1 //! Provides the [GeneralPurpose] engine and associated config types.
2 use crate::{
3     alphabet,
4     alphabet::Alphabet,
5     engine::{Config, DecodeMetadata, DecodePaddingMode},
6     DecodeSliceError,
7 };
8 use core::convert::TryInto;
9 
10 pub(crate) mod decode;
11 pub(crate) mod decode_suffix;
12 
13 pub use decode::GeneralPurposeEstimate;
14 
15 pub(crate) const INVALID_VALUE: u8 = 255;
16 
17 /// A general-purpose base64 engine.
18 ///
19 /// - It uses no vector CPU instructions, so it will work on any system.
20 /// - It is reasonably fast (~2-3GiB/s).
21 /// - It is not constant-time, though, so it is vulnerable to timing side-channel attacks. For loading cryptographic keys, etc, it is suggested to use the forthcoming constant-time implementation.
22 
23 #[derive(Debug, Clone)]
24 pub struct GeneralPurpose {
25     encode_table: [u8; 64],
26     decode_table: [u8; 256],
27     config: GeneralPurposeConfig,
28 }
29 
30 impl GeneralPurpose {
31     /// Create a `GeneralPurpose` engine from an [Alphabet].
32     ///
33     /// While not very expensive to initialize, ideally these should be cached
34     /// if the engine will be used repeatedly.
new(alphabet: &Alphabet, config: GeneralPurposeConfig) -> Self35     pub const fn new(alphabet: &Alphabet, config: GeneralPurposeConfig) -> Self {
36         Self {
37             encode_table: encode_table(alphabet),
38             decode_table: decode_table(alphabet),
39             config,
40         }
41     }
42 }
43 
44 impl super::Engine for GeneralPurpose {
45     type Config = GeneralPurposeConfig;
46     type DecodeEstimate = GeneralPurposeEstimate;
47 
internal_encode(&self, input: &[u8], output: &mut [u8]) -> usize48     fn internal_encode(&self, input: &[u8], output: &mut [u8]) -> usize {
49         let mut input_index: usize = 0;
50 
51         const BLOCKS_PER_FAST_LOOP: usize = 4;
52         const LOW_SIX_BITS: u64 = 0x3F;
53 
54         // we read 8 bytes at a time (u64) but only actually consume 6 of those bytes. Thus, we need
55         // 2 trailing bytes to be available to read..
56         let last_fast_index = input.len().saturating_sub(BLOCKS_PER_FAST_LOOP * 6 + 2);
57         let mut output_index = 0;
58 
59         if last_fast_index > 0 {
60             while input_index <= last_fast_index {
61                 // Major performance wins from letting the optimizer do the bounds check once, mostly
62                 // on the output side
63                 let input_chunk =
64                     &input[input_index..(input_index + (BLOCKS_PER_FAST_LOOP * 6 + 2))];
65                 let output_chunk =
66                     &mut output[output_index..(output_index + BLOCKS_PER_FAST_LOOP * 8)];
67 
68                 // Hand-unrolling for 32 vs 16 or 8 bytes produces yields performance about equivalent
69                 // to unsafe pointer code on a Xeon E5-1650v3. 64 byte unrolling was slightly better for
70                 // large inputs but significantly worse for 50-byte input, unsurprisingly. I suspect
71                 // that it's a not uncommon use case to encode smallish chunks of data (e.g. a 64-byte
72                 // SHA-512 digest), so it would be nice if that fit in the unrolled loop at least once.
73                 // Plus, single-digit percentage performance differences might well be quite different
74                 // on different hardware.
75 
76                 let input_u64 = read_u64(&input_chunk[0..]);
77 
78                 output_chunk[0] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
79                 output_chunk[1] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
80                 output_chunk[2] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
81                 output_chunk[3] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
82                 output_chunk[4] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
83                 output_chunk[5] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
84                 output_chunk[6] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
85                 output_chunk[7] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
86 
87                 let input_u64 = read_u64(&input_chunk[6..]);
88 
89                 output_chunk[8] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
90                 output_chunk[9] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
91                 output_chunk[10] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
92                 output_chunk[11] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
93                 output_chunk[12] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
94                 output_chunk[13] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
95                 output_chunk[14] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
96                 output_chunk[15] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
97 
98                 let input_u64 = read_u64(&input_chunk[12..]);
99 
100                 output_chunk[16] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
101                 output_chunk[17] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
102                 output_chunk[18] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
103                 output_chunk[19] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
104                 output_chunk[20] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
105                 output_chunk[21] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
106                 output_chunk[22] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
107                 output_chunk[23] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
108 
109                 let input_u64 = read_u64(&input_chunk[18..]);
110 
111                 output_chunk[24] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
112                 output_chunk[25] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
113                 output_chunk[26] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
114                 output_chunk[27] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
115                 output_chunk[28] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
116                 output_chunk[29] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
117                 output_chunk[30] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
118                 output_chunk[31] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
119 
120                 output_index += BLOCKS_PER_FAST_LOOP * 8;
121                 input_index += BLOCKS_PER_FAST_LOOP * 6;
122             }
123         }
124 
125         // Encode what's left after the fast loop.
126 
127         const LOW_SIX_BITS_U8: u8 = 0x3F;
128 
129         let rem = input.len() % 3;
130         let start_of_rem = input.len() - rem;
131 
132         // start at the first index not handled by fast loop, which may be 0.
133 
134         while input_index < start_of_rem {
135             let input_chunk = &input[input_index..(input_index + 3)];
136             let output_chunk = &mut output[output_index..(output_index + 4)];
137 
138             output_chunk[0] = self.encode_table[(input_chunk[0] >> 2) as usize];
139             output_chunk[1] = self.encode_table
140                 [((input_chunk[0] << 4 | input_chunk[1] >> 4) & LOW_SIX_BITS_U8) as usize];
141             output_chunk[2] = self.encode_table
142                 [((input_chunk[1] << 2 | input_chunk[2] >> 6) & LOW_SIX_BITS_U8) as usize];
143             output_chunk[3] = self.encode_table[(input_chunk[2] & LOW_SIX_BITS_U8) as usize];
144 
145             input_index += 3;
146             output_index += 4;
147         }
148 
149         if rem == 2 {
150             output[output_index] = self.encode_table[(input[start_of_rem] >> 2) as usize];
151             output[output_index + 1] =
152                 self.encode_table[((input[start_of_rem] << 4 | input[start_of_rem + 1] >> 4)
153                     & LOW_SIX_BITS_U8) as usize];
154             output[output_index + 2] =
155                 self.encode_table[((input[start_of_rem + 1] << 2) & LOW_SIX_BITS_U8) as usize];
156             output_index += 3;
157         } else if rem == 1 {
158             output[output_index] = self.encode_table[(input[start_of_rem] >> 2) as usize];
159             output[output_index + 1] =
160                 self.encode_table[((input[start_of_rem] << 4) & LOW_SIX_BITS_U8) as usize];
161             output_index += 2;
162         }
163 
164         output_index
165     }
166 
internal_decoded_len_estimate(&self, input_len: usize) -> Self::DecodeEstimate167     fn internal_decoded_len_estimate(&self, input_len: usize) -> Self::DecodeEstimate {
168         GeneralPurposeEstimate::new(input_len)
169     }
170 
internal_decode( &self, input: &[u8], output: &mut [u8], estimate: Self::DecodeEstimate, ) -> Result<DecodeMetadata, DecodeSliceError>171     fn internal_decode(
172         &self,
173         input: &[u8],
174         output: &mut [u8],
175         estimate: Self::DecodeEstimate,
176     ) -> Result<DecodeMetadata, DecodeSliceError> {
177         decode::decode_helper(
178             input,
179             estimate,
180             output,
181             &self.decode_table,
182             self.config.decode_allow_trailing_bits,
183             self.config.decode_padding_mode,
184         )
185     }
186 
config(&self) -> &Self::Config187     fn config(&self) -> &Self::Config {
188         &self.config
189     }
190 }
191 
192 /// Returns a table mapping a 6-bit index to the ASCII byte encoding of the index
encode_table(alphabet: &Alphabet) -> [u8; 64]193 pub(crate) const fn encode_table(alphabet: &Alphabet) -> [u8; 64] {
194     // the encode table is just the alphabet:
195     // 6-bit index lookup -> printable byte
196     let mut encode_table = [0_u8; 64];
197     {
198         let mut index = 0;
199         while index < 64 {
200             encode_table[index] = alphabet.symbols[index];
201             index += 1;
202         }
203     }
204 
205     encode_table
206 }
207 
208 /// Returns a table mapping base64 bytes as the lookup index to either:
209 /// - [INVALID_VALUE] for bytes that aren't members of the alphabet
210 /// - a byte whose lower 6 bits are the value that was encoded into the index byte
decode_table(alphabet: &Alphabet) -> [u8; 256]211 pub(crate) const fn decode_table(alphabet: &Alphabet) -> [u8; 256] {
212     let mut decode_table = [INVALID_VALUE; 256];
213 
214     // Since the table is full of `INVALID_VALUE` already, we only need to overwrite
215     // the parts that are valid.
216     let mut index = 0;
217     while index < 64 {
218         // The index in the alphabet is the 6-bit value we care about.
219         // Since the index is in 0-63, it is safe to cast to u8.
220         decode_table[alphabet.symbols[index] as usize] = index as u8;
221         index += 1;
222     }
223 
224     decode_table
225 }
226 
227 #[inline]
read_u64(s: &[u8]) -> u64228 fn read_u64(s: &[u8]) -> u64 {
229     u64::from_be_bytes(s[..8].try_into().unwrap())
230 }
231 
232 /// Contains configuration parameters for base64 encoding and decoding.
233 ///
234 /// ```
235 /// # use base64::engine::GeneralPurposeConfig;
236 /// let config = GeneralPurposeConfig::new()
237 ///     .with_encode_padding(false);
238 ///     // further customize using `.with_*` methods as needed
239 /// ```
240 ///
241 /// The constants [PAD] and [NO_PAD] cover most use cases.
242 ///
243 /// To specify the characters used, see [Alphabet].
244 #[derive(Clone, Copy, Debug)]
245 pub struct GeneralPurposeConfig {
246     encode_padding: bool,
247     decode_allow_trailing_bits: bool,
248     decode_padding_mode: DecodePaddingMode,
249 }
250 
251 impl GeneralPurposeConfig {
252     /// Create a new config with `padding` = `true`, `decode_allow_trailing_bits` = `false`, and
253     /// `decode_padding_mode = DecodePaddingMode::RequireCanonicalPadding`.
254     ///
255     /// This probably matches most people's expectations, but consider disabling padding to save
256     /// a few bytes unless you specifically need it for compatibility with some legacy system.
new() -> Self257     pub const fn new() -> Self {
258         Self {
259             // RFC states that padding must be applied by default
260             encode_padding: true,
261             decode_allow_trailing_bits: false,
262             decode_padding_mode: DecodePaddingMode::RequireCanonical,
263         }
264     }
265 
266     /// Create a new config based on `self` with an updated `padding` setting.
267     ///
268     /// If `padding` is `true`, encoding will append either 1 or 2 `=` padding characters as needed
269     /// to produce an output whose length is a multiple of 4.
270     ///
271     /// Padding is not needed for correct decoding and only serves to waste bytes, but it's in the
272     /// [spec](https://datatracker.ietf.org/doc/html/rfc4648#section-3.2).
273     ///
274     /// For new applications, consider not using padding if the decoders you're using don't require
275     /// padding to be present.
with_encode_padding(self, padding: bool) -> Self276     pub const fn with_encode_padding(self, padding: bool) -> Self {
277         Self {
278             encode_padding: padding,
279             ..self
280         }
281     }
282 
283     /// Create a new config based on `self` with an updated `decode_allow_trailing_bits` setting.
284     ///
285     /// Most users will not need to configure this. It's useful if you need to decode base64
286     /// produced by a buggy encoder that has bits set in the unused space on the last base64
287     /// character as per [forgiving-base64 decode](https://infra.spec.whatwg.org/#forgiving-base64-decode).
288     /// If invalid trailing bits are present and this is `true`, those bits will
289     /// be silently ignored, else `DecodeError::InvalidLastSymbol` will be emitted.
with_decode_allow_trailing_bits(self, allow: bool) -> Self290     pub const fn with_decode_allow_trailing_bits(self, allow: bool) -> Self {
291         Self {
292             decode_allow_trailing_bits: allow,
293             ..self
294         }
295     }
296 
297     /// Create a new config based on `self` with an updated `decode_padding_mode` setting.
298     ///
299     /// Padding is not useful in terms of representing encoded data -- it makes no difference to
300     /// the decoder if padding is present or not, so if you have some un-padded input to decode, it
301     /// is perfectly fine to use `DecodePaddingMode::Indifferent` to prevent errors from being
302     /// emitted.
303     ///
304     /// However, since in practice
305     /// [people who learned nothing from BER vs DER seem to expect base64 to have one canonical encoding](https://eprint.iacr.org/2022/361),
306     /// the default setting is the stricter `DecodePaddingMode::RequireCanonicalPadding`.
307     ///
308     /// Or, if "canonical" in your circumstance means _no_ padding rather than padding to the
309     /// next multiple of four, there's `DecodePaddingMode::RequireNoPadding`.
with_decode_padding_mode(self, mode: DecodePaddingMode) -> Self310     pub const fn with_decode_padding_mode(self, mode: DecodePaddingMode) -> Self {
311         Self {
312             decode_padding_mode: mode,
313             ..self
314         }
315     }
316 }
317 
318 impl Default for GeneralPurposeConfig {
319     /// Delegates to [GeneralPurposeConfig::new].
default() -> Self320     fn default() -> Self {
321         Self::new()
322     }
323 }
324 
325 impl Config for GeneralPurposeConfig {
encode_padding(&self) -> bool326     fn encode_padding(&self) -> bool {
327         self.encode_padding
328     }
329 }
330 
331 /// A [GeneralPurpose] engine using the [alphabet::STANDARD] base64 alphabet and [PAD] config.
332 pub const STANDARD: GeneralPurpose = GeneralPurpose::new(&alphabet::STANDARD, PAD);
333 
334 /// A [GeneralPurpose] engine using the [alphabet::STANDARD] base64 alphabet and [NO_PAD] config.
335 pub const STANDARD_NO_PAD: GeneralPurpose = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
336 
337 /// A [GeneralPurpose] engine using the [alphabet::URL_SAFE] base64 alphabet and [PAD] config.
338 pub const URL_SAFE: GeneralPurpose = GeneralPurpose::new(&alphabet::URL_SAFE, PAD);
339 
340 /// A [GeneralPurpose] engine using the [alphabet::URL_SAFE] base64 alphabet and [NO_PAD] config.
341 pub const URL_SAFE_NO_PAD: GeneralPurpose = GeneralPurpose::new(&alphabet::URL_SAFE, NO_PAD);
342 
343 /// Include padding bytes when encoding, and require that they be present when decoding.
344 ///
345 /// This is the standard per the base64 RFC, but consider using [NO_PAD] instead as padding serves
346 /// little purpose in practice.
347 pub const PAD: GeneralPurposeConfig = GeneralPurposeConfig::new();
348 
349 /// Don't add padding when encoding, and require no padding when decoding.
350 pub const NO_PAD: GeneralPurposeConfig = GeneralPurposeConfig::new()
351     .with_encode_padding(false)
352     .with_decode_padding_mode(DecodePaddingMode::RequireNone);
353