cluster buffer it
2529 * can find and lock without blocking, and flush them to the cluster buffer.
2530 *
2531 * On successful flushing of at least one inode, the caller must write out the
2532 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
2533 * the caller needs to release the buffer. On failure, the filesystem will be
2534 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
2535 * will be returned.
2536 */
2537 int
xfs_iflush_cluster(struct xfs_buf * bp)2538 xfs_iflush_cluster(
2539 struct xfs_buf *bp)
2540 {
2541 struct xfs_mount *mp = bp->b_mount;
2542 struct xfs_log_item *lip, *n;
2543 struct xfs_inode *ip;
2544 struct xfs_inode_log_item *iip;
2545 int clcount = 0;
2546 int error = 0;
2547
2548 /*
2549 * We must use the safe variant here as on shutdown xfs_iflush_abort()
2550 * will remove itself from the list.
2551 */
2552 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
2553 iip = (struct xfs_inode_log_item *)lip;
2554 ip = iip->ili_inode;
2555
2556 /*
2557 * Quick and dirty check to avoid locks if possible.
2558 */
2559 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
2560 continue;
2561 if (xfs_ipincount(ip))
2562 continue;
2563
2564 /*
2565 * The inode is still attached to the buffer, which means it is
2566 * dirty but reclaim might try to grab it. Check carefully for
2567 * that, and grab the ilock while still holding the i_flags_lock
2568 * to guarantee reclaim will not be able to reclaim this inode
2569 * once we drop the i_flags_lock.
2570 */
2571 spin_lock(&ip->i_flags_lock);
2572 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
2573 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
2574 spin_unlock(&ip->i_flags_lock);
2575 continue;
2576 }
2577
2578 /*
2579 * ILOCK will pin the inode against reclaim and prevent
2580 * concurrent transactions modifying the inode while we are
2581 * flushing the inode. If we get the lock, set the flushing
2582 * state before we drop the i_flags_lock.
2583 */
2584 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
2585 spin_unlock(&ip->i_flags_lock);
2586 continue;
2587 }
2588 __xfs_iflags_set(ip, XFS_IFLUSHING);
2589 spin_unlock(&ip->i_flags_lock);
2590
2591 /*
2592 * Abort flushing this inode if we are shut down because the
2593 * inode may not currently be in the AIL. This can occur when
2594 * log I/O failure unpins the inode without inserting into the
2595 * AIL, leaving a dirty/unpinned inode attached to the buffer
2596 * that otherwise looks like it should be flushed.
2597 */
2598 if (xlog_is_shutdown(mp->m_log)) {
2599 xfs_iunpin_wait(ip);
2600 xfs_iflush_abort(ip);
2601 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2602 error = -EIO;
2603 continue;
2604 }
2605
2606 /* don't block waiting on a log force to unpin dirty inodes */
2607 if (xfs_ipincount(ip)) {
2608 xfs_iflags_clear(ip, XFS_IFLUSHING);
2609 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2610 continue;
2611 }
2612
2613 if (!xfs_inode_clean(ip))
2614 error = xfs_iflush(ip, bp);
2615 else
2616 xfs_iflags_clear(ip, XFS_IFLUSHING);
2617 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2618 if (error)
2619 break;
2620 clcount++;
2621 }
2622
2623 if (error) {
2624 /*
2625 * Shutdown first so we kill the log before we release this
2626 * buffer. If it is an INODE_ALLOC buffer and pins the tail
2627 * of the log, failing it before the _log_ is shut down can
2628 * result in the log tail being moved forward in the journal
2629 * on disk because log writes can still be taking place. Hence
2630 * unpinning the tail will allow the ICREATE intent to be
2631 * removed from the log an recovery will fail with uninitialised
2632 * inode cluster buffers.
2633 */
2634 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2635 bp->b_flags |= XBF_ASYNC;
2636 xfs_buf_ioend_fail(bp);
2637 return error;
2638 }
2639
2640 if (!clcount)
2641 return -EAGAIN;
2642
2643 XFS_STATS_INC(mp, xs_icluster_flushcnt);
2644 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
2645 return 0;
2646
2647 }
2648
2649 /* Release an inode. */
2650 void
xfs_irele(struct xfs_inode * ip)2651 xfs_irele(
2652 struct xfs_inode *ip)
2653 {
2654 trace_xfs_irele(ip, _RET_IP_);
2655 iput(VFS_I(ip));
2656 }
2657
2658 /*
2659 * Ensure all commited transactions touching the inode are written to the log.
2660 */
2661 int
xfs_log_force_inode(struct xfs_inode * ip)2662 xfs_log_force_inode(
2663 struct xfs_inode *ip)
2664 {
2665 xfs_csn_t seq = 0;
2666
2667 xfs_ilock(ip, XFS_ILOCK_SHARED);
2668 if (xfs_ipincount(ip))
2669 seq = ip->i_itemp->ili_commit_seq;
2670 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2671
2672 if (!seq)
2673 return 0;
2674 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
2675 }
2676
2677 /*
2678 * Grab the exclusive iolock for a data copy from src to dest, making sure to
2679 * abide vfs locking order (lowest pointer value goes first) and breaking the
2680 * layout leases before proceeding. The loop is needed because we cannot call
2681 * the blocking break_layout() with the iolocks held, and therefore have to
2682 * back out both locks.
2683 */
2684 static int
xfs_iolock_two_inodes_and_break_layout(struct inode * src,struct inode * dest)2685 xfs_iolock_two_inodes_and_break_layout(
2686 struct inode *src,
2687 struct inode *dest)
2688 {
2689 int error;
2690
2691 if (src > dest)
2692 swap(src, dest);
2693
2694 retry:
2695 /* Wait to break both inodes' layouts before we start locking. */
2696 error = break_layout(src, true);
2697 if (error)
2698 return error;
2699 if (src != dest) {
2700 error = break_layout(dest, true);
2701 if (error)
2702 return error;
2703 }
2704
2705 /* Lock one inode and make sure nobody got in and leased it. */
2706 inode_lock(src);
2707 error = break_layout(src, false);
2708 if (error) {
2709 inode_unlock(src);
2710 if (error == -EWOULDBLOCK)
2711 goto retry;
2712 return error;
2713 }
2714
2715 if (src == dest)
2716 return 0;
2717
2718 /* Lock the other inode and make sure nobody got in and leased it. */
2719 inode_lock_nested(dest, I_MUTEX_NONDIR2);
2720 error = break_layout(dest, false);
2721 if (error) {
2722 inode_unlock(src);
2723 inode_unlock(dest);
2724 if (error == -EWOULDBLOCK)
2725 goto retry;
2726 return error;
2727 }
2728
2729 return 0;
2730 }
2731
2732 static int
xfs_mmaplock_two_inodes_and_break_dax_layout(struct xfs_inode * ip1,struct xfs_inode * ip2)2733 xfs_mmaplock_two_inodes_and_break_dax_layout(
2734 struct xfs_inode *ip1,
2735 struct xfs_inode *ip2)
2736 {
2737 int error;
2738 bool retry;
2739 struct page *page;
2740
2741 if (ip1->i_ino > ip2->i_ino)
2742 swap(ip1, ip2);
2743
2744 again:
2745 retry = false;
2746 /* Lock the first inode */
2747 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
2748 error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
2749 if (error || retry) {
2750 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2751 if (error == 0 && retry)
2752 goto again;
2753 return error;
2754 }
2755
2756 if (ip1 == ip2)
2757 return 0;
2758
2759 /* Nested lock the second inode */
2760 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
2761 /*
2762 * We cannot use xfs_break_dax_layouts() directly here because it may
2763 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
2764 * for this nested lock case.
2765 */
2766 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
2767 if (page && page_ref_count(page) != 1) {
2768 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2769 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2770 goto again;
2771 }
2772
2773 return 0;
2774 }
2775
2776 /*
2777 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
2778 * mmap activity.
2779 */
2780 int
xfs_ilock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)2781 xfs_ilock2_io_mmap(
2782 struct xfs_inode *ip1,
2783 struct xfs_inode *ip2)
2784 {
2785 int ret;
2786
2787 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
2788 if (ret)
2789 return ret;
2790
2791 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2792 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
2793 if (ret) {
2794 inode_unlock(VFS_I(ip2));
2795 if (ip1 != ip2)
2796 inode_unlock(VFS_I(ip1));
2797 return ret;
2798 }
2799 } else
2800 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
2801 VFS_I(ip2)->i_mapping);
2802
2803 return 0;
2804 }
2805
2806 /* Unlock both inodes to allow IO and mmap activity. */
2807 void
xfs_iunlock2_io_mmap(struct xfs_inode * ip1,struct xfs_inode * ip2)2808 xfs_iunlock2_io_mmap(
2809 struct xfs_inode *ip1,
2810 struct xfs_inode *ip2)
2811 {
2812 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
2813 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2814 if (ip1 != ip2)
2815 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
2816 } else
2817 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
2818 VFS_I(ip2)->i_mapping);
2819
2820 inode_unlock(VFS_I(ip2));
2821 if (ip1 != ip2)
2822 inode_unlock(VFS_I(ip1));
2823 }
2824
2825 /* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
2826 void
xfs_iunlock2_remapping(struct xfs_inode * ip1,struct xfs_inode * ip2)2827 xfs_iunlock2_remapping(
2828 struct xfs_inode *ip1,
2829 struct xfs_inode *ip2)
2830 {
2831 xfs_iflags_clear(ip1, XFS_IREMAPPING);
2832
2833 if (ip1 != ip2)
2834 xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
2835 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
2836
2837 if (ip1 != ip2)
2838 inode_unlock_shared(VFS_I(ip1));
2839 inode_unlock(VFS_I(ip2));
2840 }
2841
2842 /*
2843 * Reload the incore inode list for this inode. Caller should ensure that
2844 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
2845 * preventing other threads from executing.
2846 */
2847 int
xfs_inode_reload_unlinked_bucket(struct xfs_trans * tp,struct xfs_inode * ip)2848 xfs_inode_reload_unlinked_bucket(
2849 struct xfs_trans *tp,
2850 struct xfs_inode *ip)
2851 {
2852 struct xfs_mount *mp = tp->t_mountp;
2853 struct xfs_buf *agibp;
2854 struct xfs_agi *agi;
2855 struct xfs_perag *pag;
2856 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2857 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2858 xfs_agino_t prev_agino, next_agino;
2859 unsigned int bucket;
2860 bool foundit = false;
2861 int error;
2862
2863 /* Grab the first inode in the list */
2864 pag = xfs_perag_get(mp, agno);
2865 error = xfs_ialloc_read_agi(pag, tp, 0, &agibp);
2866 xfs_perag_put(pag);
2867 if (error)
2868 return error;
2869
2870 /*
2871 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
2872 * incore unlinked list pointers for this inode. Check once more to
2873 * see if we raced with anyone else to reload the unlinked list.
2874 */
2875 if (!xfs_inode_unlinked_incomplete(ip)) {
2876 foundit = true;
2877 goto out_agibp;
2878 }
2879
2880 bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
2881 agi = agibp->b_addr;
2882
2883 trace_xfs_inode_reload_unlinked_bucket(ip);
2884
2885 xfs_info_ratelimited(mp,
2886 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.",
2887 agino, agno);
2888
2889 prev_agino = NULLAGINO;
2890 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2891 while (next_agino != NULLAGINO) {
2892 struct xfs_inode *next_ip = NULL;
2893
2894 /* Found this caller's inode, set its backlink. */
2895 if (next_agino == agino) {
2896 next_ip = ip;
2897 next_ip->i_prev_unlinked = prev_agino;
2898 foundit = true;
2899 goto next_inode;
2900 }
2901
2902 /* Try in-memory lookup first. */
2903 next_ip = xfs_iunlink_lookup(pag, next_agino);
2904 if (next_ip)
2905 goto next_inode;
2906
2907 /* Inode not in memory, try reloading it. */
2908 error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
2909 next_agino);
2910 if (error)
2911 break;
2912
2913 /* Grab the reloaded inode. */
2914 next_ip = xfs_iunlink_lookup(pag, next_agino);
2915 if (!next_ip) {
2916 /* No incore inode at all? We reloaded it... */
2917 ASSERT(next_ip != NULL);
2918 error = -EFSCORRUPTED;
2919 break;
2920 }
2921
2922 next_inode:
2923 prev_agino = next_agino;
2924 next_agino = next_ip->i_next_unlinked;
2925 }
2926
2927 out_agibp:
2928 xfs_trans_brelse(tp, agibp);
2929 /* Should have found this inode somewhere in the iunlinked bucket. */
2930 if (!error && !foundit)
2931 error = -EFSCORRUPTED;
2932 return error;
2933 }
2934
2935 /* Decide if this inode is missing its unlinked list and reload it. */
2936 int
xfs_inode_reload_unlinked(struct xfs_inode * ip)2937 xfs_inode_reload_unlinked(
2938 struct xfs_inode *ip)
2939 {
2940 struct xfs_trans *tp;
2941 int error;
2942
2943 error = xfs_trans_alloc_empty(ip->i_mount, &tp);
2944 if (error)
2945 return error;
2946
2947 xfs_ilock(ip, XFS_ILOCK_SHARED);
2948 if (xfs_inode_unlinked_incomplete(ip))
2949 error = xfs_inode_reload_unlinked_bucket(tp, ip);
2950 xfs_iunlock(ip, XFS_ILOCK_SHARED);
2951 xfs_trans_cancel(tp);
2952
2953 return error;
2954 }
2955
2956 /* Has this inode fork been zapped by repair? */
2957 bool
xfs_ifork_zapped(const struct xfs_inode * ip,int whichfork)2958 xfs_ifork_zapped(
2959 const struct xfs_inode *ip,
2960 int whichfork)
2961 {
2962 unsigned int datamask = 0;
2963
2964 switch (whichfork) {
2965 case XFS_DATA_FORK:
2966 switch (ip->i_vnode.i_mode & S_IFMT) {
2967 case S_IFDIR:
2968 datamask = XFS_SICK_INO_DIR_ZAPPED;
2969 break;
2970 case S_IFLNK:
2971 datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
2972 break;
2973 }
2974 return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
2975 case XFS_ATTR_FORK:
2976 return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
2977 default:
2978 return false;
2979 }
2980 }
2981
2982 /* Compute the number of data and realtime blocks used by a file. */
2983 void
xfs_inode_count_blocks(struct xfs_trans * tp,struct xfs_inode * ip,xfs_filblks_t * dblocks,xfs_filblks_t * rblocks)2984 xfs_inode_count_blocks(
2985 struct xfs_trans *tp,
2986 struct xfs_inode *ip,
2987 xfs_filblks_t *dblocks,
2988 xfs_filblks_t *rblocks)
2989 {
2990 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
2991
2992 *rblocks = 0;
2993 if (XFS_IS_REALTIME_INODE(ip))
2994 xfs_bmap_count_leaves(ifp, rblocks);
2995 *dblocks = ip->i_nblocks - *rblocks;
2996 }
2997
2998 static void
xfs_wait_dax_page(struct inode * inode)2999 xfs_wait_dax_page(
3000 struct inode *inode)
3001 {
3002 struct xfs_inode *ip = XFS_I(inode);
3003
3004 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
3005 schedule();
3006 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
3007 }
3008
3009 int
xfs_break_dax_layouts(struct inode * inode,bool * retry)3010 xfs_break_dax_layouts(
3011 struct inode *inode,
3012 bool *retry)
3013 {
3014 struct page *page;
3015
3016 xfs_assert_ilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL);
3017
3018 page = dax_layout_busy_page(inode->i_mapping);
3019 if (!page)
3020 return 0;
3021
3022 *retry = true;
3023 return ___wait_var_event(&page->_refcount,
3024 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
3025 0, 0, xfs_wait_dax_page(inode));
3026 }
3027
3028 int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)3029 xfs_break_layouts(
3030 struct inode *inode,
3031 uint *iolock,
3032 enum layout_break_reason reason)
3033 {
3034 bool retry;
3035 int error;
3036
3037 xfs_assert_ilocked(XFS_I(inode), XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL);
3038
3039 do {
3040 retry = false;
3041 switch (reason) {
3042 case BREAK_UNMAP:
3043 error = xfs_break_dax_layouts(inode, &retry);
3044 if (error || retry)
3045 break;
3046 fallthrough;
3047 case BREAK_WRITE:
3048 error = xfs_break_leased_layouts(inode, iolock, &retry);
3049 break;
3050 default:
3051 WARN_ON_ONCE(1);
3052 error = -EINVAL;
3053 }
3054 } while (error == 0 && retry);
3055
3056 return error;
3057 }
3058
3059 /* Returns the size of fundamental allocation unit for a file, in bytes. */
3060 unsigned int
xfs_inode_alloc_unitsize(struct xfs_inode * ip)3061 xfs_inode_alloc_unitsize(
3062 struct xfs_inode *ip)
3063 {
3064 unsigned int blocks = 1;
3065
3066 if (XFS_IS_REALTIME_INODE(ip))
3067 blocks = ip->i_mount->m_sb.sb_rextsize;
3068
3069 return XFS_FSB_TO_B(ip->i_mount, blocks);
3070 }
3071
3072 /* Should we always be using copy on write for file writes? */
3073 bool
xfs_is_always_cow_inode(const struct xfs_inode * ip)3074 xfs_is_always_cow_inode(
3075 const struct xfs_inode *ip)
3076 {
3077 return ip->i_mount->m_always_cow && xfs_has_reflink(ip->i_mount);
3078 }
3079