1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114
115 #include <trace/events/sched.h>
116
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119
120 #include <kunit/visibility.h>
121
122 /*
123 * Minimum number of threads to boot the kernel
124 */
125 #define MIN_THREADS 20
126
127 /*
128 * Maximum number of threads
129 */
130 #define MAX_THREADS FUTEX_TID_MASK
131
132 /*
133 * Protected counters by write_lock_irq(&tasklist_lock)
134 */
135 unsigned long total_forks; /* Handle normal Linux uptimes. */
136 int nr_threads; /* The idle threads do not count.. */
137
138 static int max_threads; /* tunable limit on nr_threads */
139
140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
141
142 static const char * const resident_page_types[] = {
143 NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
152
153 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)154 int lockdep_tasklist_lock_is_held(void)
155 {
156 return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160
nr_processes(void)161 int nr_processes(void)
162 {
163 int cpu;
164 int total = 0;
165
166 for_each_possible_cpu(cpu)
167 total += per_cpu(process_counts, cpu);
168
169 return total;
170 }
171
arch_release_task_struct(struct task_struct * tsk)172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175
176 static struct kmem_cache *task_struct_cachep;
177
alloc_task_struct_node(int node)178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182
free_task_struct(struct task_struct * tsk)183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185 kmem_cache_free(task_struct_cachep, tsk);
186 }
187
188 /*
189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190 * kmemcache based allocator.
191 */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193
194 # ifdef CONFIG_VMAP_STACK
195 /*
196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197 * flush. Try to minimize the number of calls by caching stacks.
198 */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201
202 struct vm_stack {
203 struct rcu_head rcu;
204 struct vm_struct *stack_vm_area;
205 };
206
try_release_thread_stack_to_cache(struct vm_struct * vm)207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209 unsigned int i;
210
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *tmp = NULL;
213
214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215 return true;
216 }
217 return false;
218 }
219
thread_stack_free_rcu(struct rcu_head * rh)220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223
224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 return;
226
227 vfree(vm_stack);
228 }
229
thread_stack_delayed_free(struct task_struct * tsk)230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232 struct vm_stack *vm_stack = tsk->stack;
233
234 vm_stack->stack_vm_area = tsk->stack_vm_area;
235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237
free_vm_stack_cache(unsigned int cpu)238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 int i;
242
243 for (i = 0; i < NR_CACHED_STACKS; i++) {
244 struct vm_struct *vm_stack = cached_vm_stacks[i];
245
246 if (!vm_stack)
247 continue;
248
249 vfree(vm_stack->addr);
250 cached_vm_stacks[i] = NULL;
251 }
252
253 return 0;
254 }
255
memcg_charge_kernel_stack(struct vm_struct * vm)256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258 int i;
259 int ret;
260 int nr_charged = 0;
261
262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263
264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 if (ret)
267 goto err;
268 nr_charged++;
269 }
270 return 0;
271 err:
272 for (i = 0; i < nr_charged; i++)
273 memcg_kmem_uncharge_page(vm->pages[i], 0);
274 return ret;
275 }
276
alloc_thread_stack_node(struct task_struct * tsk,int node)277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279 struct vm_struct *vm;
280 void *stack;
281 int i;
282
283 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 struct vm_struct *s;
285
286 s = this_cpu_xchg(cached_stacks[i], NULL);
287
288 if (!s)
289 continue;
290
291 /* Reset stack metadata. */
292 kasan_unpoison_range(s->addr, THREAD_SIZE);
293
294 stack = kasan_reset_tag(s->addr);
295
296 /* Clear stale pointers from reused stack. */
297 memset(stack, 0, THREAD_SIZE);
298
299 if (memcg_charge_kernel_stack(s)) {
300 vfree(s->addr);
301 return -ENOMEM;
302 }
303
304 tsk->stack_vm_area = s;
305 tsk->stack = stack;
306 return 0;
307 }
308
309 /*
310 * Allocated stacks are cached and later reused by new threads,
311 * so memcg accounting is performed manually on assigning/releasing
312 * stacks to tasks. Drop __GFP_ACCOUNT.
313 */
314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315 VMALLOC_START, VMALLOC_END,
316 THREADINFO_GFP & ~__GFP_ACCOUNT,
317 PAGE_KERNEL,
318 0, node, __builtin_return_address(0));
319 if (!stack)
320 return -ENOMEM;
321
322 vm = find_vm_area(stack);
323 if (memcg_charge_kernel_stack(vm)) {
324 vfree(stack);
325 return -ENOMEM;
326 }
327 /*
328 * We can't call find_vm_area() in interrupt context, and
329 * free_thread_stack() can be called in interrupt context,
330 * so cache the vm_struct.
331 */
332 tsk->stack_vm_area = vm;
333 stack = kasan_reset_tag(stack);
334 tsk->stack = stack;
335 return 0;
336 }
337
free_thread_stack(struct task_struct * tsk)338 static void free_thread_stack(struct task_struct *tsk)
339 {
340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341 thread_stack_delayed_free(tsk);
342
343 tsk->stack = NULL;
344 tsk->stack_vm_area = NULL;
345 }
346
347 # else /* !CONFIG_VMAP_STACK */
348
thread_stack_free_rcu(struct rcu_head * rh)349 static void thread_stack_free_rcu(struct rcu_head *rh)
350 {
351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 }
353
thread_stack_delayed_free(struct task_struct * tsk)354 static void thread_stack_delayed_free(struct task_struct *tsk)
355 {
356 struct rcu_head *rh = tsk->stack;
357
358 call_rcu(rh, thread_stack_free_rcu);
359 }
360
alloc_thread_stack_node(struct task_struct * tsk,int node)361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 {
363 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364 THREAD_SIZE_ORDER);
365
366 if (likely(page)) {
367 tsk->stack = kasan_reset_tag(page_address(page));
368 return 0;
369 }
370 return -ENOMEM;
371 }
372
free_thread_stack(struct task_struct * tsk)373 static void free_thread_stack(struct task_struct *tsk)
374 {
375 thread_stack_delayed_free(tsk);
376 tsk->stack = NULL;
377 }
378
379 # endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381
382 static struct kmem_cache *thread_stack_cache;
383
thread_stack_free_rcu(struct rcu_head * rh)384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 kmem_cache_free(thread_stack_cache, rh);
387 }
388
thread_stack_delayed_free(struct task_struct * tsk)389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 struct rcu_head *rh = tsk->stack;
392
393 call_rcu(rh, thread_stack_free_rcu);
394 }
395
alloc_thread_stack_node(struct task_struct * tsk,int node)396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 unsigned long *stack;
399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 stack = kasan_reset_tag(stack);
401 tsk->stack = stack;
402 return stack ? 0 : -ENOMEM;
403 }
404
free_thread_stack(struct task_struct * tsk)405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 thread_stack_delayed_free(tsk);
408 tsk->stack = NULL;
409 }
410
thread_stack_cache_init(void)411 void thread_stack_cache_init(void)
412 {
413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 THREAD_SIZE, THREAD_SIZE, 0, 0,
415 THREAD_SIZE, NULL);
416 BUG_ON(thread_stack_cache == NULL);
417 }
418
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
423
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
426
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
429
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
432
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
435
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
438
439 #ifdef CONFIG_PER_VMA_LOCK
440
441 /* SLAB cache for vm_area_struct.lock */
442 static struct kmem_cache *vma_lock_cachep;
443
vma_lock_alloc(struct vm_area_struct * vma)444 static bool vma_lock_alloc(struct vm_area_struct *vma)
445 {
446 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
447 if (!vma->vm_lock)
448 return false;
449
450 init_rwsem(&vma->vm_lock->lock);
451 vma->vm_lock_seq = UINT_MAX;
452
453 return true;
454 }
455
vma_lock_free(struct vm_area_struct * vma)456 static inline void vma_lock_free(struct vm_area_struct *vma)
457 {
458 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
459 }
460
461 #else /* CONFIG_PER_VMA_LOCK */
462
vma_lock_alloc(struct vm_area_struct * vma)463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)464 static inline void vma_lock_free(struct vm_area_struct *vma) {}
465
466 #endif /* CONFIG_PER_VMA_LOCK */
467
vm_area_alloc(struct mm_struct * mm)468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
469 {
470 struct vm_area_struct *vma;
471
472 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
473 if (!vma)
474 return NULL;
475
476 vma_init(vma, mm);
477 if (!vma_lock_alloc(vma)) {
478 kmem_cache_free(vm_area_cachep, vma);
479 return NULL;
480 }
481
482 return vma;
483 }
484
vm_area_dup(struct vm_area_struct * orig)485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
486 {
487 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
488
489 if (!new)
490 return NULL;
491
492 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
493 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
494 /*
495 * orig->shared.rb may be modified concurrently, but the clone
496 * will be reinitialized.
497 */
498 data_race(memcpy(new, orig, sizeof(*new)));
499 if (!vma_lock_alloc(new)) {
500 kmem_cache_free(vm_area_cachep, new);
501 return NULL;
502 }
503 INIT_LIST_HEAD(&new->anon_vma_chain);
504 vma_numab_state_init(new);
505 dup_anon_vma_name(orig, new);
506
507 /* track_pfn_copy() will later take care of copying internal state. */
508 if (unlikely(new->vm_flags & VM_PFNMAP))
509 untrack_pfn_clear(new);
510
511 return new;
512 }
513
__vm_area_free(struct vm_area_struct * vma)514 void __vm_area_free(struct vm_area_struct *vma)
515 {
516 vma_numab_state_free(vma);
517 free_anon_vma_name(vma);
518 vma_lock_free(vma);
519 kmem_cache_free(vm_area_cachep, vma);
520 }
521
522 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)523 static void vm_area_free_rcu_cb(struct rcu_head *head)
524 {
525 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
526 vm_rcu);
527
528 /* The vma should not be locked while being destroyed. */
529 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
530 __vm_area_free(vma);
531 }
532 #endif
533
vm_area_free(struct vm_area_struct * vma)534 void vm_area_free(struct vm_area_struct *vma)
535 {
536 #ifdef CONFIG_PER_VMA_LOCK
537 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
538 #else
539 __vm_area_free(vma);
540 #endif
541 }
542
account_kernel_stack(struct task_struct * tsk,int account)543 static void account_kernel_stack(struct task_struct *tsk, int account)
544 {
545 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
546 struct vm_struct *vm = task_stack_vm_area(tsk);
547 int i;
548
549 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
550 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
551 account * (PAGE_SIZE / 1024));
552 } else {
553 void *stack = task_stack_page(tsk);
554
555 /* All stack pages are in the same node. */
556 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
557 account * (THREAD_SIZE / 1024));
558 }
559 }
560
exit_task_stack_account(struct task_struct * tsk)561 void exit_task_stack_account(struct task_struct *tsk)
562 {
563 account_kernel_stack(tsk, -1);
564
565 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
566 struct vm_struct *vm;
567 int i;
568
569 vm = task_stack_vm_area(tsk);
570 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
571 memcg_kmem_uncharge_page(vm->pages[i], 0);
572 }
573 }
574
release_task_stack(struct task_struct * tsk)575 static void release_task_stack(struct task_struct *tsk)
576 {
577 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
578 return; /* Better to leak the stack than to free prematurely */
579
580 free_thread_stack(tsk);
581 }
582
583 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)584 void put_task_stack(struct task_struct *tsk)
585 {
586 if (refcount_dec_and_test(&tsk->stack_refcount))
587 release_task_stack(tsk);
588 }
589 #endif
590
free_task(struct task_struct * tsk)591 void free_task(struct task_struct *tsk)
592 {
593 #ifdef CONFIG_SECCOMP
594 WARN_ON_ONCE(tsk->seccomp.filter);
595 #endif
596 release_user_cpus_ptr(tsk);
597 scs_release(tsk);
598
599 #ifndef CONFIG_THREAD_INFO_IN_TASK
600 /*
601 * The task is finally done with both the stack and thread_info,
602 * so free both.
603 */
604 release_task_stack(tsk);
605 #else
606 /*
607 * If the task had a separate stack allocation, it should be gone
608 * by now.
609 */
610 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
611 #endif
612 rt_mutex_debug_task_free(tsk);
613 ftrace_graph_exit_task(tsk);
614 arch_release_task_struct(tsk);
615 if (tsk->flags & PF_KTHREAD)
616 free_kthread_struct(tsk);
617 bpf_task_storage_free(tsk);
618 free_task_struct(tsk);
619 }
620 EXPORT_SYMBOL(free_task);
621
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)622 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
623 {
624 struct file *exe_file;
625
626 exe_file = get_mm_exe_file(oldmm);
627 RCU_INIT_POINTER(mm->exe_file, exe_file);
628 /*
629 * We depend on the oldmm having properly denied write access to the
630 * exe_file already.
631 */
632 if (exe_file && exe_file_deny_write_access(exe_file))
633 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
634 }
635
636 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)637 static __latent_entropy int dup_mmap(struct mm_struct *mm,
638 struct mm_struct *oldmm)
639 {
640 struct vm_area_struct *mpnt, *tmp;
641 int retval;
642 unsigned long charge = 0;
643 LIST_HEAD(uf);
644 VMA_ITERATOR(vmi, mm, 0);
645
646 if (mmap_write_lock_killable(oldmm))
647 return -EINTR;
648 flush_cache_dup_mm(oldmm);
649 uprobe_dup_mmap(oldmm, mm);
650 /*
651 * Not linked in yet - no deadlock potential:
652 */
653 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
654
655 /* No ordering required: file already has been exposed. */
656 dup_mm_exe_file(mm, oldmm);
657
658 mm->total_vm = oldmm->total_vm;
659 mm->data_vm = oldmm->data_vm;
660 mm->exec_vm = oldmm->exec_vm;
661 mm->stack_vm = oldmm->stack_vm;
662
663 /* Use __mt_dup() to efficiently build an identical maple tree. */
664 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
665 if (unlikely(retval))
666 goto out;
667
668 mt_clear_in_rcu(vmi.mas.tree);
669 for_each_vma(vmi, mpnt) {
670 struct file *file;
671
672 vma_start_write(mpnt);
673 if (mpnt->vm_flags & VM_DONTCOPY) {
674 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
675 mpnt->vm_end, GFP_KERNEL);
676 if (retval)
677 goto loop_out;
678
679 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
680 continue;
681 }
682 charge = 0;
683 /*
684 * Don't duplicate many vmas if we've been oom-killed (for
685 * example)
686 */
687 if (fatal_signal_pending(current)) {
688 retval = -EINTR;
689 goto loop_out;
690 }
691 if (mpnt->vm_flags & VM_ACCOUNT) {
692 unsigned long len = vma_pages(mpnt);
693
694 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
695 goto fail_nomem;
696 charge = len;
697 }
698 tmp = vm_area_dup(mpnt);
699 if (!tmp)
700 goto fail_nomem;
701 retval = vma_dup_policy(mpnt, tmp);
702 if (retval)
703 goto fail_nomem_policy;
704 tmp->vm_mm = mm;
705 retval = dup_userfaultfd(tmp, &uf);
706 if (retval)
707 goto fail_nomem_anon_vma_fork;
708 if (tmp->vm_flags & VM_WIPEONFORK) {
709 /*
710 * VM_WIPEONFORK gets a clean slate in the child.
711 * Don't prepare anon_vma until fault since we don't
712 * copy page for current vma.
713 */
714 tmp->anon_vma = NULL;
715 } else if (anon_vma_fork(tmp, mpnt))
716 goto fail_nomem_anon_vma_fork;
717 vm_flags_clear(tmp, VM_LOCKED_MASK);
718 /*
719 * Copy/update hugetlb private vma information.
720 */
721 if (is_vm_hugetlb_page(tmp))
722 hugetlb_dup_vma_private(tmp);
723
724 /*
725 * Link the vma into the MT. After using __mt_dup(), memory
726 * allocation is not necessary here, so it cannot fail.
727 */
728 vma_iter_bulk_store(&vmi, tmp);
729
730 mm->map_count++;
731
732 if (tmp->vm_ops && tmp->vm_ops->open)
733 tmp->vm_ops->open(tmp);
734
735 file = tmp->vm_file;
736 if (file) {
737 struct address_space *mapping = file->f_mapping;
738
739 get_file(file);
740 i_mmap_lock_write(mapping);
741 if (vma_is_shared_maywrite(tmp))
742 mapping_allow_writable(mapping);
743 flush_dcache_mmap_lock(mapping);
744 /* insert tmp into the share list, just after mpnt */
745 vma_interval_tree_insert_after(tmp, mpnt,
746 &mapping->i_mmap);
747 flush_dcache_mmap_unlock(mapping);
748 i_mmap_unlock_write(mapping);
749 }
750
751 if (!(tmp->vm_flags & VM_WIPEONFORK))
752 retval = copy_page_range(tmp, mpnt);
753
754 if (retval) {
755 mpnt = vma_next(&vmi);
756 goto loop_out;
757 }
758 }
759 /* a new mm has just been created */
760 retval = arch_dup_mmap(oldmm, mm);
761 loop_out:
762 vma_iter_free(&vmi);
763 if (!retval) {
764 mt_set_in_rcu(vmi.mas.tree);
765 ksm_fork(mm, oldmm);
766 khugepaged_fork(mm, oldmm);
767 } else {
768
769 /*
770 * The entire maple tree has already been duplicated. If the
771 * mmap duplication fails, mark the failure point with
772 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
773 * stop releasing VMAs that have not been duplicated after this
774 * point.
775 */
776 if (mpnt) {
777 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
778 mas_store(&vmi.mas, XA_ZERO_ENTRY);
779 /* Avoid OOM iterating a broken tree */
780 set_bit(MMF_OOM_SKIP, &mm->flags);
781 }
782 /*
783 * The mm_struct is going to exit, but the locks will be dropped
784 * first. Set the mm_struct as unstable is advisable as it is
785 * not fully initialised.
786 */
787 set_bit(MMF_UNSTABLE, &mm->flags);
788 }
789 out:
790 mmap_write_unlock(mm);
791 flush_tlb_mm(oldmm);
792 mmap_write_unlock(oldmm);
793 if (!retval)
794 dup_userfaultfd_complete(&uf);
795 else
796 dup_userfaultfd_fail(&uf);
797 return retval;
798
799 fail_nomem_anon_vma_fork:
800 mpol_put(vma_policy(tmp));
801 fail_nomem_policy:
802 vm_area_free(tmp);
803 fail_nomem:
804 retval = -ENOMEM;
805 vm_unacct_memory(charge);
806 goto loop_out;
807 }
808
mm_alloc_pgd(struct mm_struct * mm)809 static inline int mm_alloc_pgd(struct mm_struct *mm)
810 {
811 mm->pgd = pgd_alloc(mm);
812 if (unlikely(!mm->pgd))
813 return -ENOMEM;
814 return 0;
815 }
816
mm_free_pgd(struct mm_struct * mm)817 static inline void mm_free_pgd(struct mm_struct *mm)
818 {
819 pgd_free(mm, mm->pgd);
820 }
821 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)822 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
823 {
824 mmap_write_lock(oldmm);
825 dup_mm_exe_file(mm, oldmm);
826 mmap_write_unlock(oldmm);
827 return 0;
828 }
829 #define mm_alloc_pgd(mm) (0)
830 #define mm_free_pgd(mm)
831 #endif /* CONFIG_MMU */
832
check_mm(struct mm_struct * mm)833 static void check_mm(struct mm_struct *mm)
834 {
835 int i;
836
837 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
838 "Please make sure 'struct resident_page_types[]' is updated as well");
839
840 for (i = 0; i < NR_MM_COUNTERS; i++) {
841 long x = percpu_counter_sum(&mm->rss_stat[i]);
842
843 if (unlikely(x))
844 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
845 mm, resident_page_types[i], x);
846 }
847
848 if (mm_pgtables_bytes(mm))
849 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
850 mm_pgtables_bytes(mm));
851
852 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
853 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
854 #endif
855 }
856
857 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
858 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
859
do_check_lazy_tlb(void * arg)860 static void do_check_lazy_tlb(void *arg)
861 {
862 struct mm_struct *mm = arg;
863
864 WARN_ON_ONCE(current->active_mm == mm);
865 }
866
do_shoot_lazy_tlb(void * arg)867 static void do_shoot_lazy_tlb(void *arg)
868 {
869 struct mm_struct *mm = arg;
870
871 if (current->active_mm == mm) {
872 WARN_ON_ONCE(current->mm);
873 current->active_mm = &init_mm;
874 switch_mm(mm, &init_mm, current);
875 }
876 }
877
cleanup_lazy_tlbs(struct mm_struct * mm)878 static void cleanup_lazy_tlbs(struct mm_struct *mm)
879 {
880 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
881 /*
882 * In this case, lazy tlb mms are refounted and would not reach
883 * __mmdrop until all CPUs have switched away and mmdrop()ed.
884 */
885 return;
886 }
887
888 /*
889 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
890 * requires lazy mm users to switch to another mm when the refcount
891 * drops to zero, before the mm is freed. This requires IPIs here to
892 * switch kernel threads to init_mm.
893 *
894 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
895 * switch with the final userspace teardown TLB flush which leaves the
896 * mm lazy on this CPU but no others, reducing the need for additional
897 * IPIs here. There are cases where a final IPI is still required here,
898 * such as the final mmdrop being performed on a different CPU than the
899 * one exiting, or kernel threads using the mm when userspace exits.
900 *
901 * IPI overheads have not found to be expensive, but they could be
902 * reduced in a number of possible ways, for example (roughly
903 * increasing order of complexity):
904 * - The last lazy reference created by exit_mm() could instead switch
905 * to init_mm, however it's probable this will run on the same CPU
906 * immediately afterwards, so this may not reduce IPIs much.
907 * - A batch of mms requiring IPIs could be gathered and freed at once.
908 * - CPUs store active_mm where it can be remotely checked without a
909 * lock, to filter out false-positives in the cpumask.
910 * - After mm_users or mm_count reaches zero, switching away from the
911 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
912 * with some batching or delaying of the final IPIs.
913 * - A delayed freeing and RCU-like quiescing sequence based on mm
914 * switching to avoid IPIs completely.
915 */
916 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
917 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
918 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
919 }
920
921 /*
922 * Called when the last reference to the mm
923 * is dropped: either by a lazy thread or by
924 * mmput. Free the page directory and the mm.
925 */
__mmdrop(struct mm_struct * mm)926 void __mmdrop(struct mm_struct *mm)
927 {
928 BUG_ON(mm == &init_mm);
929 WARN_ON_ONCE(mm == current->mm);
930
931 /* Ensure no CPUs are using this as their lazy tlb mm */
932 cleanup_lazy_tlbs(mm);
933
934 WARN_ON_ONCE(mm == current->active_mm);
935 mm_free_pgd(mm);
936 destroy_context(mm);
937 mmu_notifier_subscriptions_destroy(mm);
938 check_mm(mm);
939 put_user_ns(mm->user_ns);
940 mm_pasid_drop(mm);
941 mm_destroy_cid(mm);
942 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
943
944 free_mm(mm);
945 }
946 EXPORT_SYMBOL_GPL(__mmdrop);
947
mmdrop_async_fn(struct work_struct * work)948 static void mmdrop_async_fn(struct work_struct *work)
949 {
950 struct mm_struct *mm;
951
952 mm = container_of(work, struct mm_struct, async_put_work);
953 __mmdrop(mm);
954 }
955
mmdrop_async(struct mm_struct * mm)956 static void mmdrop_async(struct mm_struct *mm)
957 {
958 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
959 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
960 schedule_work(&mm->async_put_work);
961 }
962 }
963
free_signal_struct(struct signal_struct * sig)964 static inline void free_signal_struct(struct signal_struct *sig)
965 {
966 taskstats_tgid_free(sig);
967 sched_autogroup_exit(sig);
968 /*
969 * __mmdrop is not safe to call from softirq context on x86 due to
970 * pgd_dtor so postpone it to the async context
971 */
972 if (sig->oom_mm)
973 mmdrop_async(sig->oom_mm);
974 kmem_cache_free(signal_cachep, sig);
975 }
976
put_signal_struct(struct signal_struct * sig)977 static inline void put_signal_struct(struct signal_struct *sig)
978 {
979 if (refcount_dec_and_test(&sig->sigcnt))
980 free_signal_struct(sig);
981 }
982
__put_task_struct(struct task_struct * tsk)983 void __put_task_struct(struct task_struct *tsk)
984 {
985 WARN_ON(!tsk->exit_state);
986 WARN_ON(refcount_read(&tsk->usage));
987 WARN_ON(tsk == current);
988
989 sched_ext_free(tsk);
990 io_uring_free(tsk);
991 cgroup_free(tsk);
992 task_numa_free(tsk, true);
993 security_task_free(tsk);
994 exit_creds(tsk);
995 delayacct_tsk_free(tsk);
996 put_signal_struct(tsk->signal);
997 sched_core_free(tsk);
998 free_task(tsk);
999 }
1000 EXPORT_SYMBOL_GPL(__put_task_struct);
1001
__put_task_struct_rcu_cb(struct rcu_head * rhp)1002 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
1003 {
1004 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
1005
1006 __put_task_struct(task);
1007 }
1008 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
1009
arch_task_cache_init(void)1010 void __init __weak arch_task_cache_init(void) { }
1011
1012 /*
1013 * set_max_threads
1014 */
set_max_threads(unsigned int max_threads_suggested)1015 static void __init set_max_threads(unsigned int max_threads_suggested)
1016 {
1017 u64 threads;
1018 unsigned long nr_pages = memblock_estimated_nr_free_pages();
1019
1020 /*
1021 * The number of threads shall be limited such that the thread
1022 * structures may only consume a small part of the available memory.
1023 */
1024 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1025 threads = MAX_THREADS;
1026 else
1027 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1028 (u64) THREAD_SIZE * 8UL);
1029
1030 if (threads > max_threads_suggested)
1031 threads = max_threads_suggested;
1032
1033 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1034 }
1035
1036 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1037 /* Initialized by the architecture: */
1038 int arch_task_struct_size __read_mostly;
1039 #endif
1040
task_struct_whitelist(unsigned long * offset,unsigned long * size)1041 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1042 {
1043 /* Fetch thread_struct whitelist for the architecture. */
1044 arch_thread_struct_whitelist(offset, size);
1045
1046 /*
1047 * Handle zero-sized whitelist or empty thread_struct, otherwise
1048 * adjust offset to position of thread_struct in task_struct.
1049 */
1050 if (unlikely(*size == 0))
1051 *offset = 0;
1052 else
1053 *offset += offsetof(struct task_struct, thread);
1054 }
1055
fork_init(void)1056 void __init fork_init(void)
1057 {
1058 int i;
1059 #ifndef ARCH_MIN_TASKALIGN
1060 #define ARCH_MIN_TASKALIGN 0
1061 #endif
1062 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1063 unsigned long useroffset, usersize;
1064
1065 /* create a slab on which task_structs can be allocated */
1066 task_struct_whitelist(&useroffset, &usersize);
1067 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1068 arch_task_struct_size, align,
1069 SLAB_PANIC|SLAB_ACCOUNT,
1070 useroffset, usersize, NULL);
1071
1072 /* do the arch specific task caches init */
1073 arch_task_cache_init();
1074
1075 set_max_threads(MAX_THREADS);
1076
1077 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1078 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1079 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1080 init_task.signal->rlim[RLIMIT_NPROC];
1081
1082 for (i = 0; i < UCOUNT_COUNTS; i++)
1083 init_user_ns.ucount_max[i] = max_threads/2;
1084
1085 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1086 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1087 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1088 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1089
1090 #ifdef CONFIG_VMAP_STACK
1091 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1092 NULL, free_vm_stack_cache);
1093 #endif
1094
1095 scs_init();
1096
1097 lockdep_init_task(&init_task);
1098 uprobes_init();
1099 }
1100
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1101 int __weak arch_dup_task_struct(struct task_struct *dst,
1102 struct task_struct *src)
1103 {
1104 *dst = *src;
1105 return 0;
1106 }
1107
set_task_stack_end_magic(struct task_struct * tsk)1108 void set_task_stack_end_magic(struct task_struct *tsk)
1109 {
1110 unsigned long *stackend;
1111
1112 stackend = end_of_stack(tsk);
1113 *stackend = STACK_END_MAGIC; /* for overflow detection */
1114 }
1115
dup_task_struct(struct task_struct * orig,int node)1116 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1117 {
1118 struct task_struct *tsk;
1119 int err;
1120
1121 if (node == NUMA_NO_NODE)
1122 node = tsk_fork_get_node(orig);
1123 tsk = alloc_task_struct_node(node);
1124 if (!tsk)
1125 return NULL;
1126
1127 err = arch_dup_task_struct(tsk, orig);
1128 if (err)
1129 goto free_tsk;
1130
1131 err = alloc_thread_stack_node(tsk, node);
1132 if (err)
1133 goto free_tsk;
1134
1135 #ifdef CONFIG_THREAD_INFO_IN_TASK
1136 refcount_set(&tsk->stack_refcount, 1);
1137 #endif
1138 account_kernel_stack(tsk, 1);
1139
1140 err = scs_prepare(tsk, node);
1141 if (err)
1142 goto free_stack;
1143
1144 #ifdef CONFIG_SECCOMP
1145 /*
1146 * We must handle setting up seccomp filters once we're under
1147 * the sighand lock in case orig has changed between now and
1148 * then. Until then, filter must be NULL to avoid messing up
1149 * the usage counts on the error path calling free_task.
1150 */
1151 tsk->seccomp.filter = NULL;
1152 #endif
1153
1154 setup_thread_stack(tsk, orig);
1155 clear_user_return_notifier(tsk);
1156 clear_tsk_need_resched(tsk);
1157 set_task_stack_end_magic(tsk);
1158 clear_syscall_work_syscall_user_dispatch(tsk);
1159
1160 #ifdef CONFIG_STACKPROTECTOR
1161 tsk->stack_canary = get_random_canary();
1162 #endif
1163 if (orig->cpus_ptr == &orig->cpus_mask)
1164 tsk->cpus_ptr = &tsk->cpus_mask;
1165 dup_user_cpus_ptr(tsk, orig, node);
1166
1167 /*
1168 * One for the user space visible state that goes away when reaped.
1169 * One for the scheduler.
1170 */
1171 refcount_set(&tsk->rcu_users, 2);
1172 /* One for the rcu users */
1173 refcount_set(&tsk->usage, 1);
1174 #ifdef CONFIG_BLK_DEV_IO_TRACE
1175 tsk->btrace_seq = 0;
1176 #endif
1177 tsk->splice_pipe = NULL;
1178 tsk->task_frag.page = NULL;
1179 tsk->wake_q.next = NULL;
1180 tsk->worker_private = NULL;
1181
1182 kcov_task_init(tsk);
1183 kmsan_task_create(tsk);
1184 kmap_local_fork(tsk);
1185
1186 #ifdef CONFIG_FAULT_INJECTION
1187 tsk->fail_nth = 0;
1188 #endif
1189
1190 #ifdef CONFIG_BLK_CGROUP
1191 tsk->throttle_disk = NULL;
1192 tsk->use_memdelay = 0;
1193 #endif
1194
1195 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1196 tsk->pasid_activated = 0;
1197 #endif
1198
1199 #ifdef CONFIG_MEMCG
1200 tsk->active_memcg = NULL;
1201 #endif
1202
1203 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1204 tsk->reported_split_lock = 0;
1205 #endif
1206
1207 #ifdef CONFIG_SCHED_MM_CID
1208 tsk->mm_cid = -1;
1209 tsk->last_mm_cid = -1;
1210 tsk->mm_cid_active = 0;
1211 tsk->migrate_from_cpu = -1;
1212 #endif
1213 return tsk;
1214
1215 free_stack:
1216 exit_task_stack_account(tsk);
1217 free_thread_stack(tsk);
1218 free_tsk:
1219 free_task_struct(tsk);
1220 return NULL;
1221 }
1222
1223 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1224
1225 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1226
coredump_filter_setup(char * s)1227 static int __init coredump_filter_setup(char *s)
1228 {
1229 default_dump_filter =
1230 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1231 MMF_DUMP_FILTER_MASK;
1232 return 1;
1233 }
1234
1235 __setup("coredump_filter=", coredump_filter_setup);
1236
1237 #include <linux/init_task.h>
1238
mm_init_aio(struct mm_struct * mm)1239 static void mm_init_aio(struct mm_struct *mm)
1240 {
1241 #ifdef CONFIG_AIO
1242 spin_lock_init(&mm->ioctx_lock);
1243 mm->ioctx_table = NULL;
1244 #endif
1245 }
1246
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1247 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1248 struct task_struct *p)
1249 {
1250 #ifdef CONFIG_MEMCG
1251 if (mm->owner == p)
1252 WRITE_ONCE(mm->owner, NULL);
1253 #endif
1254 }
1255
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1256 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1257 {
1258 #ifdef CONFIG_MEMCG
1259 mm->owner = p;
1260 #endif
1261 }
1262
mm_init_uprobes_state(struct mm_struct * mm)1263 static void mm_init_uprobes_state(struct mm_struct *mm)
1264 {
1265 #ifdef CONFIG_UPROBES
1266 mm->uprobes_state.xol_area = NULL;
1267 #endif
1268 }
1269
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1270 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1271 struct user_namespace *user_ns)
1272 {
1273 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1274 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1275 atomic_set(&mm->mm_users, 1);
1276 atomic_set(&mm->mm_count, 1);
1277 seqcount_init(&mm->write_protect_seq);
1278 mmap_init_lock(mm);
1279 INIT_LIST_HEAD(&mm->mmlist);
1280 mm_pgtables_bytes_init(mm);
1281 mm->map_count = 0;
1282 mm->locked_vm = 0;
1283 atomic64_set(&mm->pinned_vm, 0);
1284 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1285 spin_lock_init(&mm->page_table_lock);
1286 spin_lock_init(&mm->arg_lock);
1287 mm_init_cpumask(mm);
1288 mm_init_aio(mm);
1289 mm_init_owner(mm, p);
1290 mm_pasid_init(mm);
1291 RCU_INIT_POINTER(mm->exe_file, NULL);
1292 mmu_notifier_subscriptions_init(mm);
1293 init_tlb_flush_pending(mm);
1294 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1295 mm->pmd_huge_pte = NULL;
1296 #endif
1297 mm_init_uprobes_state(mm);
1298 hugetlb_count_init(mm);
1299
1300 if (current->mm) {
1301 mm->flags = mmf_init_flags(current->mm->flags);
1302 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1303 } else {
1304 mm->flags = default_dump_filter;
1305 mm->def_flags = 0;
1306 }
1307
1308 if (mm_alloc_pgd(mm))
1309 goto fail_nopgd;
1310
1311 if (init_new_context(p, mm))
1312 goto fail_nocontext;
1313
1314 if (mm_alloc_cid(mm, p))
1315 goto fail_cid;
1316
1317 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1318 NR_MM_COUNTERS))
1319 goto fail_pcpu;
1320
1321 mm->user_ns = get_user_ns(user_ns);
1322 lru_gen_init_mm(mm);
1323 return mm;
1324
1325 fail_pcpu:
1326 mm_destroy_cid(mm);
1327 fail_cid:
1328 destroy_context(mm);
1329 fail_nocontext:
1330 mm_free_pgd(mm);
1331 fail_nopgd:
1332 free_mm(mm);
1333 return NULL;
1334 }
1335
1336 /*
1337 * Allocate and initialize an mm_struct.
1338 */
mm_alloc(void)1339 struct mm_struct *mm_alloc(void)
1340 {
1341 struct mm_struct *mm;
1342
1343 mm = allocate_mm();
1344 if (!mm)
1345 return NULL;
1346
1347 memset(mm, 0, sizeof(*mm));
1348 return mm_init(mm, current, current_user_ns());
1349 }
1350 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1351
__mmput(struct mm_struct * mm)1352 static inline void __mmput(struct mm_struct *mm)
1353 {
1354 VM_BUG_ON(atomic_read(&mm->mm_users));
1355
1356 uprobe_clear_state(mm);
1357 exit_aio(mm);
1358 ksm_exit(mm);
1359 khugepaged_exit(mm); /* must run before exit_mmap */
1360 exit_mmap(mm);
1361 mm_put_huge_zero_folio(mm);
1362 set_mm_exe_file(mm, NULL);
1363 if (!list_empty(&mm->mmlist)) {
1364 spin_lock(&mmlist_lock);
1365 list_del(&mm->mmlist);
1366 spin_unlock(&mmlist_lock);
1367 }
1368 if (mm->binfmt)
1369 module_put(mm->binfmt->module);
1370 lru_gen_del_mm(mm);
1371 mmdrop(mm);
1372 }
1373
1374 /*
1375 * Decrement the use count and release all resources for an mm.
1376 */
mmput(struct mm_struct * mm)1377 void mmput(struct mm_struct *mm)
1378 {
1379 might_sleep();
1380
1381 if (atomic_dec_and_test(&mm->mm_users))
1382 __mmput(mm);
1383 }
1384 EXPORT_SYMBOL_GPL(mmput);
1385
1386 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1387 static void mmput_async_fn(struct work_struct *work)
1388 {
1389 struct mm_struct *mm = container_of(work, struct mm_struct,
1390 async_put_work);
1391
1392 __mmput(mm);
1393 }
1394
mmput_async(struct mm_struct * mm)1395 void mmput_async(struct mm_struct *mm)
1396 {
1397 if (atomic_dec_and_test(&mm->mm_users)) {
1398 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1399 schedule_work(&mm->async_put_work);
1400 }
1401 }
1402 EXPORT_SYMBOL_GPL(mmput_async);
1403 #endif
1404
1405 /**
1406 * set_mm_exe_file - change a reference to the mm's executable file
1407 * @mm: The mm to change.
1408 * @new_exe_file: The new file to use.
1409 *
1410 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1411 *
1412 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1413 * invocations: in mmput() nobody alive left, in execve it happens before
1414 * the new mm is made visible to anyone.
1415 *
1416 * Can only fail if new_exe_file != NULL.
1417 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1418 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1419 {
1420 struct file *old_exe_file;
1421
1422 /*
1423 * It is safe to dereference the exe_file without RCU as
1424 * this function is only called if nobody else can access
1425 * this mm -- see comment above for justification.
1426 */
1427 old_exe_file = rcu_dereference_raw(mm->exe_file);
1428
1429 if (new_exe_file) {
1430 /*
1431 * We expect the caller (i.e., sys_execve) to already denied
1432 * write access, so this is unlikely to fail.
1433 */
1434 if (unlikely(exe_file_deny_write_access(new_exe_file)))
1435 return -EACCES;
1436 get_file(new_exe_file);
1437 }
1438 rcu_assign_pointer(mm->exe_file, new_exe_file);
1439 if (old_exe_file) {
1440 exe_file_allow_write_access(old_exe_file);
1441 fput(old_exe_file);
1442 }
1443 return 0;
1444 }
1445
1446 /**
1447 * replace_mm_exe_file - replace a reference to the mm's executable file
1448 * @mm: The mm to change.
1449 * @new_exe_file: The new file to use.
1450 *
1451 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1452 *
1453 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1454 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1455 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1456 {
1457 struct vm_area_struct *vma;
1458 struct file *old_exe_file;
1459 int ret = 0;
1460
1461 /* Forbid mm->exe_file change if old file still mapped. */
1462 old_exe_file = get_mm_exe_file(mm);
1463 if (old_exe_file) {
1464 VMA_ITERATOR(vmi, mm, 0);
1465 mmap_read_lock(mm);
1466 for_each_vma(vmi, vma) {
1467 if (!vma->vm_file)
1468 continue;
1469 if (path_equal(&vma->vm_file->f_path,
1470 &old_exe_file->f_path)) {
1471 ret = -EBUSY;
1472 break;
1473 }
1474 }
1475 mmap_read_unlock(mm);
1476 fput(old_exe_file);
1477 if (ret)
1478 return ret;
1479 }
1480
1481 ret = exe_file_deny_write_access(new_exe_file);
1482 if (ret)
1483 return -EACCES;
1484 get_file(new_exe_file);
1485
1486 /* set the new file */
1487 mmap_write_lock(mm);
1488 old_exe_file = rcu_dereference_raw(mm->exe_file);
1489 rcu_assign_pointer(mm->exe_file, new_exe_file);
1490 mmap_write_unlock(mm);
1491
1492 if (old_exe_file) {
1493 exe_file_allow_write_access(old_exe_file);
1494 fput(old_exe_file);
1495 }
1496 return 0;
1497 }
1498
1499 /**
1500 * get_mm_exe_file - acquire a reference to the mm's executable file
1501 * @mm: The mm of interest.
1502 *
1503 * Returns %NULL if mm has no associated executable file.
1504 * User must release file via fput().
1505 */
get_mm_exe_file(struct mm_struct * mm)1506 struct file *get_mm_exe_file(struct mm_struct *mm)
1507 {
1508 struct file *exe_file;
1509
1510 rcu_read_lock();
1511 exe_file = get_file_rcu(&mm->exe_file);
1512 rcu_read_unlock();
1513 return exe_file;
1514 }
1515
1516 /**
1517 * get_task_exe_file - acquire a reference to the task's executable file
1518 * @task: The task.
1519 *
1520 * Returns %NULL if task's mm (if any) has no associated executable file or
1521 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1522 * User must release file via fput().
1523 */
get_task_exe_file(struct task_struct * task)1524 struct file *get_task_exe_file(struct task_struct *task)
1525 {
1526 struct file *exe_file = NULL;
1527 struct mm_struct *mm;
1528
1529 if (task->flags & PF_KTHREAD)
1530 return NULL;
1531
1532 task_lock(task);
1533 mm = task->mm;
1534 if (mm)
1535 exe_file = get_mm_exe_file(mm);
1536 task_unlock(task);
1537 return exe_file;
1538 }
1539
1540 /**
1541 * get_task_mm - acquire a reference to the task's mm
1542 * @task: The task.
1543 *
1544 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1545 * this kernel workthread has transiently adopted a user mm with use_mm,
1546 * to do its AIO) is not set and if so returns a reference to it, after
1547 * bumping up the use count. User must release the mm via mmput()
1548 * after use. Typically used by /proc and ptrace.
1549 */
get_task_mm(struct task_struct * task)1550 struct mm_struct *get_task_mm(struct task_struct *task)
1551 {
1552 struct mm_struct *mm;
1553
1554 if (task->flags & PF_KTHREAD)
1555 return NULL;
1556
1557 task_lock(task);
1558 mm = task->mm;
1559 if (mm)
1560 mmget(mm);
1561 task_unlock(task);
1562 return mm;
1563 }
1564 EXPORT_SYMBOL_GPL(get_task_mm);
1565
mm_access(struct task_struct * task,unsigned int mode)1566 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1567 {
1568 struct mm_struct *mm;
1569 int err;
1570
1571 err = down_read_killable(&task->signal->exec_update_lock);
1572 if (err)
1573 return ERR_PTR(err);
1574
1575 mm = get_task_mm(task);
1576 if (!mm) {
1577 mm = ERR_PTR(-ESRCH);
1578 } else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1579 mmput(mm);
1580 mm = ERR_PTR(-EACCES);
1581 }
1582 up_read(&task->signal->exec_update_lock);
1583
1584 return mm;
1585 }
1586
complete_vfork_done(struct task_struct * tsk)1587 static void complete_vfork_done(struct task_struct *tsk)
1588 {
1589 struct completion *vfork;
1590
1591 task_lock(tsk);
1592 vfork = tsk->vfork_done;
1593 if (likely(vfork)) {
1594 tsk->vfork_done = NULL;
1595 complete(vfork);
1596 }
1597 task_unlock(tsk);
1598 }
1599
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1600 static int wait_for_vfork_done(struct task_struct *child,
1601 struct completion *vfork)
1602 {
1603 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1604 int killed;
1605
1606 cgroup_enter_frozen();
1607 killed = wait_for_completion_state(vfork, state);
1608 cgroup_leave_frozen(false);
1609
1610 if (killed) {
1611 task_lock(child);
1612 child->vfork_done = NULL;
1613 task_unlock(child);
1614 }
1615
1616 put_task_struct(child);
1617 return killed;
1618 }
1619
1620 /* Please note the differences between mmput and mm_release.
1621 * mmput is called whenever we stop holding onto a mm_struct,
1622 * error success whatever.
1623 *
1624 * mm_release is called after a mm_struct has been removed
1625 * from the current process.
1626 *
1627 * This difference is important for error handling, when we
1628 * only half set up a mm_struct for a new process and need to restore
1629 * the old one. Because we mmput the new mm_struct before
1630 * restoring the old one. . .
1631 * Eric Biederman 10 January 1998
1632 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1633 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1634 {
1635 uprobe_free_utask(tsk);
1636
1637 /* Get rid of any cached register state */
1638 deactivate_mm(tsk, mm);
1639
1640 /*
1641 * Signal userspace if we're not exiting with a core dump
1642 * because we want to leave the value intact for debugging
1643 * purposes.
1644 */
1645 if (tsk->clear_child_tid) {
1646 if (atomic_read(&mm->mm_users) > 1) {
1647 /*
1648 * We don't check the error code - if userspace has
1649 * not set up a proper pointer then tough luck.
1650 */
1651 put_user(0, tsk->clear_child_tid);
1652 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1653 1, NULL, NULL, 0, 0);
1654 }
1655 tsk->clear_child_tid = NULL;
1656 }
1657
1658 /*
1659 * All done, finally we can wake up parent and return this mm to him.
1660 * Also kthread_stop() uses this completion for synchronization.
1661 */
1662 if (tsk->vfork_done)
1663 complete_vfork_done(tsk);
1664 }
1665
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1666 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1667 {
1668 futex_exit_release(tsk);
1669 mm_release(tsk, mm);
1670 }
1671
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1672 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1673 {
1674 futex_exec_release(tsk);
1675 mm_release(tsk, mm);
1676 }
1677
1678 /**
1679 * dup_mm() - duplicates an existing mm structure
1680 * @tsk: the task_struct with which the new mm will be associated.
1681 * @oldmm: the mm to duplicate.
1682 *
1683 * Allocates a new mm structure and duplicates the provided @oldmm structure
1684 * content into it.
1685 *
1686 * Return: the duplicated mm or NULL on failure.
1687 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1688 static struct mm_struct *dup_mm(struct task_struct *tsk,
1689 struct mm_struct *oldmm)
1690 {
1691 struct mm_struct *mm;
1692 int err;
1693
1694 mm = allocate_mm();
1695 if (!mm)
1696 goto fail_nomem;
1697
1698 memcpy(mm, oldmm, sizeof(*mm));
1699
1700 if (!mm_init(mm, tsk, mm->user_ns))
1701 goto fail_nomem;
1702
1703 uprobe_start_dup_mmap();
1704 err = dup_mmap(mm, oldmm);
1705 if (err)
1706 goto free_pt;
1707 uprobe_end_dup_mmap();
1708
1709 mm->hiwater_rss = get_mm_rss(mm);
1710 mm->hiwater_vm = mm->total_vm;
1711
1712 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1713 goto free_pt;
1714
1715 return mm;
1716
1717 free_pt:
1718 /* don't put binfmt in mmput, we haven't got module yet */
1719 mm->binfmt = NULL;
1720 mm_init_owner(mm, NULL);
1721 mmput(mm);
1722 if (err)
1723 uprobe_end_dup_mmap();
1724
1725 fail_nomem:
1726 return NULL;
1727 }
1728
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1729 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1730 {
1731 struct mm_struct *mm, *oldmm;
1732
1733 tsk->min_flt = tsk->maj_flt = 0;
1734 tsk->nvcsw = tsk->nivcsw = 0;
1735 #ifdef CONFIG_DETECT_HUNG_TASK
1736 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1737 tsk->last_switch_time = 0;
1738 #endif
1739
1740 tsk->mm = NULL;
1741 tsk->active_mm = NULL;
1742
1743 /*
1744 * Are we cloning a kernel thread?
1745 *
1746 * We need to steal a active VM for that..
1747 */
1748 oldmm = current->mm;
1749 if (!oldmm)
1750 return 0;
1751
1752 if (clone_flags & CLONE_VM) {
1753 mmget(oldmm);
1754 mm = oldmm;
1755 } else {
1756 mm = dup_mm(tsk, current->mm);
1757 if (!mm)
1758 return -ENOMEM;
1759 }
1760
1761 tsk->mm = mm;
1762 tsk->active_mm = mm;
1763 sched_mm_cid_fork(tsk);
1764 return 0;
1765 }
1766
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1767 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1768 {
1769 struct fs_struct *fs = current->fs;
1770 if (clone_flags & CLONE_FS) {
1771 /* tsk->fs is already what we want */
1772 spin_lock(&fs->lock);
1773 /* "users" and "in_exec" locked for check_unsafe_exec() */
1774 if (fs->in_exec) {
1775 spin_unlock(&fs->lock);
1776 return -EAGAIN;
1777 }
1778 fs->users++;
1779 spin_unlock(&fs->lock);
1780 return 0;
1781 }
1782 tsk->fs = copy_fs_struct(fs);
1783 if (!tsk->fs)
1784 return -ENOMEM;
1785 return 0;
1786 }
1787
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1788 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1789 int no_files)
1790 {
1791 struct files_struct *oldf, *newf;
1792
1793 /*
1794 * A background process may not have any files ...
1795 */
1796 oldf = current->files;
1797 if (!oldf)
1798 return 0;
1799
1800 if (no_files) {
1801 tsk->files = NULL;
1802 return 0;
1803 }
1804
1805 if (clone_flags & CLONE_FILES) {
1806 atomic_inc(&oldf->count);
1807 return 0;
1808 }
1809
1810 newf = dup_fd(oldf, NULL);
1811 if (IS_ERR(newf))
1812 return PTR_ERR(newf);
1813
1814 tsk->files = newf;
1815 return 0;
1816 }
1817
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1818 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1819 {
1820 struct sighand_struct *sig;
1821
1822 if (clone_flags & CLONE_SIGHAND) {
1823 refcount_inc(¤t->sighand->count);
1824 return 0;
1825 }
1826 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1827 RCU_INIT_POINTER(tsk->sighand, sig);
1828 if (!sig)
1829 return -ENOMEM;
1830
1831 refcount_set(&sig->count, 1);
1832 spin_lock_irq(¤t->sighand->siglock);
1833 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1834 spin_unlock_irq(¤t->sighand->siglock);
1835
1836 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1837 if (clone_flags & CLONE_CLEAR_SIGHAND)
1838 flush_signal_handlers(tsk, 0);
1839
1840 return 0;
1841 }
1842
__cleanup_sighand(struct sighand_struct * sighand)1843 void __cleanup_sighand(struct sighand_struct *sighand)
1844 {
1845 if (refcount_dec_and_test(&sighand->count)) {
1846 signalfd_cleanup(sighand);
1847 /*
1848 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1849 * without an RCU grace period, see __lock_task_sighand().
1850 */
1851 kmem_cache_free(sighand_cachep, sighand);
1852 }
1853 }
1854
1855 /*
1856 * Initialize POSIX timer handling for a thread group.
1857 */
posix_cpu_timers_init_group(struct signal_struct * sig)1858 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1859 {
1860 struct posix_cputimers *pct = &sig->posix_cputimers;
1861 unsigned long cpu_limit;
1862
1863 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1864 posix_cputimers_group_init(pct, cpu_limit);
1865 }
1866
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1867 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1868 {
1869 struct signal_struct *sig;
1870
1871 if (clone_flags & CLONE_THREAD)
1872 return 0;
1873
1874 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1875 tsk->signal = sig;
1876 if (!sig)
1877 return -ENOMEM;
1878
1879 sig->nr_threads = 1;
1880 sig->quick_threads = 1;
1881 atomic_set(&sig->live, 1);
1882 refcount_set(&sig->sigcnt, 1);
1883
1884 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1885 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1886 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1887
1888 init_waitqueue_head(&sig->wait_chldexit);
1889 sig->curr_target = tsk;
1890 init_sigpending(&sig->shared_pending);
1891 INIT_HLIST_HEAD(&sig->multiprocess);
1892 seqlock_init(&sig->stats_lock);
1893 prev_cputime_init(&sig->prev_cputime);
1894
1895 #ifdef CONFIG_POSIX_TIMERS
1896 INIT_HLIST_HEAD(&sig->posix_timers);
1897 INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1898 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1899 sig->real_timer.function = it_real_fn;
1900 #endif
1901
1902 task_lock(current->group_leader);
1903 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1904 task_unlock(current->group_leader);
1905
1906 posix_cpu_timers_init_group(sig);
1907
1908 tty_audit_fork(sig);
1909 sched_autogroup_fork(sig);
1910
1911 sig->oom_score_adj = current->signal->oom_score_adj;
1912 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1913
1914 mutex_init(&sig->cred_guard_mutex);
1915 init_rwsem(&sig->exec_update_lock);
1916
1917 return 0;
1918 }
1919
copy_seccomp(struct task_struct * p)1920 static void copy_seccomp(struct task_struct *p)
1921 {
1922 #ifdef CONFIG_SECCOMP
1923 /*
1924 * Must be called with sighand->lock held, which is common to
1925 * all threads in the group. Holding cred_guard_mutex is not
1926 * needed because this new task is not yet running and cannot
1927 * be racing exec.
1928 */
1929 assert_spin_locked(¤t->sighand->siglock);
1930
1931 /* Ref-count the new filter user, and assign it. */
1932 get_seccomp_filter(current);
1933 p->seccomp = current->seccomp;
1934
1935 /*
1936 * Explicitly enable no_new_privs here in case it got set
1937 * between the task_struct being duplicated and holding the
1938 * sighand lock. The seccomp state and nnp must be in sync.
1939 */
1940 if (task_no_new_privs(current))
1941 task_set_no_new_privs(p);
1942
1943 /*
1944 * If the parent gained a seccomp mode after copying thread
1945 * flags and between before we held the sighand lock, we have
1946 * to manually enable the seccomp thread flag here.
1947 */
1948 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1949 set_task_syscall_work(p, SECCOMP);
1950 #endif
1951 }
1952
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1953 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1954 {
1955 current->clear_child_tid = tidptr;
1956
1957 return task_pid_vnr(current);
1958 }
1959
rt_mutex_init_task(struct task_struct * p)1960 static void rt_mutex_init_task(struct task_struct *p)
1961 {
1962 raw_spin_lock_init(&p->pi_lock);
1963 #ifdef CONFIG_RT_MUTEXES
1964 p->pi_waiters = RB_ROOT_CACHED;
1965 p->pi_top_task = NULL;
1966 p->pi_blocked_on = NULL;
1967 #endif
1968 }
1969
init_task_pid_links(struct task_struct * task)1970 static inline void init_task_pid_links(struct task_struct *task)
1971 {
1972 enum pid_type type;
1973
1974 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1975 INIT_HLIST_NODE(&task->pid_links[type]);
1976 }
1977
1978 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1979 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1980 {
1981 if (type == PIDTYPE_PID)
1982 task->thread_pid = pid;
1983 else
1984 task->signal->pids[type] = pid;
1985 }
1986
rcu_copy_process(struct task_struct * p)1987 static inline void rcu_copy_process(struct task_struct *p)
1988 {
1989 #ifdef CONFIG_PREEMPT_RCU
1990 p->rcu_read_lock_nesting = 0;
1991 p->rcu_read_unlock_special.s = 0;
1992 p->rcu_blocked_node = NULL;
1993 INIT_LIST_HEAD(&p->rcu_node_entry);
1994 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1995 #ifdef CONFIG_TASKS_RCU
1996 p->rcu_tasks_holdout = false;
1997 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1998 p->rcu_tasks_idle_cpu = -1;
1999 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
2000 #endif /* #ifdef CONFIG_TASKS_RCU */
2001 #ifdef CONFIG_TASKS_TRACE_RCU
2002 p->trc_reader_nesting = 0;
2003 p->trc_reader_special.s = 0;
2004 INIT_LIST_HEAD(&p->trc_holdout_list);
2005 INIT_LIST_HEAD(&p->trc_blkd_node);
2006 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2007 }
2008
2009 /**
2010 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2011 * @pid: the struct pid for which to create a pidfd
2012 * @flags: flags of the new @pidfd
2013 * @ret: Where to return the file for the pidfd.
2014 *
2015 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2016 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2017 *
2018 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2019 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2020 * pidfd file are prepared.
2021 *
2022 * If this function returns successfully the caller is responsible to either
2023 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2024 * order to install the pidfd into its file descriptor table or they must use
2025 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2026 * respectively.
2027 *
2028 * This function is useful when a pidfd must already be reserved but there
2029 * might still be points of failure afterwards and the caller wants to ensure
2030 * that no pidfd is leaked into its file descriptor table.
2031 *
2032 * Return: On success, a reserved pidfd is returned from the function and a new
2033 * pidfd file is returned in the last argument to the function. On
2034 * error, a negative error code is returned from the function and the
2035 * last argument remains unchanged.
2036 */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2037 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2038 {
2039 int pidfd;
2040 struct file *pidfd_file;
2041
2042 pidfd = get_unused_fd_flags(O_CLOEXEC);
2043 if (pidfd < 0)
2044 return pidfd;
2045
2046 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2047 if (IS_ERR(pidfd_file)) {
2048 put_unused_fd(pidfd);
2049 return PTR_ERR(pidfd_file);
2050 }
2051 /*
2052 * anon_inode_getfile() ignores everything outside of the
2053 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2054 */
2055 pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2056 *ret = pidfd_file;
2057 return pidfd;
2058 }
2059
2060 /**
2061 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2062 * @pid: the struct pid for which to create a pidfd
2063 * @flags: flags of the new @pidfd
2064 * @ret: Where to return the pidfd.
2065 *
2066 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2067 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2068 *
2069 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2070 * task identified by @pid must be a thread-group leader.
2071 *
2072 * If this function returns successfully the caller is responsible to either
2073 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2074 * order to install the pidfd into its file descriptor table or they must use
2075 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2076 * respectively.
2077 *
2078 * This function is useful when a pidfd must already be reserved but there
2079 * might still be points of failure afterwards and the caller wants to ensure
2080 * that no pidfd is leaked into its file descriptor table.
2081 *
2082 * Return: On success, a reserved pidfd is returned from the function and a new
2083 * pidfd file is returned in the last argument to the function. On
2084 * error, a negative error code is returned from the function and the
2085 * last argument remains unchanged.
2086 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2087 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2088 {
2089 bool thread = flags & PIDFD_THREAD;
2090
2091 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2092 return -EINVAL;
2093
2094 return __pidfd_prepare(pid, flags, ret);
2095 }
2096
__delayed_free_task(struct rcu_head * rhp)2097 static void __delayed_free_task(struct rcu_head *rhp)
2098 {
2099 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2100
2101 free_task(tsk);
2102 }
2103
delayed_free_task(struct task_struct * tsk)2104 static __always_inline void delayed_free_task(struct task_struct *tsk)
2105 {
2106 if (IS_ENABLED(CONFIG_MEMCG))
2107 call_rcu(&tsk->rcu, __delayed_free_task);
2108 else
2109 free_task(tsk);
2110 }
2111
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2112 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2113 {
2114 /* Skip if kernel thread */
2115 if (!tsk->mm)
2116 return;
2117
2118 /* Skip if spawning a thread or using vfork */
2119 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2120 return;
2121
2122 /* We need to synchronize with __set_oom_adj */
2123 mutex_lock(&oom_adj_mutex);
2124 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2125 /* Update the values in case they were changed after copy_signal */
2126 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2127 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2128 mutex_unlock(&oom_adj_mutex);
2129 }
2130
2131 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2132 static void rv_task_fork(struct task_struct *p)
2133 {
2134 int i;
2135
2136 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2137 p->rv[i].da_mon.monitoring = false;
2138 }
2139 #else
2140 #define rv_task_fork(p) do {} while (0)
2141 #endif
2142
2143 /*
2144 * This creates a new process as a copy of the old one,
2145 * but does not actually start it yet.
2146 *
2147 * It copies the registers, and all the appropriate
2148 * parts of the process environment (as per the clone
2149 * flags). The actual kick-off is left to the caller.
2150 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2151 __latent_entropy struct task_struct *copy_process(
2152 struct pid *pid,
2153 int trace,
2154 int node,
2155 struct kernel_clone_args *args)
2156 {
2157 int pidfd = -1, retval;
2158 struct task_struct *p;
2159 struct multiprocess_signals delayed;
2160 struct file *pidfile = NULL;
2161 const u64 clone_flags = args->flags;
2162 struct nsproxy *nsp = current->nsproxy;
2163
2164 /*
2165 * Don't allow sharing the root directory with processes in a different
2166 * namespace
2167 */
2168 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2169 return ERR_PTR(-EINVAL);
2170
2171 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2172 return ERR_PTR(-EINVAL);
2173
2174 /*
2175 * Thread groups must share signals as well, and detached threads
2176 * can only be started up within the thread group.
2177 */
2178 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2179 return ERR_PTR(-EINVAL);
2180
2181 /*
2182 * Shared signal handlers imply shared VM. By way of the above,
2183 * thread groups also imply shared VM. Blocking this case allows
2184 * for various simplifications in other code.
2185 */
2186 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2187 return ERR_PTR(-EINVAL);
2188
2189 /*
2190 * Siblings of global init remain as zombies on exit since they are
2191 * not reaped by their parent (swapper). To solve this and to avoid
2192 * multi-rooted process trees, prevent global and container-inits
2193 * from creating siblings.
2194 */
2195 if ((clone_flags & CLONE_PARENT) &&
2196 current->signal->flags & SIGNAL_UNKILLABLE)
2197 return ERR_PTR(-EINVAL);
2198
2199 /*
2200 * If the new process will be in a different pid or user namespace
2201 * do not allow it to share a thread group with the forking task.
2202 */
2203 if (clone_flags & CLONE_THREAD) {
2204 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2205 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2206 return ERR_PTR(-EINVAL);
2207 }
2208
2209 if (clone_flags & CLONE_PIDFD) {
2210 /*
2211 * - CLONE_DETACHED is blocked so that we can potentially
2212 * reuse it later for CLONE_PIDFD.
2213 */
2214 if (clone_flags & CLONE_DETACHED)
2215 return ERR_PTR(-EINVAL);
2216 }
2217
2218 /*
2219 * Force any signals received before this point to be delivered
2220 * before the fork happens. Collect up signals sent to multiple
2221 * processes that happen during the fork and delay them so that
2222 * they appear to happen after the fork.
2223 */
2224 sigemptyset(&delayed.signal);
2225 INIT_HLIST_NODE(&delayed.node);
2226
2227 spin_lock_irq(¤t->sighand->siglock);
2228 if (!(clone_flags & CLONE_THREAD))
2229 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2230 recalc_sigpending();
2231 spin_unlock_irq(¤t->sighand->siglock);
2232 retval = -ERESTARTNOINTR;
2233 if (task_sigpending(current))
2234 goto fork_out;
2235
2236 retval = -ENOMEM;
2237 p = dup_task_struct(current, node);
2238 if (!p)
2239 goto fork_out;
2240 p->flags &= ~PF_KTHREAD;
2241 if (args->kthread)
2242 p->flags |= PF_KTHREAD;
2243 if (args->user_worker) {
2244 /*
2245 * Mark us a user worker, and block any signal that isn't
2246 * fatal or STOP
2247 */
2248 p->flags |= PF_USER_WORKER;
2249 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2250 }
2251 if (args->io_thread)
2252 p->flags |= PF_IO_WORKER;
2253
2254 if (args->name)
2255 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2256
2257 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2258 /*
2259 * Clear TID on mm_release()?
2260 */
2261 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2262
2263 ftrace_graph_init_task(p);
2264
2265 rt_mutex_init_task(p);
2266
2267 lockdep_assert_irqs_enabled();
2268 #ifdef CONFIG_PROVE_LOCKING
2269 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2270 #endif
2271 retval = copy_creds(p, clone_flags);
2272 if (retval < 0)
2273 goto bad_fork_free;
2274
2275 retval = -EAGAIN;
2276 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2277 if (p->real_cred->user != INIT_USER &&
2278 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2279 goto bad_fork_cleanup_count;
2280 }
2281 current->flags &= ~PF_NPROC_EXCEEDED;
2282
2283 /*
2284 * If multiple threads are within copy_process(), then this check
2285 * triggers too late. This doesn't hurt, the check is only there
2286 * to stop root fork bombs.
2287 */
2288 retval = -EAGAIN;
2289 if (data_race(nr_threads >= max_threads))
2290 goto bad_fork_cleanup_count;
2291
2292 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2293 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2294 p->flags |= PF_FORKNOEXEC;
2295 INIT_LIST_HEAD(&p->children);
2296 INIT_LIST_HEAD(&p->sibling);
2297 rcu_copy_process(p);
2298 p->vfork_done = NULL;
2299 spin_lock_init(&p->alloc_lock);
2300
2301 init_sigpending(&p->pending);
2302
2303 p->utime = p->stime = p->gtime = 0;
2304 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2305 p->utimescaled = p->stimescaled = 0;
2306 #endif
2307 prev_cputime_init(&p->prev_cputime);
2308
2309 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2310 seqcount_init(&p->vtime.seqcount);
2311 p->vtime.starttime = 0;
2312 p->vtime.state = VTIME_INACTIVE;
2313 #endif
2314
2315 #ifdef CONFIG_IO_URING
2316 p->io_uring = NULL;
2317 #endif
2318
2319 p->default_timer_slack_ns = current->timer_slack_ns;
2320
2321 #ifdef CONFIG_PSI
2322 p->psi_flags = 0;
2323 #endif
2324
2325 task_io_accounting_init(&p->ioac);
2326 acct_clear_integrals(p);
2327
2328 posix_cputimers_init(&p->posix_cputimers);
2329 tick_dep_init_task(p);
2330
2331 p->io_context = NULL;
2332 audit_set_context(p, NULL);
2333 cgroup_fork(p);
2334 if (args->kthread) {
2335 if (!set_kthread_struct(p))
2336 goto bad_fork_cleanup_delayacct;
2337 }
2338 #ifdef CONFIG_NUMA
2339 p->mempolicy = mpol_dup(p->mempolicy);
2340 if (IS_ERR(p->mempolicy)) {
2341 retval = PTR_ERR(p->mempolicy);
2342 p->mempolicy = NULL;
2343 goto bad_fork_cleanup_delayacct;
2344 }
2345 #endif
2346 #ifdef CONFIG_CPUSETS
2347 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2348 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2349 #endif
2350 #ifdef CONFIG_TRACE_IRQFLAGS
2351 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2352 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2353 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2354 p->softirqs_enabled = 1;
2355 p->softirq_context = 0;
2356 #endif
2357
2358 p->pagefault_disabled = 0;
2359
2360 #ifdef CONFIG_LOCKDEP
2361 lockdep_init_task(p);
2362 #endif
2363
2364 #ifdef CONFIG_DEBUG_MUTEXES
2365 p->blocked_on = NULL; /* not blocked yet */
2366 #endif
2367 #ifdef CONFIG_BCACHE
2368 p->sequential_io = 0;
2369 p->sequential_io_avg = 0;
2370 #endif
2371 #ifdef CONFIG_BPF_SYSCALL
2372 RCU_INIT_POINTER(p->bpf_storage, NULL);
2373 p->bpf_ctx = NULL;
2374 #endif
2375
2376 /* Perform scheduler related setup. Assign this task to a CPU. */
2377 retval = sched_fork(clone_flags, p);
2378 if (retval)
2379 goto bad_fork_cleanup_policy;
2380
2381 retval = perf_event_init_task(p, clone_flags);
2382 if (retval)
2383 goto bad_fork_sched_cancel_fork;
2384 retval = audit_alloc(p);
2385 if (retval)
2386 goto bad_fork_cleanup_perf;
2387 /* copy all the process information */
2388 shm_init_task(p);
2389 retval = security_task_alloc(p, clone_flags);
2390 if (retval)
2391 goto bad_fork_cleanup_audit;
2392 retval = copy_semundo(clone_flags, p);
2393 if (retval)
2394 goto bad_fork_cleanup_security;
2395 retval = copy_files(clone_flags, p, args->no_files);
2396 if (retval)
2397 goto bad_fork_cleanup_semundo;
2398 retval = copy_fs(clone_flags, p);
2399 if (retval)
2400 goto bad_fork_cleanup_files;
2401 retval = copy_sighand(clone_flags, p);
2402 if (retval)
2403 goto bad_fork_cleanup_fs;
2404 retval = copy_signal(clone_flags, p);
2405 if (retval)
2406 goto bad_fork_cleanup_sighand;
2407 retval = copy_mm(clone_flags, p);
2408 if (retval)
2409 goto bad_fork_cleanup_signal;
2410 retval = copy_namespaces(clone_flags, p);
2411 if (retval)
2412 goto bad_fork_cleanup_mm;
2413 retval = copy_io(clone_flags, p);
2414 if (retval)
2415 goto bad_fork_cleanup_namespaces;
2416 retval = copy_thread(p, args);
2417 if (retval)
2418 goto bad_fork_cleanup_io;
2419
2420 stackleak_task_init(p);
2421
2422 if (pid != &init_struct_pid) {
2423 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2424 args->set_tid_size);
2425 if (IS_ERR(pid)) {
2426 retval = PTR_ERR(pid);
2427 goto bad_fork_cleanup_thread;
2428 }
2429 }
2430
2431 /*
2432 * This has to happen after we've potentially unshared the file
2433 * descriptor table (so that the pidfd doesn't leak into the child
2434 * if the fd table isn't shared).
2435 */
2436 if (clone_flags & CLONE_PIDFD) {
2437 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2438
2439 /* Note that no task has been attached to @pid yet. */
2440 retval = __pidfd_prepare(pid, flags, &pidfile);
2441 if (retval < 0)
2442 goto bad_fork_free_pid;
2443 pidfd = retval;
2444
2445 retval = put_user(pidfd, args->pidfd);
2446 if (retval)
2447 goto bad_fork_put_pidfd;
2448 }
2449
2450 #ifdef CONFIG_BLOCK
2451 p->plug = NULL;
2452 #endif
2453 futex_init_task(p);
2454
2455 /*
2456 * sigaltstack should be cleared when sharing the same VM
2457 */
2458 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2459 sas_ss_reset(p);
2460
2461 /*
2462 * Syscall tracing and stepping should be turned off in the
2463 * child regardless of CLONE_PTRACE.
2464 */
2465 user_disable_single_step(p);
2466 clear_task_syscall_work(p, SYSCALL_TRACE);
2467 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2468 clear_task_syscall_work(p, SYSCALL_EMU);
2469 #endif
2470 clear_tsk_latency_tracing(p);
2471
2472 /* ok, now we should be set up.. */
2473 p->pid = pid_nr(pid);
2474 if (clone_flags & CLONE_THREAD) {
2475 p->group_leader = current->group_leader;
2476 p->tgid = current->tgid;
2477 } else {
2478 p->group_leader = p;
2479 p->tgid = p->pid;
2480 }
2481
2482 p->nr_dirtied = 0;
2483 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2484 p->dirty_paused_when = 0;
2485
2486 p->pdeath_signal = 0;
2487 p->task_works = NULL;
2488 clear_posix_cputimers_work(p);
2489
2490 #ifdef CONFIG_KRETPROBES
2491 p->kretprobe_instances.first = NULL;
2492 #endif
2493 #ifdef CONFIG_RETHOOK
2494 p->rethooks.first = NULL;
2495 #endif
2496
2497 /*
2498 * Ensure that the cgroup subsystem policies allow the new process to be
2499 * forked. It should be noted that the new process's css_set can be changed
2500 * between here and cgroup_post_fork() if an organisation operation is in
2501 * progress.
2502 */
2503 retval = cgroup_can_fork(p, args);
2504 if (retval)
2505 goto bad_fork_put_pidfd;
2506
2507 /*
2508 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2509 * the new task on the correct runqueue. All this *before* the task
2510 * becomes visible.
2511 *
2512 * This isn't part of ->can_fork() because while the re-cloning is
2513 * cgroup specific, it unconditionally needs to place the task on a
2514 * runqueue.
2515 */
2516 retval = sched_cgroup_fork(p, args);
2517 if (retval)
2518 goto bad_fork_cancel_cgroup;
2519
2520 /*
2521 * From this point on we must avoid any synchronous user-space
2522 * communication until we take the tasklist-lock. In particular, we do
2523 * not want user-space to be able to predict the process start-time by
2524 * stalling fork(2) after we recorded the start_time but before it is
2525 * visible to the system.
2526 */
2527
2528 p->start_time = ktime_get_ns();
2529 p->start_boottime = ktime_get_boottime_ns();
2530
2531 /*
2532 * Make it visible to the rest of the system, but dont wake it up yet.
2533 * Need tasklist lock for parent etc handling!
2534 */
2535 write_lock_irq(&tasklist_lock);
2536
2537 /* CLONE_PARENT re-uses the old parent */
2538 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2539 p->real_parent = current->real_parent;
2540 p->parent_exec_id = current->parent_exec_id;
2541 if (clone_flags & CLONE_THREAD)
2542 p->exit_signal = -1;
2543 else
2544 p->exit_signal = current->group_leader->exit_signal;
2545 } else {
2546 p->real_parent = current;
2547 p->parent_exec_id = current->self_exec_id;
2548 p->exit_signal = args->exit_signal;
2549 }
2550
2551 klp_copy_process(p);
2552
2553 sched_core_fork(p);
2554
2555 spin_lock(¤t->sighand->siglock);
2556
2557 rv_task_fork(p);
2558
2559 rseq_fork(p, clone_flags);
2560
2561 /* Don't start children in a dying pid namespace */
2562 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2563 retval = -ENOMEM;
2564 goto bad_fork_core_free;
2565 }
2566
2567 /* Let kill terminate clone/fork in the middle */
2568 if (fatal_signal_pending(current)) {
2569 retval = -EINTR;
2570 goto bad_fork_core_free;
2571 }
2572
2573 /* No more failure paths after this point. */
2574
2575 /*
2576 * Copy seccomp details explicitly here, in case they were changed
2577 * before holding sighand lock.
2578 */
2579 copy_seccomp(p);
2580
2581 init_task_pid_links(p);
2582 if (likely(p->pid)) {
2583 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2584
2585 init_task_pid(p, PIDTYPE_PID, pid);
2586 if (thread_group_leader(p)) {
2587 init_task_pid(p, PIDTYPE_TGID, pid);
2588 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2589 init_task_pid(p, PIDTYPE_SID, task_session(current));
2590
2591 if (is_child_reaper(pid)) {
2592 ns_of_pid(pid)->child_reaper = p;
2593 p->signal->flags |= SIGNAL_UNKILLABLE;
2594 }
2595 p->signal->shared_pending.signal = delayed.signal;
2596 p->signal->tty = tty_kref_get(current->signal->tty);
2597 /*
2598 * Inherit has_child_subreaper flag under the same
2599 * tasklist_lock with adding child to the process tree
2600 * for propagate_has_child_subreaper optimization.
2601 */
2602 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2603 p->real_parent->signal->is_child_subreaper;
2604 list_add_tail(&p->sibling, &p->real_parent->children);
2605 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2606 attach_pid(p, PIDTYPE_TGID);
2607 attach_pid(p, PIDTYPE_PGID);
2608 attach_pid(p, PIDTYPE_SID);
2609 __this_cpu_inc(process_counts);
2610 } else {
2611 current->signal->nr_threads++;
2612 current->signal->quick_threads++;
2613 atomic_inc(¤t->signal->live);
2614 refcount_inc(¤t->signal->sigcnt);
2615 task_join_group_stop(p);
2616 list_add_tail_rcu(&p->thread_node,
2617 &p->signal->thread_head);
2618 }
2619 attach_pid(p, PIDTYPE_PID);
2620 nr_threads++;
2621 }
2622 total_forks++;
2623 hlist_del_init(&delayed.node);
2624 spin_unlock(¤t->sighand->siglock);
2625 syscall_tracepoint_update(p);
2626 write_unlock_irq(&tasklist_lock);
2627
2628 if (pidfile)
2629 fd_install(pidfd, pidfile);
2630
2631 proc_fork_connector(p);
2632 sched_post_fork(p);
2633 cgroup_post_fork(p, args);
2634 perf_event_fork(p);
2635
2636 trace_task_newtask(p, clone_flags);
2637 uprobe_copy_process(p, clone_flags);
2638 user_events_fork(p, clone_flags);
2639
2640 copy_oom_score_adj(clone_flags, p);
2641
2642 return p;
2643
2644 bad_fork_core_free:
2645 sched_core_free(p);
2646 spin_unlock(¤t->sighand->siglock);
2647 write_unlock_irq(&tasklist_lock);
2648 bad_fork_cancel_cgroup:
2649 cgroup_cancel_fork(p, args);
2650 bad_fork_put_pidfd:
2651 if (clone_flags & CLONE_PIDFD) {
2652 fput(pidfile);
2653 put_unused_fd(pidfd);
2654 }
2655 bad_fork_free_pid:
2656 if (pid != &init_struct_pid)
2657 free_pid(pid);
2658 bad_fork_cleanup_thread:
2659 exit_thread(p);
2660 bad_fork_cleanup_io:
2661 if (p->io_context)
2662 exit_io_context(p);
2663 bad_fork_cleanup_namespaces:
2664 exit_task_namespaces(p);
2665 bad_fork_cleanup_mm:
2666 if (p->mm) {
2667 mm_clear_owner(p->mm, p);
2668 mmput(p->mm);
2669 }
2670 bad_fork_cleanup_signal:
2671 if (!(clone_flags & CLONE_THREAD))
2672 free_signal_struct(p->signal);
2673 bad_fork_cleanup_sighand:
2674 __cleanup_sighand(p->sighand);
2675 bad_fork_cleanup_fs:
2676 exit_fs(p); /* blocking */
2677 bad_fork_cleanup_files:
2678 exit_files(p); /* blocking */
2679 bad_fork_cleanup_semundo:
2680 exit_sem(p);
2681 bad_fork_cleanup_security:
2682 security_task_free(p);
2683 bad_fork_cleanup_audit:
2684 audit_free(p);
2685 bad_fork_cleanup_perf:
2686 perf_event_free_task(p);
2687 bad_fork_sched_cancel_fork:
2688 sched_cancel_fork(p);
2689 bad_fork_cleanup_policy:
2690 lockdep_free_task(p);
2691 #ifdef CONFIG_NUMA
2692 mpol_put(p->mempolicy);
2693 #endif
2694 bad_fork_cleanup_delayacct:
2695 delayacct_tsk_free(p);
2696 bad_fork_cleanup_count:
2697 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2698 exit_creds(p);
2699 bad_fork_free:
2700 WRITE_ONCE(p->__state, TASK_DEAD);
2701 exit_task_stack_account(p);
2702 put_task_stack(p);
2703 delayed_free_task(p);
2704 fork_out:
2705 spin_lock_irq(¤t->sighand->siglock);
2706 hlist_del_init(&delayed.node);
2707 spin_unlock_irq(¤t->sighand->siglock);
2708 return ERR_PTR(retval);
2709 }
2710
init_idle_pids(struct task_struct * idle)2711 static inline void init_idle_pids(struct task_struct *idle)
2712 {
2713 enum pid_type type;
2714
2715 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2716 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2717 init_task_pid(idle, type, &init_struct_pid);
2718 }
2719 }
2720
idle_dummy(void * dummy)2721 static int idle_dummy(void *dummy)
2722 {
2723 /* This function is never called */
2724 return 0;
2725 }
2726
fork_idle(int cpu)2727 struct task_struct * __init fork_idle(int cpu)
2728 {
2729 struct task_struct *task;
2730 struct kernel_clone_args args = {
2731 .flags = CLONE_VM,
2732 .fn = &idle_dummy,
2733 .fn_arg = NULL,
2734 .kthread = 1,
2735 .idle = 1,
2736 };
2737
2738 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2739 if (!IS_ERR(task)) {
2740 init_idle_pids(task);
2741 init_idle(task, cpu);
2742 }
2743
2744 return task;
2745 }
2746
2747 /*
2748 * This is like kernel_clone(), but shaved down and tailored to just
2749 * creating io_uring workers. It returns a created task, or an error pointer.
2750 * The returned task is inactive, and the caller must fire it up through
2751 * wake_up_new_task(p). All signals are blocked in the created task.
2752 */
create_io_thread(int (* fn)(void *),void * arg,int node)2753 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2754 {
2755 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2756 CLONE_IO;
2757 struct kernel_clone_args args = {
2758 .flags = ((lower_32_bits(flags) | CLONE_VM |
2759 CLONE_UNTRACED) & ~CSIGNAL),
2760 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2761 .fn = fn,
2762 .fn_arg = arg,
2763 .io_thread = 1,
2764 .user_worker = 1,
2765 };
2766
2767 return copy_process(NULL, 0, node, &args);
2768 }
2769
2770 /*
2771 * Ok, this is the main fork-routine.
2772 *
2773 * It copies the process, and if successful kick-starts
2774 * it and waits for it to finish using the VM if required.
2775 *
2776 * args->exit_signal is expected to be checked for sanity by the caller.
2777 */
kernel_clone(struct kernel_clone_args * args)2778 pid_t kernel_clone(struct kernel_clone_args *args)
2779 {
2780 u64 clone_flags = args->flags;
2781 struct completion vfork;
2782 struct pid *pid;
2783 struct task_struct *p;
2784 int trace = 0;
2785 pid_t nr;
2786
2787 /*
2788 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2789 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2790 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2791 * field in struct clone_args and it still doesn't make sense to have
2792 * them both point at the same memory location. Performing this check
2793 * here has the advantage that we don't need to have a separate helper
2794 * to check for legacy clone().
2795 */
2796 if ((clone_flags & CLONE_PIDFD) &&
2797 (clone_flags & CLONE_PARENT_SETTID) &&
2798 (args->pidfd == args->parent_tid))
2799 return -EINVAL;
2800
2801 /*
2802 * Determine whether and which event to report to ptracer. When
2803 * called from kernel_thread or CLONE_UNTRACED is explicitly
2804 * requested, no event is reported; otherwise, report if the event
2805 * for the type of forking is enabled.
2806 */
2807 if (!(clone_flags & CLONE_UNTRACED)) {
2808 if (clone_flags & CLONE_VFORK)
2809 trace = PTRACE_EVENT_VFORK;
2810 else if (args->exit_signal != SIGCHLD)
2811 trace = PTRACE_EVENT_CLONE;
2812 else
2813 trace = PTRACE_EVENT_FORK;
2814
2815 if (likely(!ptrace_event_enabled(current, trace)))
2816 trace = 0;
2817 }
2818
2819 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2820 add_latent_entropy();
2821
2822 if (IS_ERR(p))
2823 return PTR_ERR(p);
2824
2825 /*
2826 * Do this prior waking up the new thread - the thread pointer
2827 * might get invalid after that point, if the thread exits quickly.
2828 */
2829 trace_sched_process_fork(current, p);
2830
2831 pid = get_task_pid(p, PIDTYPE_PID);
2832 nr = pid_vnr(pid);
2833
2834 if (clone_flags & CLONE_PARENT_SETTID)
2835 put_user(nr, args->parent_tid);
2836
2837 if (clone_flags & CLONE_VFORK) {
2838 p->vfork_done = &vfork;
2839 init_completion(&vfork);
2840 get_task_struct(p);
2841 }
2842
2843 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2844 /* lock the task to synchronize with memcg migration */
2845 task_lock(p);
2846 lru_gen_add_mm(p->mm);
2847 task_unlock(p);
2848 }
2849
2850 wake_up_new_task(p);
2851
2852 /* forking complete and child started to run, tell ptracer */
2853 if (unlikely(trace))
2854 ptrace_event_pid(trace, pid);
2855
2856 if (clone_flags & CLONE_VFORK) {
2857 if (!wait_for_vfork_done(p, &vfork))
2858 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2859 }
2860
2861 put_pid(pid);
2862 return nr;
2863 }
2864
2865 /*
2866 * Create a kernel thread.
2867 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2868 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2869 unsigned long flags)
2870 {
2871 struct kernel_clone_args args = {
2872 .flags = ((lower_32_bits(flags) | CLONE_VM |
2873 CLONE_UNTRACED) & ~CSIGNAL),
2874 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2875 .fn = fn,
2876 .fn_arg = arg,
2877 .name = name,
2878 .kthread = 1,
2879 };
2880
2881 return kernel_clone(&args);
2882 }
2883
2884 /*
2885 * Create a user mode thread.
2886 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2887 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2888 {
2889 struct kernel_clone_args args = {
2890 .flags = ((lower_32_bits(flags) | CLONE_VM |
2891 CLONE_UNTRACED) & ~CSIGNAL),
2892 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2893 .fn = fn,
2894 .fn_arg = arg,
2895 };
2896
2897 return kernel_clone(&args);
2898 }
2899
2900 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2901 SYSCALL_DEFINE0(fork)
2902 {
2903 #ifdef CONFIG_MMU
2904 struct kernel_clone_args args = {
2905 .exit_signal = SIGCHLD,
2906 };
2907
2908 return kernel_clone(&args);
2909 #else
2910 /* can not support in nommu mode */
2911 return -EINVAL;
2912 #endif
2913 }
2914 #endif
2915
2916 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2917 SYSCALL_DEFINE0(vfork)
2918 {
2919 struct kernel_clone_args args = {
2920 .flags = CLONE_VFORK | CLONE_VM,
2921 .exit_signal = SIGCHLD,
2922 };
2923
2924 return kernel_clone(&args);
2925 }
2926 #endif
2927
2928 #ifdef __ARCH_WANT_SYS_CLONE
2929 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2930 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2931 int __user *, parent_tidptr,
2932 unsigned long, tls,
2933 int __user *, child_tidptr)
2934 #elif defined(CONFIG_CLONE_BACKWARDS2)
2935 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2936 int __user *, parent_tidptr,
2937 int __user *, child_tidptr,
2938 unsigned long, tls)
2939 #elif defined(CONFIG_CLONE_BACKWARDS3)
2940 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2941 int, stack_size,
2942 int __user *, parent_tidptr,
2943 int __user *, child_tidptr,
2944 unsigned long, tls)
2945 #else
2946 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2947 int __user *, parent_tidptr,
2948 int __user *, child_tidptr,
2949 unsigned long, tls)
2950 #endif
2951 {
2952 struct kernel_clone_args args = {
2953 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2954 .pidfd = parent_tidptr,
2955 .child_tid = child_tidptr,
2956 .parent_tid = parent_tidptr,
2957 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2958 .stack = newsp,
2959 .tls = tls,
2960 };
2961
2962 return kernel_clone(&args);
2963 }
2964 #endif
2965
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2966 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2967 struct clone_args __user *uargs,
2968 size_t usize)
2969 {
2970 int err;
2971 struct clone_args args;
2972 pid_t *kset_tid = kargs->set_tid;
2973
2974 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2975 CLONE_ARGS_SIZE_VER0);
2976 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2977 CLONE_ARGS_SIZE_VER1);
2978 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2979 CLONE_ARGS_SIZE_VER2);
2980 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2981
2982 if (unlikely(usize > PAGE_SIZE))
2983 return -E2BIG;
2984 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2985 return -EINVAL;
2986
2987 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2988 if (err)
2989 return err;
2990
2991 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2992 return -EINVAL;
2993
2994 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2995 return -EINVAL;
2996
2997 if (unlikely(args.set_tid && args.set_tid_size == 0))
2998 return -EINVAL;
2999
3000 /*
3001 * Verify that higher 32bits of exit_signal are unset and that
3002 * it is a valid signal
3003 */
3004 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3005 !valid_signal(args.exit_signal)))
3006 return -EINVAL;
3007
3008 if ((args.flags & CLONE_INTO_CGROUP) &&
3009 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3010 return -EINVAL;
3011
3012 *kargs = (struct kernel_clone_args){
3013 .flags = args.flags,
3014 .pidfd = u64_to_user_ptr(args.pidfd),
3015 .child_tid = u64_to_user_ptr(args.child_tid),
3016 .parent_tid = u64_to_user_ptr(args.parent_tid),
3017 .exit_signal = args.exit_signal,
3018 .stack = args.stack,
3019 .stack_size = args.stack_size,
3020 .tls = args.tls,
3021 .set_tid_size = args.set_tid_size,
3022 .cgroup = args.cgroup,
3023 };
3024
3025 if (args.set_tid &&
3026 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3027 (kargs->set_tid_size * sizeof(pid_t))))
3028 return -EFAULT;
3029
3030 kargs->set_tid = kset_tid;
3031
3032 return 0;
3033 }
3034
3035 /**
3036 * clone3_stack_valid - check and prepare stack
3037 * @kargs: kernel clone args
3038 *
3039 * Verify that the stack arguments userspace gave us are sane.
3040 * In addition, set the stack direction for userspace since it's easy for us to
3041 * determine.
3042 */
clone3_stack_valid(struct kernel_clone_args * kargs)3043 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3044 {
3045 if (kargs->stack == 0) {
3046 if (kargs->stack_size > 0)
3047 return false;
3048 } else {
3049 if (kargs->stack_size == 0)
3050 return false;
3051
3052 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3053 return false;
3054
3055 #if !defined(CONFIG_STACK_GROWSUP)
3056 kargs->stack += kargs->stack_size;
3057 #endif
3058 }
3059
3060 return true;
3061 }
3062
clone3_args_valid(struct kernel_clone_args * kargs)3063 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3064 {
3065 /* Verify that no unknown flags are passed along. */
3066 if (kargs->flags &
3067 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3068 return false;
3069
3070 /*
3071 * - make the CLONE_DETACHED bit reusable for clone3
3072 * - make the CSIGNAL bits reusable for clone3
3073 */
3074 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3075 return false;
3076
3077 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3078 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3079 return false;
3080
3081 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3082 kargs->exit_signal)
3083 return false;
3084
3085 if (!clone3_stack_valid(kargs))
3086 return false;
3087
3088 return true;
3089 }
3090
3091 /**
3092 * sys_clone3 - create a new process with specific properties
3093 * @uargs: argument structure
3094 * @size: size of @uargs
3095 *
3096 * clone3() is the extensible successor to clone()/clone2().
3097 * It takes a struct as argument that is versioned by its size.
3098 *
3099 * Return: On success, a positive PID for the child process.
3100 * On error, a negative errno number.
3101 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3102 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3103 {
3104 int err;
3105
3106 struct kernel_clone_args kargs;
3107 pid_t set_tid[MAX_PID_NS_LEVEL];
3108
3109 #ifdef __ARCH_BROKEN_SYS_CLONE3
3110 #warning clone3() entry point is missing, please fix
3111 return -ENOSYS;
3112 #endif
3113
3114 kargs.set_tid = set_tid;
3115
3116 err = copy_clone_args_from_user(&kargs, uargs, size);
3117 if (err)
3118 return err;
3119
3120 if (!clone3_args_valid(&kargs))
3121 return -EINVAL;
3122
3123 return kernel_clone(&kargs);
3124 }
3125
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3126 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3127 {
3128 struct task_struct *leader, *parent, *child;
3129 int res;
3130
3131 read_lock(&tasklist_lock);
3132 leader = top = top->group_leader;
3133 down:
3134 for_each_thread(leader, parent) {
3135 list_for_each_entry(child, &parent->children, sibling) {
3136 res = visitor(child, data);
3137 if (res) {
3138 if (res < 0)
3139 goto out;
3140 leader = child;
3141 goto down;
3142 }
3143 up:
3144 ;
3145 }
3146 }
3147
3148 if (leader != top) {
3149 child = leader;
3150 parent = child->real_parent;
3151 leader = parent->group_leader;
3152 goto up;
3153 }
3154 out:
3155 read_unlock(&tasklist_lock);
3156 }
3157
3158 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3159 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3160 #endif
3161
sighand_ctor(void * data)3162 static void sighand_ctor(void *data)
3163 {
3164 struct sighand_struct *sighand = data;
3165
3166 spin_lock_init(&sighand->siglock);
3167 init_waitqueue_head(&sighand->signalfd_wqh);
3168 }
3169
mm_cache_init(void)3170 void __init mm_cache_init(void)
3171 {
3172 unsigned int mm_size;
3173
3174 /*
3175 * The mm_cpumask is located at the end of mm_struct, and is
3176 * dynamically sized based on the maximum CPU number this system
3177 * can have, taking hotplug into account (nr_cpu_ids).
3178 */
3179 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3180
3181 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3182 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3183 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3184 offsetof(struct mm_struct, saved_auxv),
3185 sizeof_field(struct mm_struct, saved_auxv),
3186 NULL);
3187 }
3188
proc_caches_init(void)3189 void __init proc_caches_init(void)
3190 {
3191 sighand_cachep = kmem_cache_create("sighand_cache",
3192 sizeof(struct sighand_struct), 0,
3193 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3194 SLAB_ACCOUNT, sighand_ctor);
3195 signal_cachep = kmem_cache_create("signal_cache",
3196 sizeof(struct signal_struct), 0,
3197 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3198 NULL);
3199 files_cachep = kmem_cache_create("files_cache",
3200 sizeof(struct files_struct), 0,
3201 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3202 NULL);
3203 fs_cachep = kmem_cache_create("fs_cache",
3204 sizeof(struct fs_struct), 0,
3205 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3206 NULL);
3207
3208 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3209 #ifdef CONFIG_PER_VMA_LOCK
3210 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3211 #endif
3212 mmap_init();
3213 nsproxy_cache_init();
3214 }
3215
3216 /*
3217 * Check constraints on flags passed to the unshare system call.
3218 */
check_unshare_flags(unsigned long unshare_flags)3219 static int check_unshare_flags(unsigned long unshare_flags)
3220 {
3221 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3222 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3223 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3224 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3225 CLONE_NEWTIME))
3226 return -EINVAL;
3227 /*
3228 * Not implemented, but pretend it works if there is nothing
3229 * to unshare. Note that unsharing the address space or the
3230 * signal handlers also need to unshare the signal queues (aka
3231 * CLONE_THREAD).
3232 */
3233 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3234 if (!thread_group_empty(current))
3235 return -EINVAL;
3236 }
3237 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3238 if (refcount_read(¤t->sighand->count) > 1)
3239 return -EINVAL;
3240 }
3241 if (unshare_flags & CLONE_VM) {
3242 if (!current_is_single_threaded())
3243 return -EINVAL;
3244 }
3245
3246 return 0;
3247 }
3248
3249 /*
3250 * Unshare the filesystem structure if it is being shared
3251 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3252 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3253 {
3254 struct fs_struct *fs = current->fs;
3255
3256 if (!(unshare_flags & CLONE_FS) || !fs)
3257 return 0;
3258
3259 /* don't need lock here; in the worst case we'll do useless copy */
3260 if (fs->users == 1)
3261 return 0;
3262
3263 *new_fsp = copy_fs_struct(fs);
3264 if (!*new_fsp)
3265 return -ENOMEM;
3266
3267 return 0;
3268 }
3269
3270 /*
3271 * Unshare file descriptor table if it is being shared
3272 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3273 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3274 {
3275 struct files_struct *fd = current->files;
3276
3277 if ((unshare_flags & CLONE_FILES) &&
3278 (fd && atomic_read(&fd->count) > 1)) {
3279 fd = dup_fd(fd, NULL);
3280 if (IS_ERR(fd))
3281 return PTR_ERR(fd);
3282 *new_fdp = fd;
3283 }
3284
3285 return 0;
3286 }
3287
3288 /*
3289 * unshare allows a process to 'unshare' part of the process
3290 * context which was originally shared using clone. copy_*
3291 * functions used by kernel_clone() cannot be used here directly
3292 * because they modify an inactive task_struct that is being
3293 * constructed. Here we are modifying the current, active,
3294 * task_struct.
3295 */
ksys_unshare(unsigned long unshare_flags)3296 int ksys_unshare(unsigned long unshare_flags)
3297 {
3298 struct fs_struct *fs, *new_fs = NULL;
3299 struct files_struct *new_fd = NULL;
3300 struct cred *new_cred = NULL;
3301 struct nsproxy *new_nsproxy = NULL;
3302 int do_sysvsem = 0;
3303 int err;
3304
3305 /*
3306 * If unsharing a user namespace must also unshare the thread group
3307 * and unshare the filesystem root and working directories.
3308 */
3309 if (unshare_flags & CLONE_NEWUSER)
3310 unshare_flags |= CLONE_THREAD | CLONE_FS;
3311 /*
3312 * If unsharing vm, must also unshare signal handlers.
3313 */
3314 if (unshare_flags & CLONE_VM)
3315 unshare_flags |= CLONE_SIGHAND;
3316 /*
3317 * If unsharing a signal handlers, must also unshare the signal queues.
3318 */
3319 if (unshare_flags & CLONE_SIGHAND)
3320 unshare_flags |= CLONE_THREAD;
3321 /*
3322 * If unsharing namespace, must also unshare filesystem information.
3323 */
3324 if (unshare_flags & CLONE_NEWNS)
3325 unshare_flags |= CLONE_FS;
3326
3327 err = check_unshare_flags(unshare_flags);
3328 if (err)
3329 goto bad_unshare_out;
3330 /*
3331 * CLONE_NEWIPC must also detach from the undolist: after switching
3332 * to a new ipc namespace, the semaphore arrays from the old
3333 * namespace are unreachable.
3334 */
3335 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3336 do_sysvsem = 1;
3337 err = unshare_fs(unshare_flags, &new_fs);
3338 if (err)
3339 goto bad_unshare_out;
3340 err = unshare_fd(unshare_flags, &new_fd);
3341 if (err)
3342 goto bad_unshare_cleanup_fs;
3343 err = unshare_userns(unshare_flags, &new_cred);
3344 if (err)
3345 goto bad_unshare_cleanup_fd;
3346 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3347 new_cred, new_fs);
3348 if (err)
3349 goto bad_unshare_cleanup_cred;
3350
3351 if (new_cred) {
3352 err = set_cred_ucounts(new_cred);
3353 if (err)
3354 goto bad_unshare_cleanup_cred;
3355 }
3356
3357 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3358 if (do_sysvsem) {
3359 /*
3360 * CLONE_SYSVSEM is equivalent to sys_exit().
3361 */
3362 exit_sem(current);
3363 }
3364 if (unshare_flags & CLONE_NEWIPC) {
3365 /* Orphan segments in old ns (see sem above). */
3366 exit_shm(current);
3367 shm_init_task(current);
3368 }
3369
3370 if (new_nsproxy)
3371 switch_task_namespaces(current, new_nsproxy);
3372
3373 task_lock(current);
3374
3375 if (new_fs) {
3376 fs = current->fs;
3377 spin_lock(&fs->lock);
3378 current->fs = new_fs;
3379 if (--fs->users)
3380 new_fs = NULL;
3381 else
3382 new_fs = fs;
3383 spin_unlock(&fs->lock);
3384 }
3385
3386 if (new_fd)
3387 swap(current->files, new_fd);
3388
3389 task_unlock(current);
3390
3391 if (new_cred) {
3392 /* Install the new user namespace */
3393 commit_creds(new_cred);
3394 new_cred = NULL;
3395 }
3396 }
3397
3398 perf_event_namespaces(current);
3399
3400 bad_unshare_cleanup_cred:
3401 if (new_cred)
3402 put_cred(new_cred);
3403 bad_unshare_cleanup_fd:
3404 if (new_fd)
3405 put_files_struct(new_fd);
3406
3407 bad_unshare_cleanup_fs:
3408 if (new_fs)
3409 free_fs_struct(new_fs);
3410
3411 bad_unshare_out:
3412 return err;
3413 }
3414
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3415 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3416 {
3417 return ksys_unshare(unshare_flags);
3418 }
3419
3420 /*
3421 * Helper to unshare the files of the current task.
3422 * We don't want to expose copy_files internals to
3423 * the exec layer of the kernel.
3424 */
3425
unshare_files(void)3426 int unshare_files(void)
3427 {
3428 struct task_struct *task = current;
3429 struct files_struct *old, *copy = NULL;
3430 int error;
3431
3432 error = unshare_fd(CLONE_FILES, ©);
3433 if (error || !copy)
3434 return error;
3435
3436 old = task->files;
3437 task_lock(task);
3438 task->files = copy;
3439 task_unlock(task);
3440 put_files_struct(old);
3441 return 0;
3442 }
3443
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3444 int sysctl_max_threads(const struct ctl_table *table, int write,
3445 void *buffer, size_t *lenp, loff_t *ppos)
3446 {
3447 struct ctl_table t;
3448 int ret;
3449 int threads = max_threads;
3450 int min = 1;
3451 int max = MAX_THREADS;
3452
3453 t = *table;
3454 t.data = &threads;
3455 t.extra1 = &min;
3456 t.extra2 = &max;
3457
3458 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3459 if (ret || !write)
3460 return ret;
3461
3462 max_threads = threads;
3463
3464 return 0;
3465 }
3466