1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CaptureTracking.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <optional>
61
62 using namespace llvm;
63
64 #define DEBUG_TYPE "memcpyopt"
65
66 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls(
67 "enable-memcpyopt-without-libcalls", cl::Hidden,
68 cl::desc("Enable memcpyopt even when libcalls are disabled"));
69
70 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
71 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
72 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
73 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
74 STATISTIC(NumCallSlot, "Number of call slot optimizations performed");
75
76 namespace {
77
78 /// Represents a range of memset'd bytes with the ByteVal value.
79 /// This allows us to analyze stores like:
80 /// store 0 -> P+1
81 /// store 0 -> P+0
82 /// store 0 -> P+3
83 /// store 0 -> P+2
84 /// which sometimes happens with stores to arrays of structs etc. When we see
85 /// the first store, we make a range [1, 2). The second store extends the range
86 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
87 /// two ranges into [0, 3) which is memset'able.
88 struct MemsetRange {
89 // Start/End - A semi range that describes the span that this range covers.
90 // The range is closed at the start and open at the end: [Start, End).
91 int64_t Start, End;
92
93 /// StartPtr - The getelementptr instruction that points to the start of the
94 /// range.
95 Value *StartPtr;
96
97 /// Alignment - The known alignment of the first store.
98 MaybeAlign Alignment;
99
100 /// TheStores - The actual stores that make up this range.
101 SmallVector<Instruction*, 16> TheStores;
102
103 bool isProfitableToUseMemset(const DataLayout &DL) const;
104 };
105
106 } // end anonymous namespace
107
isProfitableToUseMemset(const DataLayout & DL) const108 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
109 // If we found more than 4 stores to merge or 16 bytes, use memset.
110 if (TheStores.size() >= 4 || End-Start >= 16) return true;
111
112 // If there is nothing to merge, don't do anything.
113 if (TheStores.size() < 2) return false;
114
115 // If any of the stores are a memset, then it is always good to extend the
116 // memset.
117 for (Instruction *SI : TheStores)
118 if (!isa<StoreInst>(SI))
119 return true;
120
121 // Assume that the code generator is capable of merging pairs of stores
122 // together if it wants to.
123 if (TheStores.size() == 2) return false;
124
125 // If we have fewer than 8 stores, it can still be worthwhile to do this.
126 // For example, merging 4 i8 stores into an i32 store is useful almost always.
127 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
128 // memset will be split into 2 32-bit stores anyway) and doing so can
129 // pessimize the llvm optimizer.
130 //
131 // Since we don't have perfect knowledge here, make some assumptions: assume
132 // the maximum GPR width is the same size as the largest legal integer
133 // size. If so, check to see whether we will end up actually reducing the
134 // number of stores used.
135 unsigned Bytes = unsigned(End-Start);
136 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
137 if (MaxIntSize == 0)
138 MaxIntSize = 1;
139 unsigned NumPointerStores = Bytes / MaxIntSize;
140
141 // Assume the remaining bytes if any are done a byte at a time.
142 unsigned NumByteStores = Bytes % MaxIntSize;
143
144 // If we will reduce the # stores (according to this heuristic), do the
145 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
146 // etc.
147 return TheStores.size() > NumPointerStores+NumByteStores;
148 }
149
150 namespace {
151
152 class MemsetRanges {
153 using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
154
155 /// A sorted list of the memset ranges.
156 SmallVector<MemsetRange, 8> Ranges;
157
158 const DataLayout &DL;
159
160 public:
MemsetRanges(const DataLayout & DL)161 MemsetRanges(const DataLayout &DL) : DL(DL) {}
162
163 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
164
begin() const165 const_iterator begin() const { return Ranges.begin(); }
end() const166 const_iterator end() const { return Ranges.end(); }
empty() const167 bool empty() const { return Ranges.empty(); }
168
addInst(int64_t OffsetFromFirst,Instruction * Inst)169 void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
170 if (auto *SI = dyn_cast<StoreInst>(Inst))
171 addStore(OffsetFromFirst, SI);
172 else
173 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
174 }
175
addStore(int64_t OffsetFromFirst,StoreInst * SI)176 void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
177 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
178 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
179 addRange(OffsetFromFirst, StoreSize.getFixedValue(),
180 SI->getPointerOperand(), SI->getAlign(), SI);
181 }
182
addMemSet(int64_t OffsetFromFirst,MemSetInst * MSI)183 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
184 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
185 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI);
186 }
187
188 void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment,
189 Instruction *Inst);
190 };
191
192 } // end anonymous namespace
193
194 /// Add a new store to the MemsetRanges data structure. This adds a
195 /// new range for the specified store at the specified offset, merging into
196 /// existing ranges as appropriate.
addRange(int64_t Start,int64_t Size,Value * Ptr,MaybeAlign Alignment,Instruction * Inst)197 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
198 MaybeAlign Alignment, Instruction *Inst) {
199 int64_t End = Start+Size;
200
201 range_iterator I = partition_point(
202 Ranges, [=](const MemsetRange &O) { return O.End < Start; });
203
204 // We now know that I == E, in which case we didn't find anything to merge
205 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
206 // to insert a new range. Handle this now.
207 if (I == Ranges.end() || End < I->Start) {
208 MemsetRange &R = *Ranges.insert(I, MemsetRange());
209 R.Start = Start;
210 R.End = End;
211 R.StartPtr = Ptr;
212 R.Alignment = Alignment;
213 R.TheStores.push_back(Inst);
214 return;
215 }
216
217 // This store overlaps with I, add it.
218 I->TheStores.push_back(Inst);
219
220 // At this point, we may have an interval that completely contains our store.
221 // If so, just add it to the interval and return.
222 if (I->Start <= Start && I->End >= End)
223 return;
224
225 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
226 // but is not entirely contained within the range.
227
228 // See if the range extends the start of the range. In this case, it couldn't
229 // possibly cause it to join the prior range, because otherwise we would have
230 // stopped on *it*.
231 if (Start < I->Start) {
232 I->Start = Start;
233 I->StartPtr = Ptr;
234 I->Alignment = Alignment;
235 }
236
237 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
238 // is in or right at the end of I), and that End >= I->Start. Extend I out to
239 // End.
240 if (End > I->End) {
241 I->End = End;
242 range_iterator NextI = I;
243 while (++NextI != Ranges.end() && End >= NextI->Start) {
244 // Merge the range in.
245 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
246 if (NextI->End > I->End)
247 I->End = NextI->End;
248 Ranges.erase(NextI);
249 NextI = I;
250 }
251 }
252 }
253
254 //===----------------------------------------------------------------------===//
255 // MemCpyOptLegacyPass Pass
256 //===----------------------------------------------------------------------===//
257
258 namespace {
259
260 class MemCpyOptLegacyPass : public FunctionPass {
261 MemCpyOptPass Impl;
262
263 public:
264 static char ID; // Pass identification, replacement for typeid
265
MemCpyOptLegacyPass()266 MemCpyOptLegacyPass() : FunctionPass(ID) {
267 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
268 }
269
270 bool runOnFunction(Function &F) override;
271
272 private:
273 // This transformation requires dominator postdominator info
getAnalysisUsage(AnalysisUsage & AU) const274 void getAnalysisUsage(AnalysisUsage &AU) const override {
275 AU.setPreservesCFG();
276 AU.addRequired<AssumptionCacheTracker>();
277 AU.addRequired<DominatorTreeWrapperPass>();
278 AU.addPreserved<DominatorTreeWrapperPass>();
279 AU.addPreserved<GlobalsAAWrapperPass>();
280 AU.addRequired<TargetLibraryInfoWrapperPass>();
281 AU.addRequired<AAResultsWrapperPass>();
282 AU.addPreserved<AAResultsWrapperPass>();
283 AU.addRequired<MemorySSAWrapperPass>();
284 AU.addPreserved<MemorySSAWrapperPass>();
285 }
286 };
287
288 } // end anonymous namespace
289
290 char MemCpyOptLegacyPass::ID = 0;
291
292 /// The public interface to this file...
createMemCpyOptPass()293 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
294
295 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
296 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)297 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
298 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
299 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
300 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
301 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
302 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
303 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
304 false, false)
305
306 // Check that V is either not accessible by the caller, or unwinding cannot
307 // occur between Start and End.
308 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
309 Instruction *End) {
310 assert(Start->getParent() == End->getParent() && "Must be in same block");
311 // Function can't unwind, so it also can't be visible through unwinding.
312 if (Start->getFunction()->doesNotThrow())
313 return false;
314
315 // Object is not visible on unwind.
316 // TODO: Support RequiresNoCaptureBeforeUnwind case.
317 bool RequiresNoCaptureBeforeUnwind;
318 if (isNotVisibleOnUnwind(getUnderlyingObject(V),
319 RequiresNoCaptureBeforeUnwind) &&
320 !RequiresNoCaptureBeforeUnwind)
321 return false;
322
323 // Check whether there are any unwinding instructions in the range.
324 return any_of(make_range(Start->getIterator(), End->getIterator()),
325 [](const Instruction &I) { return I.mayThrow(); });
326 }
327
eraseInstruction(Instruction * I)328 void MemCpyOptPass::eraseInstruction(Instruction *I) {
329 MSSAU->removeMemoryAccess(I);
330 I->eraseFromParent();
331 }
332
333 // Check for mod or ref of Loc between Start and End, excluding both boundaries.
334 // Start and End must be in the same block.
335 // If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start
336 // intrinsic and store it inside SkippedLifetimeStart.
accessedBetween(BatchAAResults & AA,MemoryLocation Loc,const MemoryUseOrDef * Start,const MemoryUseOrDef * End,Instruction ** SkippedLifetimeStart=nullptr)337 static bool accessedBetween(BatchAAResults &AA, MemoryLocation Loc,
338 const MemoryUseOrDef *Start,
339 const MemoryUseOrDef *End,
340 Instruction **SkippedLifetimeStart = nullptr) {
341 assert(Start->getBlock() == End->getBlock() && "Only local supported");
342 for (const MemoryAccess &MA :
343 make_range(++Start->getIterator(), End->getIterator())) {
344 Instruction *I = cast<MemoryUseOrDef>(MA).getMemoryInst();
345 if (isModOrRefSet(AA.getModRefInfo(I, Loc))) {
346 auto *II = dyn_cast<IntrinsicInst>(I);
347 if (II && II->getIntrinsicID() == Intrinsic::lifetime_start &&
348 SkippedLifetimeStart && !*SkippedLifetimeStart) {
349 *SkippedLifetimeStart = I;
350 continue;
351 }
352
353 return true;
354 }
355 }
356 return false;
357 }
358
359 // Check for mod of Loc between Start and End, excluding both boundaries.
360 // Start and End can be in different blocks.
writtenBetween(MemorySSA * MSSA,BatchAAResults & AA,MemoryLocation Loc,const MemoryUseOrDef * Start,const MemoryUseOrDef * End)361 static bool writtenBetween(MemorySSA *MSSA, BatchAAResults &AA,
362 MemoryLocation Loc, const MemoryUseOrDef *Start,
363 const MemoryUseOrDef *End) {
364 if (isa<MemoryUse>(End)) {
365 // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes.
366 // Manually check read accesses between Start and End, if they are in the
367 // same block, for clobbers. Otherwise assume Loc is clobbered.
368 return Start->getBlock() != End->getBlock() ||
369 any_of(
370 make_range(std::next(Start->getIterator()), End->getIterator()),
371 [&AA, Loc](const MemoryAccess &Acc) {
372 if (isa<MemoryUse>(&Acc))
373 return false;
374 Instruction *AccInst =
375 cast<MemoryUseOrDef>(&Acc)->getMemoryInst();
376 return isModSet(AA.getModRefInfo(AccInst, Loc));
377 });
378 }
379
380 // TODO: Only walk until we hit Start.
381 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
382 End->getDefiningAccess(), Loc, AA);
383 return !MSSA->dominates(Clobber, Start);
384 }
385
386 /// When scanning forward over instructions, we look for some other patterns to
387 /// fold away. In particular, this looks for stores to neighboring locations of
388 /// memory. If it sees enough consecutive ones, it attempts to merge them
389 /// together into a memcpy/memset.
tryMergingIntoMemset(Instruction * StartInst,Value * StartPtr,Value * ByteVal)390 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
391 Value *StartPtr,
392 Value *ByteVal) {
393 const DataLayout &DL = StartInst->getModule()->getDataLayout();
394
395 // We can't track scalable types
396 if (auto *SI = dyn_cast<StoreInst>(StartInst))
397 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
398 return nullptr;
399
400 // Okay, so we now have a single store that can be splatable. Scan to find
401 // all subsequent stores of the same value to offset from the same pointer.
402 // Join these together into ranges, so we can decide whether contiguous blocks
403 // are stored.
404 MemsetRanges Ranges(DL);
405
406 BasicBlock::iterator BI(StartInst);
407
408 // Keeps track of the last memory use or def before the insertion point for
409 // the new memset. The new MemoryDef for the inserted memsets will be inserted
410 // after MemInsertPoint. It points to either LastMemDef or to the last user
411 // before the insertion point of the memset, if there are any such users.
412 MemoryUseOrDef *MemInsertPoint = nullptr;
413 // Keeps track of the last MemoryDef between StartInst and the insertion point
414 // for the new memset. This will become the defining access of the inserted
415 // memsets.
416 MemoryDef *LastMemDef = nullptr;
417 for (++BI; !BI->isTerminator(); ++BI) {
418 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
419 MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
420 if (CurrentAcc) {
421 MemInsertPoint = CurrentAcc;
422 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
423 LastMemDef = CurrentDef;
424 }
425
426 // Calls that only access inaccessible memory do not block merging
427 // accessible stores.
428 if (auto *CB = dyn_cast<CallBase>(BI)) {
429 if (CB->onlyAccessesInaccessibleMemory())
430 continue;
431 }
432
433 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
434 // If the instruction is readnone, ignore it, otherwise bail out. We
435 // don't even allow readonly here because we don't want something like:
436 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
437 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
438 break;
439 continue;
440 }
441
442 if (auto *NextStore = dyn_cast<StoreInst>(BI)) {
443 // If this is a store, see if we can merge it in.
444 if (!NextStore->isSimple()) break;
445
446 Value *StoredVal = NextStore->getValueOperand();
447
448 // Don't convert stores of non-integral pointer types to memsets (which
449 // stores integers).
450 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
451 break;
452
453 // We can't track ranges involving scalable types.
454 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
455 break;
456
457 // Check to see if this stored value is of the same byte-splattable value.
458 Value *StoredByte = isBytewiseValue(StoredVal, DL);
459 if (isa<UndefValue>(ByteVal) && StoredByte)
460 ByteVal = StoredByte;
461 if (ByteVal != StoredByte)
462 break;
463
464 // Check to see if this store is to a constant offset from the start ptr.
465 std::optional<int64_t> Offset =
466 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
467 if (!Offset)
468 break;
469
470 Ranges.addStore(*Offset, NextStore);
471 } else {
472 auto *MSI = cast<MemSetInst>(BI);
473
474 if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
475 !isa<ConstantInt>(MSI->getLength()))
476 break;
477
478 // Check to see if this store is to a constant offset from the start ptr.
479 std::optional<int64_t> Offset =
480 isPointerOffset(StartPtr, MSI->getDest(), DL);
481 if (!Offset)
482 break;
483
484 Ranges.addMemSet(*Offset, MSI);
485 }
486 }
487
488 // If we have no ranges, then we just had a single store with nothing that
489 // could be merged in. This is a very common case of course.
490 if (Ranges.empty())
491 return nullptr;
492
493 // If we had at least one store that could be merged in, add the starting
494 // store as well. We try to avoid this unless there is at least something
495 // interesting as a small compile-time optimization.
496 Ranges.addInst(0, StartInst);
497
498 // If we create any memsets, we put it right before the first instruction that
499 // isn't part of the memset block. This ensure that the memset is dominated
500 // by any addressing instruction needed by the start of the block.
501 IRBuilder<> Builder(&*BI);
502
503 // Now that we have full information about ranges, loop over the ranges and
504 // emit memset's for anything big enough to be worthwhile.
505 Instruction *AMemSet = nullptr;
506 for (const MemsetRange &Range : Ranges) {
507 if (Range.TheStores.size() == 1) continue;
508
509 // If it is profitable to lower this range to memset, do so now.
510 if (!Range.isProfitableToUseMemset(DL))
511 continue;
512
513 // Otherwise, we do want to transform this! Create a new memset.
514 // Get the starting pointer of the block.
515 StartPtr = Range.StartPtr;
516
517 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
518 Range.Alignment);
519 AMemSet->mergeDIAssignID(Range.TheStores);
520
521 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
522 : Range.TheStores) dbgs()
523 << *SI << '\n';
524 dbgs() << "With: " << *AMemSet << '\n');
525 if (!Range.TheStores.empty())
526 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
527
528 assert(LastMemDef && MemInsertPoint &&
529 "Both LastMemDef and MemInsertPoint need to be set");
530 auto *NewDef =
531 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
532 ? MSSAU->createMemoryAccessBefore(
533 AMemSet, LastMemDef, MemInsertPoint)
534 : MSSAU->createMemoryAccessAfter(
535 AMemSet, LastMemDef, MemInsertPoint));
536 MSSAU->insertDef(NewDef, /*RenameUses=*/true);
537 LastMemDef = NewDef;
538 MemInsertPoint = NewDef;
539
540 // Zap all the stores.
541 for (Instruction *SI : Range.TheStores)
542 eraseInstruction(SI);
543
544 ++NumMemSetInfer;
545 }
546
547 return AMemSet;
548 }
549
550 // This method try to lift a store instruction before position P.
551 // It will lift the store and its argument + that anything that
552 // may alias with these.
553 // The method returns true if it was successful.
moveUp(StoreInst * SI,Instruction * P,const LoadInst * LI)554 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
555 // If the store alias this position, early bail out.
556 MemoryLocation StoreLoc = MemoryLocation::get(SI);
557 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
558 return false;
559
560 // Keep track of the arguments of all instruction we plan to lift
561 // so we can make sure to lift them as well if appropriate.
562 DenseSet<Instruction*> Args;
563 auto AddArg = [&](Value *Arg) {
564 auto *I = dyn_cast<Instruction>(Arg);
565 if (I && I->getParent() == SI->getParent()) {
566 // Cannot hoist user of P above P
567 if (I == P) return false;
568 Args.insert(I);
569 }
570 return true;
571 };
572 if (!AddArg(SI->getPointerOperand()))
573 return false;
574
575 // Instruction to lift before P.
576 SmallVector<Instruction *, 8> ToLift{SI};
577
578 // Memory locations of lifted instructions.
579 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
580
581 // Lifted calls.
582 SmallVector<const CallBase *, 8> Calls;
583
584 const MemoryLocation LoadLoc = MemoryLocation::get(LI);
585
586 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
587 auto *C = &*I;
588
589 // Make sure hoisting does not perform a store that was not guaranteed to
590 // happen.
591 if (!isGuaranteedToTransferExecutionToSuccessor(C))
592 return false;
593
594 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, std::nullopt));
595
596 bool NeedLift = false;
597 if (Args.erase(C))
598 NeedLift = true;
599 else if (MayAlias) {
600 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
601 return isModOrRefSet(AA->getModRefInfo(C, ML));
602 });
603
604 if (!NeedLift)
605 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
606 return isModOrRefSet(AA->getModRefInfo(C, Call));
607 });
608 }
609
610 if (!NeedLift)
611 continue;
612
613 if (MayAlias) {
614 // Since LI is implicitly moved downwards past the lifted instructions,
615 // none of them may modify its source.
616 if (isModSet(AA->getModRefInfo(C, LoadLoc)))
617 return false;
618 else if (const auto *Call = dyn_cast<CallBase>(C)) {
619 // If we can't lift this before P, it's game over.
620 if (isModOrRefSet(AA->getModRefInfo(P, Call)))
621 return false;
622
623 Calls.push_back(Call);
624 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
625 // If we can't lift this before P, it's game over.
626 auto ML = MemoryLocation::get(C);
627 if (isModOrRefSet(AA->getModRefInfo(P, ML)))
628 return false;
629
630 MemLocs.push_back(ML);
631 } else
632 // We don't know how to lift this instruction.
633 return false;
634 }
635
636 ToLift.push_back(C);
637 for (Value *Op : C->operands())
638 if (!AddArg(Op))
639 return false;
640 }
641
642 // Find MSSA insertion point. Normally P will always have a corresponding
643 // memory access before which we can insert. However, with non-standard AA
644 // pipelines, there may be a mismatch between AA and MSSA, in which case we
645 // will scan for a memory access before P. In either case, we know for sure
646 // that at least the load will have a memory access.
647 // TODO: Simplify this once P will be determined by MSSA, in which case the
648 // discrepancy can no longer occur.
649 MemoryUseOrDef *MemInsertPoint = nullptr;
650 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
651 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
652 } else {
653 const Instruction *ConstP = P;
654 for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
655 ++LI->getReverseIterator())) {
656 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
657 MemInsertPoint = MA;
658 break;
659 }
660 }
661 }
662
663 // We made it, we need to lift.
664 for (auto *I : llvm::reverse(ToLift)) {
665 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
666 I->moveBefore(P);
667 assert(MemInsertPoint && "Must have found insert point");
668 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
669 MSSAU->moveAfter(MA, MemInsertPoint);
670 MemInsertPoint = MA;
671 }
672 }
673
674 return true;
675 }
676
processStoreOfLoad(StoreInst * SI,LoadInst * LI,const DataLayout & DL,BasicBlock::iterator & BBI)677 bool MemCpyOptPass::processStoreOfLoad(StoreInst *SI, LoadInst *LI,
678 const DataLayout &DL,
679 BasicBlock::iterator &BBI) {
680 if (!LI->isSimple() || !LI->hasOneUse() ||
681 LI->getParent() != SI->getParent())
682 return false;
683
684 auto *T = LI->getType();
685 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if
686 // the corresponding libcalls are not available.
687 // TODO: We should really distinguish between libcall availability and
688 // our ability to introduce intrinsics.
689 if (T->isAggregateType() &&
690 (EnableMemCpyOptWithoutLibcalls ||
691 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
692 MemoryLocation LoadLoc = MemoryLocation::get(LI);
693
694 // We use alias analysis to check if an instruction may store to
695 // the memory we load from in between the load and the store. If
696 // such an instruction is found, we try to promote there instead
697 // of at the store position.
698 // TODO: Can use MSSA for this.
699 Instruction *P = SI;
700 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
701 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
702 P = &I;
703 break;
704 }
705 }
706
707 // We found an instruction that may write to the loaded memory.
708 // We can try to promote at this position instead of the store
709 // position if nothing aliases the store memory after this and the store
710 // destination is not in the range.
711 if (P && P != SI) {
712 if (!moveUp(SI, P, LI))
713 P = nullptr;
714 }
715
716 // If a valid insertion position is found, then we can promote
717 // the load/store pair to a memcpy.
718 if (P) {
719 // If we load from memory that may alias the memory we store to,
720 // memmove must be used to preserve semantic. If not, memcpy can
721 // be used. Also, if we load from constant memory, memcpy can be used
722 // as the constant memory won't be modified.
723 bool UseMemMove = false;
724 if (isModSet(AA->getModRefInfo(SI, LoadLoc)))
725 UseMemMove = true;
726
727 uint64_t Size = DL.getTypeStoreSize(T);
728
729 IRBuilder<> Builder(P);
730 Instruction *M;
731 if (UseMemMove)
732 M = Builder.CreateMemMove(
733 SI->getPointerOperand(), SI->getAlign(),
734 LI->getPointerOperand(), LI->getAlign(), Size);
735 else
736 M = Builder.CreateMemCpy(
737 SI->getPointerOperand(), SI->getAlign(),
738 LI->getPointerOperand(), LI->getAlign(), Size);
739 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
740
741 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
742 << *M << "\n");
743
744 auto *LastDef =
745 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
746 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
747 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
748
749 eraseInstruction(SI);
750 eraseInstruction(LI);
751 ++NumMemCpyInstr;
752
753 // Make sure we do not invalidate the iterator.
754 BBI = M->getIterator();
755 return true;
756 }
757 }
758
759 // Detect cases where we're performing call slot forwarding, but
760 // happen to be using a load-store pair to implement it, rather than
761 // a memcpy.
762 BatchAAResults BAA(*AA);
763 auto GetCall = [&]() -> CallInst * {
764 // We defer this expensive clobber walk until the cheap checks
765 // have been done on the source inside performCallSlotOptzn.
766 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
767 MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA)))
768 return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
769 return nullptr;
770 };
771
772 bool Changed = performCallSlotOptzn(
773 LI, SI, SI->getPointerOperand()->stripPointerCasts(),
774 LI->getPointerOperand()->stripPointerCasts(),
775 DL.getTypeStoreSize(SI->getOperand(0)->getType()),
776 std::min(SI->getAlign(), LI->getAlign()), BAA, GetCall);
777 if (Changed) {
778 eraseInstruction(SI);
779 eraseInstruction(LI);
780 ++NumMemCpyInstr;
781 return true;
782 }
783
784 return false;
785 }
786
processStore(StoreInst * SI,BasicBlock::iterator & BBI)787 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
788 if (!SI->isSimple()) return false;
789
790 // Avoid merging nontemporal stores since the resulting
791 // memcpy/memset would not be able to preserve the nontemporal hint.
792 // In theory we could teach how to propagate the !nontemporal metadata to
793 // memset calls. However, that change would force the backend to
794 // conservatively expand !nontemporal memset calls back to sequences of
795 // store instructions (effectively undoing the merging).
796 if (SI->getMetadata(LLVMContext::MD_nontemporal))
797 return false;
798
799 const DataLayout &DL = SI->getModule()->getDataLayout();
800
801 Value *StoredVal = SI->getValueOperand();
802
803 // Not all the transforms below are correct for non-integral pointers, bail
804 // until we've audited the individual pieces.
805 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
806 return false;
807
808 // Load to store forwarding can be interpreted as memcpy.
809 if (auto *LI = dyn_cast<LoadInst>(StoredVal))
810 return processStoreOfLoad(SI, LI, DL, BBI);
811
812 // The following code creates memset intrinsics out of thin air. Don't do
813 // this if the corresponding libfunc is not available.
814 // TODO: We should really distinguish between libcall availability and
815 // our ability to introduce intrinsics.
816 if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls))
817 return false;
818
819 // There are two cases that are interesting for this code to handle: memcpy
820 // and memset. Right now we only handle memset.
821
822 // Ensure that the value being stored is something that can be memset'able a
823 // byte at a time like "0" or "-1" or any width, as well as things like
824 // 0xA0A0A0A0 and 0.0.
825 auto *V = SI->getOperand(0);
826 if (Value *ByteVal = isBytewiseValue(V, DL)) {
827 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
828 ByteVal)) {
829 BBI = I->getIterator(); // Don't invalidate iterator.
830 return true;
831 }
832
833 // If we have an aggregate, we try to promote it to memset regardless
834 // of opportunity for merging as it can expose optimization opportunities
835 // in subsequent passes.
836 auto *T = V->getType();
837 if (T->isAggregateType()) {
838 uint64_t Size = DL.getTypeStoreSize(T);
839 IRBuilder<> Builder(SI);
840 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
841 SI->getAlign());
842 M->copyMetadata(*SI, LLVMContext::MD_DIAssignID);
843
844 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
845
846 // The newly inserted memset is immediately overwritten by the original
847 // store, so we do not need to rename uses.
848 auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
849 auto *NewAccess = MSSAU->createMemoryAccessBefore(
850 M, StoreDef->getDefiningAccess(), StoreDef);
851 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false);
852
853 eraseInstruction(SI);
854 NumMemSetInfer++;
855
856 // Make sure we do not invalidate the iterator.
857 BBI = M->getIterator();
858 return true;
859 }
860 }
861
862 return false;
863 }
864
processMemSet(MemSetInst * MSI,BasicBlock::iterator & BBI)865 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
866 // See if there is another memset or store neighboring this memset which
867 // allows us to widen out the memset to do a single larger store.
868 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
869 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
870 MSI->getValue())) {
871 BBI = I->getIterator(); // Don't invalidate iterator.
872 return true;
873 }
874 return false;
875 }
876
877 /// Takes a memcpy and a call that it depends on,
878 /// and checks for the possibility of a call slot optimization by having
879 /// the call write its result directly into the destination of the memcpy.
performCallSlotOptzn(Instruction * cpyLoad,Instruction * cpyStore,Value * cpyDest,Value * cpySrc,TypeSize cpySize,Align cpyDestAlign,BatchAAResults & BAA,std::function<CallInst * ()> GetC)880 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
881 Instruction *cpyStore, Value *cpyDest,
882 Value *cpySrc, TypeSize cpySize,
883 Align cpyDestAlign, BatchAAResults &BAA,
884 std::function<CallInst *()> GetC) {
885 // The general transformation to keep in mind is
886 //
887 // call @func(..., src, ...)
888 // memcpy(dest, src, ...)
889 //
890 // ->
891 //
892 // memcpy(dest, src, ...)
893 // call @func(..., dest, ...)
894 //
895 // Since moving the memcpy is technically awkward, we additionally check that
896 // src only holds uninitialized values at the moment of the call, meaning that
897 // the memcpy can be discarded rather than moved.
898
899 // We can't optimize scalable types.
900 if (cpySize.isScalable())
901 return false;
902
903 // Require that src be an alloca. This simplifies the reasoning considerably.
904 auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
905 if (!srcAlloca)
906 return false;
907
908 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
909 if (!srcArraySize)
910 return false;
911
912 const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
913 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
914 srcArraySize->getZExtValue();
915
916 if (cpySize < srcSize)
917 return false;
918
919 CallInst *C = GetC();
920 if (!C)
921 return false;
922
923 // Lifetime marks shouldn't be operated on.
924 if (Function *F = C->getCalledFunction())
925 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
926 return false;
927
928
929 if (C->getParent() != cpyStore->getParent()) {
930 LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n");
931 return false;
932 }
933
934 MemoryLocation DestLoc = isa<StoreInst>(cpyStore) ?
935 MemoryLocation::get(cpyStore) :
936 MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore));
937
938 // Check that nothing touches the dest of the copy between
939 // the call and the store/memcpy.
940 Instruction *SkippedLifetimeStart = nullptr;
941 if (accessedBetween(BAA, DestLoc, MSSA->getMemoryAccess(C),
942 MSSA->getMemoryAccess(cpyStore), &SkippedLifetimeStart)) {
943 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n");
944 return false;
945 }
946
947 // If we need to move a lifetime.start above the call, make sure that we can
948 // actually do so. If the argument is bitcasted for example, we would have to
949 // move the bitcast as well, which we don't handle.
950 if (SkippedLifetimeStart) {
951 auto *LifetimeArg =
952 dyn_cast<Instruction>(SkippedLifetimeStart->getOperand(1));
953 if (LifetimeArg && LifetimeArg->getParent() == C->getParent() &&
954 C->comesBefore(LifetimeArg))
955 return false;
956 }
957
958 // Check that accessing the first srcSize bytes of dest will not cause a
959 // trap. Otherwise the transform is invalid since it might cause a trap
960 // to occur earlier than it otherwise would.
961 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
962 DL, C, AC, DT)) {
963 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n");
964 return false;
965 }
966
967 // Make sure that nothing can observe cpyDest being written early. There are
968 // a number of cases to consider:
969 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of
970 // the transform.
971 // 2. C itself may not access cpyDest (prior to the transform). This is
972 // checked further below.
973 // 3. If cpyDest is accessible to the caller of this function (potentially
974 // captured and not based on an alloca), we need to ensure that we cannot
975 // unwind between C and cpyStore. This is checked here.
976 // 4. If cpyDest is potentially captured, there may be accesses to it from
977 // another thread. In this case, we need to check that cpyStore is
978 // guaranteed to be executed if C is. As it is a non-atomic access, it
979 // renders accesses from other threads undefined.
980 // TODO: This is currently not checked.
981 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) {
982 LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n");
983 return false;
984 }
985
986 // Check that dest points to memory that is at least as aligned as src.
987 Align srcAlign = srcAlloca->getAlign();
988 bool isDestSufficientlyAligned = srcAlign <= cpyDestAlign;
989 // If dest is not aligned enough and we can't increase its alignment then
990 // bail out.
991 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) {
992 LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n");
993 return false;
994 }
995
996 // Check that src is not accessed except via the call and the memcpy. This
997 // guarantees that it holds only undefined values when passed in (so the final
998 // memcpy can be dropped), that it is not read or written between the call and
999 // the memcpy, and that writing beyond the end of it is undefined.
1000 SmallVector<User *, 8> srcUseList(srcAlloca->users());
1001 while (!srcUseList.empty()) {
1002 User *U = srcUseList.pop_back_val();
1003
1004 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
1005 append_range(srcUseList, U->users());
1006 continue;
1007 }
1008 if (const auto *G = dyn_cast<GetElementPtrInst>(U)) {
1009 if (!G->hasAllZeroIndices())
1010 return false;
1011
1012 append_range(srcUseList, U->users());
1013 continue;
1014 }
1015 if (const auto *IT = dyn_cast<IntrinsicInst>(U))
1016 if (IT->isLifetimeStartOrEnd())
1017 continue;
1018
1019 if (U != C && U != cpyLoad)
1020 return false;
1021 }
1022
1023 // Check whether src is captured by the called function, in which case there
1024 // may be further indirect uses of src.
1025 bool SrcIsCaptured = any_of(C->args(), [&](Use &U) {
1026 return U->stripPointerCasts() == cpySrc &&
1027 !C->doesNotCapture(C->getArgOperandNo(&U));
1028 });
1029
1030 // If src is captured, then check whether there are any potential uses of
1031 // src through the captured pointer before the lifetime of src ends, either
1032 // due to a lifetime.end or a return from the function.
1033 if (SrcIsCaptured) {
1034 // Check that dest is not captured before/at the call. We have already
1035 // checked that src is not captured before it. If either had been captured,
1036 // then the call might be comparing the argument against the captured dest
1037 // or src pointer.
1038 Value *DestObj = getUnderlyingObject(cpyDest);
1039 if (!isIdentifiedFunctionLocal(DestObj) ||
1040 PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true,
1041 /* StoreCaptures */ true, C, DT,
1042 /* IncludeI */ true))
1043 return false;
1044
1045 MemoryLocation SrcLoc =
1046 MemoryLocation(srcAlloca, LocationSize::precise(srcSize));
1047 for (Instruction &I :
1048 make_range(++C->getIterator(), C->getParent()->end())) {
1049 // Lifetime of srcAlloca ends at lifetime.end.
1050 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1051 if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
1052 II->getArgOperand(1)->stripPointerCasts() == srcAlloca &&
1053 cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize))
1054 break;
1055 }
1056
1057 // Lifetime of srcAlloca ends at return.
1058 if (isa<ReturnInst>(&I))
1059 break;
1060
1061 // Ignore the direct read of src in the load.
1062 if (&I == cpyLoad)
1063 continue;
1064
1065 // Check whether this instruction may mod/ref src through the captured
1066 // pointer (we have already any direct mod/refs in the loop above).
1067 // Also bail if we hit a terminator, as we don't want to scan into other
1068 // blocks.
1069 if (isModOrRefSet(BAA.getModRefInfo(&I, SrcLoc)) || I.isTerminator())
1070 return false;
1071 }
1072 }
1073
1074 // Since we're changing the parameter to the callsite, we need to make sure
1075 // that what would be the new parameter dominates the callsite.
1076 if (!DT->dominates(cpyDest, C)) {
1077 // Support moving a constant index GEP before the call.
1078 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
1079 if (GEP && GEP->hasAllConstantIndices() &&
1080 DT->dominates(GEP->getPointerOperand(), C))
1081 GEP->moveBefore(C);
1082 else
1083 return false;
1084 }
1085
1086 // In addition to knowing that the call does not access src in some
1087 // unexpected manner, for example via a global, which we deduce from
1088 // the use analysis, we also need to know that it does not sneakily
1089 // access dest. We rely on AA to figure this out for us.
1090 MemoryLocation DestWithSrcSize(cpyDest, LocationSize::precise(srcSize));
1091 ModRefInfo MR = BAA.getModRefInfo(C, DestWithSrcSize);
1092 // If necessary, perform additional analysis.
1093 if (isModOrRefSet(MR))
1094 MR = BAA.callCapturesBefore(C, DestWithSrcSize, DT);
1095 if (isModOrRefSet(MR))
1096 return false;
1097
1098 // We can't create address space casts here because we don't know if they're
1099 // safe for the target.
1100 if (cpySrc->getType()->getPointerAddressSpace() !=
1101 cpyDest->getType()->getPointerAddressSpace())
1102 return false;
1103 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1104 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
1105 cpySrc->getType()->getPointerAddressSpace() !=
1106 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
1107 return false;
1108
1109 // All the checks have passed, so do the transformation.
1110 bool changedArgument = false;
1111 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1112 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
1113 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
1114 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
1115 cpyDest->getName(), C);
1116 changedArgument = true;
1117 if (C->getArgOperand(ArgI)->getType() == Dest->getType())
1118 C->setArgOperand(ArgI, Dest);
1119 else
1120 C->setArgOperand(ArgI, CastInst::CreatePointerCast(
1121 Dest, C->getArgOperand(ArgI)->getType(),
1122 Dest->getName(), C));
1123 }
1124
1125 if (!changedArgument)
1126 return false;
1127
1128 // If the destination wasn't sufficiently aligned then increase its alignment.
1129 if (!isDestSufficientlyAligned) {
1130 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
1131 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1132 }
1133
1134 if (SkippedLifetimeStart) {
1135 SkippedLifetimeStart->moveBefore(C);
1136 MSSAU->moveBefore(MSSA->getMemoryAccess(SkippedLifetimeStart),
1137 MSSA->getMemoryAccess(C));
1138 }
1139
1140 // Update AA metadata
1141 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
1142 // handled here, but combineMetadata doesn't support them yet
1143 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1144 LLVMContext::MD_noalias,
1145 LLVMContext::MD_invariant_group,
1146 LLVMContext::MD_access_group};
1147 combineMetadata(C, cpyLoad, KnownIDs, true);
1148 if (cpyLoad != cpyStore)
1149 combineMetadata(C, cpyStore, KnownIDs, true);
1150
1151 ++NumCallSlot;
1152 return true;
1153 }
1154
1155 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1156 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
processMemCpyMemCpyDependence(MemCpyInst * M,MemCpyInst * MDep,BatchAAResults & BAA)1157 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1158 MemCpyInst *MDep,
1159 BatchAAResults &BAA) {
1160 // We can only transforms memcpy's where the dest of one is the source of the
1161 // other.
1162 if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1163 return false;
1164
1165 // If dep instruction is reading from our current input, then it is a noop
1166 // transfer and substituting the input won't change this instruction. Just
1167 // ignore the input and let someone else zap MDep. This handles cases like:
1168 // memcpy(a <- a)
1169 // memcpy(b <- a)
1170 if (M->getSource() == MDep->getSource())
1171 return false;
1172
1173 // Second, the length of the memcpy's must be the same, or the preceding one
1174 // must be larger than the following one.
1175 if (MDep->getLength() != M->getLength()) {
1176 auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1177 auto *MLen = dyn_cast<ConstantInt>(M->getLength());
1178 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1179 return false;
1180 }
1181
1182 // Verify that the copied-from memory doesn't change in between the two
1183 // transfers. For example, in:
1184 // memcpy(a <- b)
1185 // *b = 42;
1186 // memcpy(c <- a)
1187 // It would be invalid to transform the second memcpy into memcpy(c <- b).
1188 //
1189 // TODO: If the code between M and MDep is transparent to the destination "c",
1190 // then we could still perform the xform by moving M up to the first memcpy.
1191 // TODO: It would be sufficient to check the MDep source up to the memcpy
1192 // size of M, rather than MDep.
1193 if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
1194 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
1195 return false;
1196
1197 // If the dest of the second might alias the source of the first, then the
1198 // source and dest might overlap. In addition, if the source of the first
1199 // points to constant memory, they won't overlap by definition. Otherwise, we
1200 // still want to eliminate the intermediate value, but we have to generate a
1201 // memmove instead of memcpy.
1202 bool UseMemMove = false;
1203 if (isModSet(BAA.getModRefInfo(M, MemoryLocation::getForSource(MDep))))
1204 UseMemMove = true;
1205
1206 // If all checks passed, then we can transform M.
1207 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1208 << *MDep << '\n' << *M << '\n');
1209
1210 // TODO: Is this worth it if we're creating a less aligned memcpy? For
1211 // example we could be moving from movaps -> movq on x86.
1212 IRBuilder<> Builder(M);
1213 Instruction *NewM;
1214 if (UseMemMove)
1215 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1216 MDep->getRawSource(), MDep->getSourceAlign(),
1217 M->getLength(), M->isVolatile());
1218 else if (isa<MemCpyInlineInst>(M)) {
1219 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
1220 // never allowed since that would allow the latter to be lowered as a call
1221 // to an external function.
1222 NewM = Builder.CreateMemCpyInline(
1223 M->getRawDest(), M->getDestAlign(), MDep->getRawSource(),
1224 MDep->getSourceAlign(), M->getLength(), M->isVolatile());
1225 } else
1226 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1227 MDep->getRawSource(), MDep->getSourceAlign(),
1228 M->getLength(), M->isVolatile());
1229 NewM->copyMetadata(*M, LLVMContext::MD_DIAssignID);
1230
1231 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1232 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1233 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1234 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1235
1236 // Remove the instruction we're replacing.
1237 eraseInstruction(M);
1238 ++NumMemCpyInstr;
1239 return true;
1240 }
1241
1242 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1243 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
1244 /// weren't copied over by \p MemCpy.
1245 ///
1246 /// In other words, transform:
1247 /// \code
1248 /// memset(dst, c, dst_size);
1249 /// memcpy(dst, src, src_size);
1250 /// \endcode
1251 /// into:
1252 /// \code
1253 /// memcpy(dst, src, src_size);
1254 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1255 /// \endcode
processMemSetMemCpyDependence(MemCpyInst * MemCpy,MemSetInst * MemSet,BatchAAResults & BAA)1256 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1257 MemSetInst *MemSet,
1258 BatchAAResults &BAA) {
1259 // We can only transform memset/memcpy with the same destination.
1260 if (!BAA.isMustAlias(MemSet->getDest(), MemCpy->getDest()))
1261 return false;
1262
1263 // Check that src and dst of the memcpy aren't the same. While memcpy
1264 // operands cannot partially overlap, exact equality is allowed.
1265 if (isModSet(BAA.getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy))))
1266 return false;
1267
1268 // We know that dst up to src_size is not written. We now need to make sure
1269 // that dst up to dst_size is not accessed. (If we did not move the memset,
1270 // checking for reads would be sufficient.)
1271 if (accessedBetween(BAA, MemoryLocation::getForDest(MemSet),
1272 MSSA->getMemoryAccess(MemSet),
1273 MSSA->getMemoryAccess(MemCpy)))
1274 return false;
1275
1276 // Use the same i8* dest as the memcpy, killing the memset dest if different.
1277 Value *Dest = MemCpy->getRawDest();
1278 Value *DestSize = MemSet->getLength();
1279 Value *SrcSize = MemCpy->getLength();
1280
1281 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1282 return false;
1283
1284 // If the sizes are the same, simply drop the memset instead of generating
1285 // a replacement with zero size.
1286 if (DestSize == SrcSize) {
1287 eraseInstruction(MemSet);
1288 return true;
1289 }
1290
1291 // By default, create an unaligned memset.
1292 Align Alignment = Align(1);
1293 // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1294 // of the sum.
1295 const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(),
1296 MemCpy->getDestAlign().valueOrOne());
1297 if (DestAlign > 1)
1298 if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1299 Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue());
1300
1301 IRBuilder<> Builder(MemCpy);
1302
1303 // If the sizes have different types, zext the smaller one.
1304 if (DestSize->getType() != SrcSize->getType()) {
1305 if (DestSize->getType()->getIntegerBitWidth() >
1306 SrcSize->getType()->getIntegerBitWidth())
1307 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1308 else
1309 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1310 }
1311
1312 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1313 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1314 Value *MemsetLen = Builder.CreateSelect(
1315 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1316 unsigned DestAS = Dest->getType()->getPointerAddressSpace();
1317 Instruction *NewMemSet = Builder.CreateMemSet(
1318 Builder.CreateGEP(
1319 Builder.getInt8Ty(),
1320 Builder.CreatePointerCast(Dest, Builder.getInt8PtrTy(DestAS)),
1321 SrcSize),
1322 MemSet->getOperand(1), MemsetLen, Alignment);
1323
1324 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1325 "MemCpy must be a MemoryDef");
1326 // The new memset is inserted after the memcpy, but it is known that its
1327 // defining access is the memset about to be removed which immediately
1328 // precedes the memcpy.
1329 auto *LastDef =
1330 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1331 auto *NewAccess = MSSAU->createMemoryAccessBefore(
1332 NewMemSet, LastDef->getDefiningAccess(), LastDef);
1333 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1334
1335 eraseInstruction(MemSet);
1336 return true;
1337 }
1338
1339 /// Determine whether the instruction has undefined content for the given Size,
1340 /// either because it was freshly alloca'd or started its lifetime.
hasUndefContents(MemorySSA * MSSA,BatchAAResults & AA,Value * V,MemoryDef * Def,Value * Size)1341 static bool hasUndefContents(MemorySSA *MSSA, BatchAAResults &AA, Value *V,
1342 MemoryDef *Def, Value *Size) {
1343 if (MSSA->isLiveOnEntryDef(Def))
1344 return isa<AllocaInst>(getUnderlyingObject(V));
1345
1346 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
1347 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1348 auto *LTSize = cast<ConstantInt>(II->getArgOperand(0));
1349
1350 if (auto *CSize = dyn_cast<ConstantInt>(Size)) {
1351 if (AA.isMustAlias(V, II->getArgOperand(1)) &&
1352 LTSize->getZExtValue() >= CSize->getZExtValue())
1353 return true;
1354 }
1355
1356 // If the lifetime.start covers a whole alloca (as it almost always
1357 // does) and we're querying a pointer based on that alloca, then we know
1358 // the memory is definitely undef, regardless of how exactly we alias.
1359 // The size also doesn't matter, as an out-of-bounds access would be UB.
1360 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) {
1361 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
1362 const DataLayout &DL = Alloca->getModule()->getDataLayout();
1363 if (std::optional<TypeSize> AllocaSize =
1364 Alloca->getAllocationSize(DL))
1365 if (*AllocaSize == LTSize->getValue())
1366 return true;
1367 }
1368 }
1369 }
1370 }
1371
1372 return false;
1373 }
1374
1375 /// Transform memcpy to memset when its source was just memset.
1376 /// In other words, turn:
1377 /// \code
1378 /// memset(dst1, c, dst1_size);
1379 /// memcpy(dst2, dst1, dst2_size);
1380 /// \endcode
1381 /// into:
1382 /// \code
1383 /// memset(dst1, c, dst1_size);
1384 /// memset(dst2, c, dst2_size);
1385 /// \endcode
1386 /// When dst2_size <= dst1_size.
performMemCpyToMemSetOptzn(MemCpyInst * MemCpy,MemSetInst * MemSet,BatchAAResults & BAA)1387 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1388 MemSetInst *MemSet,
1389 BatchAAResults &BAA) {
1390 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1391 // memcpying from the same address. Otherwise it is hard to reason about.
1392 if (!BAA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1393 return false;
1394
1395 Value *MemSetSize = MemSet->getLength();
1396 Value *CopySize = MemCpy->getLength();
1397
1398 if (MemSetSize != CopySize) {
1399 // Make sure the memcpy doesn't read any more than what the memset wrote.
1400 // Don't worry about sizes larger than i64.
1401
1402 // A known memset size is required.
1403 auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
1404 if (!CMemSetSize)
1405 return false;
1406
1407 // A known memcpy size is also required.
1408 auto *CCopySize = dyn_cast<ConstantInt>(CopySize);
1409 if (!CCopySize)
1410 return false;
1411 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
1412 // If the memcpy is larger than the memset, but the memory was undef prior
1413 // to the memset, we can just ignore the tail. Technically we're only
1414 // interested in the bytes from MemSetSize..CopySize here, but as we can't
1415 // easily represent this location, we use the full 0..CopySize range.
1416 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1417 bool CanReduceSize = false;
1418 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
1419 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1420 MemSetAccess->getDefiningAccess(), MemCpyLoc, BAA);
1421 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1422 if (hasUndefContents(MSSA, BAA, MemCpy->getSource(), MD, CopySize))
1423 CanReduceSize = true;
1424
1425 if (!CanReduceSize)
1426 return false;
1427 CopySize = MemSetSize;
1428 }
1429 }
1430
1431 IRBuilder<> Builder(MemCpy);
1432 Instruction *NewM =
1433 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1434 CopySize, MemCpy->getDestAlign());
1435 auto *LastDef =
1436 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1437 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1438 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1439
1440 return true;
1441 }
1442
1443 /// Perform simplification of memcpy's. If we have memcpy A
1444 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1445 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1446 /// circumstances). This allows later passes to remove the first memcpy
1447 /// altogether.
processMemCpy(MemCpyInst * M,BasicBlock::iterator & BBI)1448 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1449 // We can only optimize non-volatile memcpy's.
1450 if (M->isVolatile()) return false;
1451
1452 // If the source and destination of the memcpy are the same, then zap it.
1453 if (M->getSource() == M->getDest()) {
1454 ++BBI;
1455 eraseInstruction(M);
1456 return true;
1457 }
1458
1459 // If copying from a constant, try to turn the memcpy into a memset.
1460 if (auto *GV = dyn_cast<GlobalVariable>(M->getSource()))
1461 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1462 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1463 M->getModule()->getDataLayout())) {
1464 IRBuilder<> Builder(M);
1465 Instruction *NewM = Builder.CreateMemSet(
1466 M->getRawDest(), ByteVal, M->getLength(), M->getDestAlign(), false);
1467 auto *LastDef =
1468 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1469 auto *NewAccess =
1470 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1471 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1472
1473 eraseInstruction(M);
1474 ++NumCpyToSet;
1475 return true;
1476 }
1477
1478 BatchAAResults BAA(*AA);
1479 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1480 // FIXME: Not using getClobberingMemoryAccess() here due to PR54682.
1481 MemoryAccess *AnyClobber = MA->getDefiningAccess();
1482 MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1483 const MemoryAccess *DestClobber =
1484 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc, BAA);
1485
1486 // Try to turn a partially redundant memset + memcpy into
1487 // memcpy + smaller memset. We don't need the memcpy size for this.
1488 // The memcpy most post-dom the memset, so limit this to the same basic
1489 // block. A non-local generalization is likely not worthwhile.
1490 if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1491 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1492 if (DestClobber->getBlock() == M->getParent())
1493 if (processMemSetMemCpyDependence(M, MDep, BAA))
1494 return true;
1495
1496 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1497 AnyClobber, MemoryLocation::getForSource(M), BAA);
1498
1499 // There are four possible optimizations we can do for memcpy:
1500 // a) memcpy-memcpy xform which exposes redundance for DSE.
1501 // b) call-memcpy xform for return slot optimization.
1502 // c) memcpy from freshly alloca'd space or space that has just started
1503 // its lifetime copies undefined data, and we can therefore eliminate
1504 // the memcpy in favor of the data that was already at the destination.
1505 // d) memcpy from a just-memset'd source can be turned into memset.
1506 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1507 if (Instruction *MI = MD->getMemoryInst()) {
1508 if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1509 if (auto *C = dyn_cast<CallInst>(MI)) {
1510 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1511 TypeSize::getFixed(CopySize->getZExtValue()),
1512 M->getDestAlign().valueOrOne(), BAA,
1513 [C]() -> CallInst * { return C; })) {
1514 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
1515 << " call: " << *C << "\n"
1516 << " memcpy: " << *M << "\n");
1517 eraseInstruction(M);
1518 ++NumMemCpyInstr;
1519 return true;
1520 }
1521 }
1522 }
1523 if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1524 return processMemCpyMemCpyDependence(M, MDep, BAA);
1525 if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1526 if (performMemCpyToMemSetOptzn(M, MDep, BAA)) {
1527 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
1528 eraseInstruction(M);
1529 ++NumCpyToSet;
1530 return true;
1531 }
1532 }
1533 }
1534
1535 if (hasUndefContents(MSSA, BAA, M->getSource(), MD, M->getLength())) {
1536 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
1537 eraseInstruction(M);
1538 ++NumMemCpyInstr;
1539 return true;
1540 }
1541 }
1542
1543 return false;
1544 }
1545
1546 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1547 /// not to alias.
processMemMove(MemMoveInst * M)1548 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1549 // See if the source could be modified by this memmove potentially.
1550 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M))))
1551 return false;
1552
1553 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1554 << "\n");
1555
1556 // If not, then we know we can transform this.
1557 Type *ArgTys[3] = { M->getRawDest()->getType(),
1558 M->getRawSource()->getType(),
1559 M->getLength()->getType() };
1560 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1561 Intrinsic::memcpy, ArgTys));
1562
1563 // For MemorySSA nothing really changes (except that memcpy may imply stricter
1564 // aliasing guarantees).
1565
1566 ++NumMoveToCpy;
1567 return true;
1568 }
1569
1570 /// This is called on every byval argument in call sites.
processByValArgument(CallBase & CB,unsigned ArgNo)1571 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1572 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1573 // Find out what feeds this byval argument.
1574 Value *ByValArg = CB.getArgOperand(ArgNo);
1575 Type *ByValTy = CB.getParamByValType(ArgNo);
1576 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
1577 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1578 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1579 if (!CallAccess)
1580 return false;
1581 MemCpyInst *MDep = nullptr;
1582 BatchAAResults BAA(*AA);
1583 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1584 CallAccess->getDefiningAccess(), Loc, BAA);
1585 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1586 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1587
1588 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
1589 // a memcpy, see if we can byval from the source of the memcpy instead of the
1590 // result.
1591 if (!MDep || MDep->isVolatile() ||
1592 ByValArg->stripPointerCasts() != MDep->getDest())
1593 return false;
1594
1595 // The length of the memcpy must be larger or equal to the size of the byval.
1596 auto *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1597 if (!C1 || !TypeSize::isKnownGE(
1598 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
1599 return false;
1600
1601 // Get the alignment of the byval. If the call doesn't specify the alignment,
1602 // then it is some target specific value that we can't know.
1603 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1604 if (!ByValAlign) return false;
1605
1606 // If it is greater than the memcpy, then we check to see if we can force the
1607 // source of the memcpy to the alignment we need. If we fail, we bail out.
1608 MaybeAlign MemDepAlign = MDep->getSourceAlign();
1609 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1610 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1611 DT) < *ByValAlign)
1612 return false;
1613
1614 // The address space of the memcpy source must match the byval argument
1615 if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1616 ByValArg->getType()->getPointerAddressSpace())
1617 return false;
1618
1619 // Verify that the copied-from memory doesn't change in between the memcpy and
1620 // the byval call.
1621 // memcpy(a <- b)
1622 // *b = 42;
1623 // foo(*a)
1624 // It would be invalid to transform the second memcpy into foo(*b).
1625 if (writtenBetween(MSSA, BAA, MemoryLocation::getForSource(MDep),
1626 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB)))
1627 return false;
1628
1629 Value *TmpCast = MDep->getSource();
1630 if (MDep->getSource()->getType() != ByValArg->getType()) {
1631 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1632 "tmpcast", &CB);
1633 // Set the tmpcast's DebugLoc to MDep's
1634 TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1635 TmpCast = TmpBitCast;
1636 }
1637
1638 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1639 << " " << *MDep << "\n"
1640 << " " << CB << "\n");
1641
1642 // Otherwise we're good! Update the byval argument.
1643 CB.setArgOperand(ArgNo, TmpCast);
1644 ++NumMemCpyInstr;
1645 return true;
1646 }
1647
1648 /// Executes one iteration of MemCpyOptPass.
iterateOnFunction(Function & F)1649 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1650 bool MadeChange = false;
1651
1652 // Walk all instruction in the function.
1653 for (BasicBlock &BB : F) {
1654 // Skip unreachable blocks. For example processStore assumes that an
1655 // instruction in a BB can't be dominated by a later instruction in the
1656 // same BB (which is a scenario that can happen for an unreachable BB that
1657 // has itself as a predecessor).
1658 if (!DT->isReachableFromEntry(&BB))
1659 continue;
1660
1661 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1662 // Avoid invalidating the iterator.
1663 Instruction *I = &*BI++;
1664
1665 bool RepeatInstruction = false;
1666
1667 if (auto *SI = dyn_cast<StoreInst>(I))
1668 MadeChange |= processStore(SI, BI);
1669 else if (auto *M = dyn_cast<MemSetInst>(I))
1670 RepeatInstruction = processMemSet(M, BI);
1671 else if (auto *M = dyn_cast<MemCpyInst>(I))
1672 RepeatInstruction = processMemCpy(M, BI);
1673 else if (auto *M = dyn_cast<MemMoveInst>(I))
1674 RepeatInstruction = processMemMove(M);
1675 else if (auto *CB = dyn_cast<CallBase>(I)) {
1676 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1677 if (CB->isByValArgument(i))
1678 MadeChange |= processByValArgument(*CB, i);
1679 }
1680
1681 // Reprocess the instruction if desired.
1682 if (RepeatInstruction) {
1683 if (BI != BB.begin())
1684 --BI;
1685 MadeChange = true;
1686 }
1687 }
1688 }
1689
1690 return MadeChange;
1691 }
1692
run(Function & F,FunctionAnalysisManager & AM)1693 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1694 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1695 auto *AA = &AM.getResult<AAManager>(F);
1696 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1697 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1698 auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F);
1699
1700 bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA());
1701 if (!MadeChange)
1702 return PreservedAnalyses::all();
1703
1704 PreservedAnalyses PA;
1705 PA.preserveSet<CFGAnalyses>();
1706 PA.preserve<MemorySSAAnalysis>();
1707 return PA;
1708 }
1709
runImpl(Function & F,TargetLibraryInfo * TLI_,AliasAnalysis * AA_,AssumptionCache * AC_,DominatorTree * DT_,MemorySSA * MSSA_)1710 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
1711 AliasAnalysis *AA_, AssumptionCache *AC_,
1712 DominatorTree *DT_, MemorySSA *MSSA_) {
1713 bool MadeChange = false;
1714 TLI = TLI_;
1715 AA = AA_;
1716 AC = AC_;
1717 DT = DT_;
1718 MSSA = MSSA_;
1719 MemorySSAUpdater MSSAU_(MSSA_);
1720 MSSAU = &MSSAU_;
1721
1722 while (true) {
1723 if (!iterateOnFunction(F))
1724 break;
1725 MadeChange = true;
1726 }
1727
1728 if (VerifyMemorySSA)
1729 MSSA_->verifyMemorySSA();
1730
1731 return MadeChange;
1732 }
1733
1734 /// This is the main transformation entry point for a function.
runOnFunction(Function & F)1735 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1736 if (skipFunction(F))
1737 return false;
1738
1739 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1740 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1741 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1742 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1743 auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
1744
1745 return Impl.runImpl(F, TLI, AA, AC, DT, MSSA);
1746 }
1747