1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/livepatch_sched.h>
48 #include <linux/uidgid_types.h>
49 #include <asm/kmap_size.h>
50
51 /* task_struct member predeclarations (sorted alphabetically): */
52 struct audit_context;
53 struct bio_list;
54 struct blk_plug;
55 struct bpf_local_storage;
56 struct bpf_run_ctx;
57 struct bpf_net_context;
58 struct capture_control;
59 struct cfs_rq;
60 struct fs_struct;
61 struct futex_pi_state;
62 struct io_context;
63 struct io_uring_task;
64 struct mempolicy;
65 struct nameidata;
66 struct nsproxy;
67 struct perf_event_context;
68 struct perf_ctx_data;
69 struct pid_namespace;
70 struct pipe_inode_info;
71 struct rcu_node;
72 struct reclaim_state;
73 struct robust_list_head;
74 struct root_domain;
75 struct rq;
76 struct sched_attr;
77 struct sched_dl_entity;
78 struct seq_file;
79 struct sighand_struct;
80 struct signal_struct;
81 struct task_delay_info;
82 struct task_group;
83 struct task_struct;
84 struct user_event_mm;
85
86 #include <linux/sched/ext.h>
87
88 /*
89 * Task state bitmask. NOTE! These bits are also
90 * encoded in fs/proc/array.c: get_task_state().
91 *
92 * We have two separate sets of flags: task->__state
93 * is about runnability, while task->exit_state are
94 * about the task exiting. Confusing, but this way
95 * modifying one set can't modify the other one by
96 * mistake.
97 */
98
99 /* Used in tsk->__state: */
100 #define TASK_RUNNING 0x00000000
101 #define TASK_INTERRUPTIBLE 0x00000001
102 #define TASK_UNINTERRUPTIBLE 0x00000002
103 #define __TASK_STOPPED 0x00000004
104 #define __TASK_TRACED 0x00000008
105 /* Used in tsk->exit_state: */
106 #define EXIT_DEAD 0x00000010
107 #define EXIT_ZOMBIE 0x00000020
108 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
109 /* Used in tsk->__state again: */
110 #define TASK_PARKED 0x00000040
111 #define TASK_DEAD 0x00000080
112 #define TASK_WAKEKILL 0x00000100
113 #define TASK_WAKING 0x00000200
114 #define TASK_NOLOAD 0x00000400
115 #define TASK_NEW 0x00000800
116 #define TASK_RTLOCK_WAIT 0x00001000
117 #define TASK_FREEZABLE 0x00002000
118 #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
119 #define TASK_FROZEN 0x00008000
120 #define TASK_STATE_MAX 0x00010000
121
122 #define TASK_ANY (TASK_STATE_MAX-1)
123
124 /*
125 * DO NOT ADD ANY NEW USERS !
126 */
127 #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
128
129 /* Convenience macros for the sake of set_current_state: */
130 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
131 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
132 #define TASK_TRACED __TASK_TRACED
133
134 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
135
136 /* Convenience macros for the sake of wake_up(): */
137 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
138
139 /* get_task_state(): */
140 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
141 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
142 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
143 TASK_PARKED)
144
145 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
146
147 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
148 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
149 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
150
151 /*
152 * Special states are those that do not use the normal wait-loop pattern. See
153 * the comment with set_special_state().
154 */
155 #define is_special_task_state(state) \
156 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | \
157 TASK_DEAD | TASK_FROZEN))
158
159 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
160 # define debug_normal_state_change(state_value) \
161 do { \
162 WARN_ON_ONCE(is_special_task_state(state_value)); \
163 current->task_state_change = _THIS_IP_; \
164 } while (0)
165
166 # define debug_special_state_change(state_value) \
167 do { \
168 WARN_ON_ONCE(!is_special_task_state(state_value)); \
169 current->task_state_change = _THIS_IP_; \
170 } while (0)
171
172 # define debug_rtlock_wait_set_state() \
173 do { \
174 current->saved_state_change = current->task_state_change;\
175 current->task_state_change = _THIS_IP_; \
176 } while (0)
177
178 # define debug_rtlock_wait_restore_state() \
179 do { \
180 current->task_state_change = current->saved_state_change;\
181 } while (0)
182
183 #else
184 # define debug_normal_state_change(cond) do { } while (0)
185 # define debug_special_state_change(cond) do { } while (0)
186 # define debug_rtlock_wait_set_state() do { } while (0)
187 # define debug_rtlock_wait_restore_state() do { } while (0)
188 #endif
189
190 /*
191 * set_current_state() includes a barrier so that the write of current->__state
192 * is correctly serialised wrt the caller's subsequent test of whether to
193 * actually sleep:
194 *
195 * for (;;) {
196 * set_current_state(TASK_UNINTERRUPTIBLE);
197 * if (CONDITION)
198 * break;
199 *
200 * schedule();
201 * }
202 * __set_current_state(TASK_RUNNING);
203 *
204 * If the caller does not need such serialisation (because, for instance, the
205 * CONDITION test and condition change and wakeup are under the same lock) then
206 * use __set_current_state().
207 *
208 * The above is typically ordered against the wakeup, which does:
209 *
210 * CONDITION = 1;
211 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
212 *
213 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
214 * accessing p->__state.
215 *
216 * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
217 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
218 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
219 *
220 * However, with slightly different timing the wakeup TASK_RUNNING store can
221 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
222 * a problem either because that will result in one extra go around the loop
223 * and our @cond test will save the day.
224 *
225 * Also see the comments of try_to_wake_up().
226 */
227 #define __set_current_state(state_value) \
228 do { \
229 debug_normal_state_change((state_value)); \
230 WRITE_ONCE(current->__state, (state_value)); \
231 } while (0)
232
233 #define set_current_state(state_value) \
234 do { \
235 debug_normal_state_change((state_value)); \
236 smp_store_mb(current->__state, (state_value)); \
237 } while (0)
238
239 /*
240 * set_special_state() should be used for those states when the blocking task
241 * can not use the regular condition based wait-loop. In that case we must
242 * serialize against wakeups such that any possible in-flight TASK_RUNNING
243 * stores will not collide with our state change.
244 */
245 #define set_special_state(state_value) \
246 do { \
247 unsigned long flags; /* may shadow */ \
248 \
249 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
250 debug_special_state_change((state_value)); \
251 WRITE_ONCE(current->__state, (state_value)); \
252 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
253 } while (0)
254
255 /*
256 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
257 *
258 * RT's spin/rwlock substitutions are state preserving. The state of the
259 * task when blocking on the lock is saved in task_struct::saved_state and
260 * restored after the lock has been acquired. These operations are
261 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
262 * lock related wakeups while the task is blocked on the lock are
263 * redirected to operate on task_struct::saved_state to ensure that these
264 * are not dropped. On restore task_struct::saved_state is set to
265 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
266 *
267 * The lock operation looks like this:
268 *
269 * current_save_and_set_rtlock_wait_state();
270 * for (;;) {
271 * if (try_lock())
272 * break;
273 * raw_spin_unlock_irq(&lock->wait_lock);
274 * schedule_rtlock();
275 * raw_spin_lock_irq(&lock->wait_lock);
276 * set_current_state(TASK_RTLOCK_WAIT);
277 * }
278 * current_restore_rtlock_saved_state();
279 */
280 #define current_save_and_set_rtlock_wait_state() \
281 do { \
282 lockdep_assert_irqs_disabled(); \
283 raw_spin_lock(¤t->pi_lock); \
284 current->saved_state = current->__state; \
285 debug_rtlock_wait_set_state(); \
286 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
287 raw_spin_unlock(¤t->pi_lock); \
288 } while (0);
289
290 #define current_restore_rtlock_saved_state() \
291 do { \
292 lockdep_assert_irqs_disabled(); \
293 raw_spin_lock(¤t->pi_lock); \
294 debug_rtlock_wait_restore_state(); \
295 WRITE_ONCE(current->__state, current->saved_state); \
296 current->saved_state = TASK_RUNNING; \
297 raw_spin_unlock(¤t->pi_lock); \
298 } while (0);
299
300 #define get_current_state() READ_ONCE(current->__state)
301
302 /*
303 * Define the task command name length as enum, then it can be visible to
304 * BPF programs.
305 */
306 enum {
307 TASK_COMM_LEN = 16,
308 };
309
310 extern void sched_tick(void);
311
312 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
313
314 extern long schedule_timeout(long timeout);
315 extern long schedule_timeout_interruptible(long timeout);
316 extern long schedule_timeout_killable(long timeout);
317 extern long schedule_timeout_uninterruptible(long timeout);
318 extern long schedule_timeout_idle(long timeout);
319 asmlinkage void schedule(void);
320 extern void schedule_preempt_disabled(void);
321 asmlinkage void preempt_schedule_irq(void);
322 #ifdef CONFIG_PREEMPT_RT
323 extern void schedule_rtlock(void);
324 #endif
325
326 extern int __must_check io_schedule_prepare(void);
327 extern void io_schedule_finish(int token);
328 extern long io_schedule_timeout(long timeout);
329 extern void io_schedule(void);
330
331 /**
332 * struct prev_cputime - snapshot of system and user cputime
333 * @utime: time spent in user mode
334 * @stime: time spent in system mode
335 * @lock: protects the above two fields
336 *
337 * Stores previous user/system time values such that we can guarantee
338 * monotonicity.
339 */
340 struct prev_cputime {
341 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
342 u64 utime;
343 u64 stime;
344 raw_spinlock_t lock;
345 #endif
346 };
347
348 enum vtime_state {
349 /* Task is sleeping or running in a CPU with VTIME inactive: */
350 VTIME_INACTIVE = 0,
351 /* Task is idle */
352 VTIME_IDLE,
353 /* Task runs in kernelspace in a CPU with VTIME active: */
354 VTIME_SYS,
355 /* Task runs in userspace in a CPU with VTIME active: */
356 VTIME_USER,
357 /* Task runs as guests in a CPU with VTIME active: */
358 VTIME_GUEST,
359 };
360
361 struct vtime {
362 seqcount_t seqcount;
363 unsigned long long starttime;
364 enum vtime_state state;
365 unsigned int cpu;
366 u64 utime;
367 u64 stime;
368 u64 gtime;
369 };
370
371 /*
372 * Utilization clamp constraints.
373 * @UCLAMP_MIN: Minimum utilization
374 * @UCLAMP_MAX: Maximum utilization
375 * @UCLAMP_CNT: Utilization clamp constraints count
376 */
377 enum uclamp_id {
378 UCLAMP_MIN = 0,
379 UCLAMP_MAX,
380 UCLAMP_CNT
381 };
382
383 #ifdef CONFIG_SMP
384 extern struct root_domain def_root_domain;
385 extern struct mutex sched_domains_mutex;
386 extern void sched_domains_mutex_lock(void);
387 extern void sched_domains_mutex_unlock(void);
388 #else
sched_domains_mutex_lock(void)389 static inline void sched_domains_mutex_lock(void) { }
sched_domains_mutex_unlock(void)390 static inline void sched_domains_mutex_unlock(void) { }
391 #endif
392
393 struct sched_param {
394 int sched_priority;
395 };
396
397 struct sched_info {
398 #ifdef CONFIG_SCHED_INFO
399 /* Cumulative counters: */
400
401 /* # of times we have run on this CPU: */
402 unsigned long pcount;
403
404 /* Time spent waiting on a runqueue: */
405 unsigned long long run_delay;
406
407 /* Max time spent waiting on a runqueue: */
408 unsigned long long max_run_delay;
409
410 /* Min time spent waiting on a runqueue: */
411 unsigned long long min_run_delay;
412
413 /* Timestamps: */
414
415 /* When did we last run on a CPU? */
416 unsigned long long last_arrival;
417
418 /* When were we last queued to run? */
419 unsigned long long last_queued;
420
421 #endif /* CONFIG_SCHED_INFO */
422 };
423
424 /*
425 * Integer metrics need fixed point arithmetic, e.g., sched/fair
426 * has a few: load, load_avg, util_avg, freq, and capacity.
427 *
428 * We define a basic fixed point arithmetic range, and then formalize
429 * all these metrics based on that basic range.
430 */
431 # define SCHED_FIXEDPOINT_SHIFT 10
432 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
433
434 /* Increase resolution of cpu_capacity calculations */
435 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
436 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
437
438 struct load_weight {
439 unsigned long weight;
440 u32 inv_weight;
441 };
442
443 /*
444 * The load/runnable/util_avg accumulates an infinite geometric series
445 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
446 *
447 * [load_avg definition]
448 *
449 * load_avg = runnable% * scale_load_down(load)
450 *
451 * [runnable_avg definition]
452 *
453 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
454 *
455 * [util_avg definition]
456 *
457 * util_avg = running% * SCHED_CAPACITY_SCALE
458 *
459 * where runnable% is the time ratio that a sched_entity is runnable and
460 * running% the time ratio that a sched_entity is running.
461 *
462 * For cfs_rq, they are the aggregated values of all runnable and blocked
463 * sched_entities.
464 *
465 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
466 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
467 * for computing those signals (see update_rq_clock_pelt())
468 *
469 * N.B., the above ratios (runnable% and running%) themselves are in the
470 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
471 * to as large a range as necessary. This is for example reflected by
472 * util_avg's SCHED_CAPACITY_SCALE.
473 *
474 * [Overflow issue]
475 *
476 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
477 * with the highest load (=88761), always runnable on a single cfs_rq,
478 * and should not overflow as the number already hits PID_MAX_LIMIT.
479 *
480 * For all other cases (including 32-bit kernels), struct load_weight's
481 * weight will overflow first before we do, because:
482 *
483 * Max(load_avg) <= Max(load.weight)
484 *
485 * Then it is the load_weight's responsibility to consider overflow
486 * issues.
487 */
488 struct sched_avg {
489 u64 last_update_time;
490 u64 load_sum;
491 u64 runnable_sum;
492 u32 util_sum;
493 u32 period_contrib;
494 unsigned long load_avg;
495 unsigned long runnable_avg;
496 unsigned long util_avg;
497 unsigned int util_est;
498 } ____cacheline_aligned;
499
500 /*
501 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
502 * updates. When a task is dequeued, its util_est should not be updated if its
503 * util_avg has not been updated in the meantime.
504 * This information is mapped into the MSB bit of util_est at dequeue time.
505 * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
506 * it is safe to use MSB.
507 */
508 #define UTIL_EST_WEIGHT_SHIFT 2
509 #define UTIL_AVG_UNCHANGED 0x80000000
510
511 struct sched_statistics {
512 #ifdef CONFIG_SCHEDSTATS
513 u64 wait_start;
514 u64 wait_max;
515 u64 wait_count;
516 u64 wait_sum;
517 u64 iowait_count;
518 u64 iowait_sum;
519
520 u64 sleep_start;
521 u64 sleep_max;
522 s64 sum_sleep_runtime;
523
524 u64 block_start;
525 u64 block_max;
526 s64 sum_block_runtime;
527
528 s64 exec_max;
529 u64 slice_max;
530
531 u64 nr_migrations_cold;
532 u64 nr_failed_migrations_affine;
533 u64 nr_failed_migrations_running;
534 u64 nr_failed_migrations_hot;
535 u64 nr_forced_migrations;
536
537 u64 nr_wakeups;
538 u64 nr_wakeups_sync;
539 u64 nr_wakeups_migrate;
540 u64 nr_wakeups_local;
541 u64 nr_wakeups_remote;
542 u64 nr_wakeups_affine;
543 u64 nr_wakeups_affine_attempts;
544 u64 nr_wakeups_passive;
545 u64 nr_wakeups_idle;
546
547 #ifdef CONFIG_SCHED_CORE
548 u64 core_forceidle_sum;
549 #endif
550 #endif /* CONFIG_SCHEDSTATS */
551 } ____cacheline_aligned;
552
553 struct sched_entity {
554 /* For load-balancing: */
555 struct load_weight load;
556 struct rb_node run_node;
557 u64 deadline;
558 u64 min_vruntime;
559 u64 min_slice;
560
561 struct list_head group_node;
562 unsigned char on_rq;
563 unsigned char sched_delayed;
564 unsigned char rel_deadline;
565 unsigned char custom_slice;
566 /* hole */
567
568 u64 exec_start;
569 u64 sum_exec_runtime;
570 u64 prev_sum_exec_runtime;
571 u64 vruntime;
572 s64 vlag;
573 u64 slice;
574
575 u64 nr_migrations;
576
577 #ifdef CONFIG_FAIR_GROUP_SCHED
578 int depth;
579 struct sched_entity *parent;
580 /* rq on which this entity is (to be) queued: */
581 struct cfs_rq *cfs_rq;
582 /* rq "owned" by this entity/group: */
583 struct cfs_rq *my_q;
584 /* cached value of my_q->h_nr_running */
585 unsigned long runnable_weight;
586 #endif
587
588 #ifdef CONFIG_SMP
589 /*
590 * Per entity load average tracking.
591 *
592 * Put into separate cache line so it does not
593 * collide with read-mostly values above.
594 */
595 struct sched_avg avg;
596 #endif
597 };
598
599 struct sched_rt_entity {
600 struct list_head run_list;
601 unsigned long timeout;
602 unsigned long watchdog_stamp;
603 unsigned int time_slice;
604 unsigned short on_rq;
605 unsigned short on_list;
606
607 struct sched_rt_entity *back;
608 #ifdef CONFIG_RT_GROUP_SCHED
609 struct sched_rt_entity *parent;
610 /* rq on which this entity is (to be) queued: */
611 struct rt_rq *rt_rq;
612 /* rq "owned" by this entity/group: */
613 struct rt_rq *my_q;
614 #endif
615 } __randomize_layout;
616
617 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
618 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
619
620 struct sched_dl_entity {
621 struct rb_node rb_node;
622
623 /*
624 * Original scheduling parameters. Copied here from sched_attr
625 * during sched_setattr(), they will remain the same until
626 * the next sched_setattr().
627 */
628 u64 dl_runtime; /* Maximum runtime for each instance */
629 u64 dl_deadline; /* Relative deadline of each instance */
630 u64 dl_period; /* Separation of two instances (period) */
631 u64 dl_bw; /* dl_runtime / dl_period */
632 u64 dl_density; /* dl_runtime / dl_deadline */
633
634 /*
635 * Actual scheduling parameters. Initialized with the values above,
636 * they are continuously updated during task execution. Note that
637 * the remaining runtime could be < 0 in case we are in overrun.
638 */
639 s64 runtime; /* Remaining runtime for this instance */
640 u64 deadline; /* Absolute deadline for this instance */
641 unsigned int flags; /* Specifying the scheduler behaviour */
642
643 /*
644 * Some bool flags:
645 *
646 * @dl_throttled tells if we exhausted the runtime. If so, the
647 * task has to wait for a replenishment to be performed at the
648 * next firing of dl_timer.
649 *
650 * @dl_yielded tells if task gave up the CPU before consuming
651 * all its available runtime during the last job.
652 *
653 * @dl_non_contending tells if the task is inactive while still
654 * contributing to the active utilization. In other words, it
655 * indicates if the inactive timer has been armed and its handler
656 * has not been executed yet. This flag is useful to avoid race
657 * conditions between the inactive timer handler and the wakeup
658 * code.
659 *
660 * @dl_overrun tells if the task asked to be informed about runtime
661 * overruns.
662 *
663 * @dl_server tells if this is a server entity.
664 *
665 * @dl_defer tells if this is a deferred or regular server. For
666 * now only defer server exists.
667 *
668 * @dl_defer_armed tells if the deferrable server is waiting
669 * for the replenishment timer to activate it.
670 *
671 * @dl_server_active tells if the dlserver is active(started).
672 * dlserver is started on first cfs enqueue on an idle runqueue
673 * and is stopped when a dequeue results in 0 cfs tasks on the
674 * runqueue. In other words, dlserver is active only when cpu's
675 * runqueue has atleast one cfs task.
676 *
677 * @dl_defer_running tells if the deferrable server is actually
678 * running, skipping the defer phase.
679 */
680 unsigned int dl_throttled : 1;
681 unsigned int dl_yielded : 1;
682 unsigned int dl_non_contending : 1;
683 unsigned int dl_overrun : 1;
684 unsigned int dl_server : 1;
685 unsigned int dl_server_active : 1;
686 unsigned int dl_defer : 1;
687 unsigned int dl_defer_armed : 1;
688 unsigned int dl_defer_running : 1;
689
690 /*
691 * Bandwidth enforcement timer. Each -deadline task has its
692 * own bandwidth to be enforced, thus we need one timer per task.
693 */
694 struct hrtimer dl_timer;
695
696 /*
697 * Inactive timer, responsible for decreasing the active utilization
698 * at the "0-lag time". When a -deadline task blocks, it contributes
699 * to GRUB's active utilization until the "0-lag time", hence a
700 * timer is needed to decrease the active utilization at the correct
701 * time.
702 */
703 struct hrtimer inactive_timer;
704
705 /*
706 * Bits for DL-server functionality. Also see the comment near
707 * dl_server_update().
708 *
709 * @rq the runqueue this server is for
710 *
711 * @server_has_tasks() returns true if @server_pick return a
712 * runnable task.
713 */
714 struct rq *rq;
715 dl_server_has_tasks_f server_has_tasks;
716 dl_server_pick_f server_pick_task;
717
718 #ifdef CONFIG_RT_MUTEXES
719 /*
720 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
721 * pi_se points to the donor, otherwise points to the dl_se it belongs
722 * to (the original one/itself).
723 */
724 struct sched_dl_entity *pi_se;
725 #endif
726 };
727
728 #ifdef CONFIG_UCLAMP_TASK
729 /* Number of utilization clamp buckets (shorter alias) */
730 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
731
732 /*
733 * Utilization clamp for a scheduling entity
734 * @value: clamp value "assigned" to a se
735 * @bucket_id: bucket index corresponding to the "assigned" value
736 * @active: the se is currently refcounted in a rq's bucket
737 * @user_defined: the requested clamp value comes from user-space
738 *
739 * The bucket_id is the index of the clamp bucket matching the clamp value
740 * which is pre-computed and stored to avoid expensive integer divisions from
741 * the fast path.
742 *
743 * The active bit is set whenever a task has got an "effective" value assigned,
744 * which can be different from the clamp value "requested" from user-space.
745 * This allows to know a task is refcounted in the rq's bucket corresponding
746 * to the "effective" bucket_id.
747 *
748 * The user_defined bit is set whenever a task has got a task-specific clamp
749 * value requested from userspace, i.e. the system defaults apply to this task
750 * just as a restriction. This allows to relax default clamps when a less
751 * restrictive task-specific value has been requested, thus allowing to
752 * implement a "nice" semantic. For example, a task running with a 20%
753 * default boost can still drop its own boosting to 0%.
754 */
755 struct uclamp_se {
756 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
757 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
758 unsigned int active : 1;
759 unsigned int user_defined : 1;
760 };
761 #endif /* CONFIG_UCLAMP_TASK */
762
763 union rcu_special {
764 struct {
765 u8 blocked;
766 u8 need_qs;
767 u8 exp_hint; /* Hint for performance. */
768 u8 need_mb; /* Readers need smp_mb(). */
769 } b; /* Bits. */
770 u32 s; /* Set of bits. */
771 };
772
773 enum perf_event_task_context {
774 perf_invalid_context = -1,
775 perf_hw_context = 0,
776 perf_sw_context,
777 perf_nr_task_contexts,
778 };
779
780 /*
781 * Number of contexts where an event can trigger:
782 * task, softirq, hardirq, nmi.
783 */
784 #define PERF_NR_CONTEXTS 4
785
786 struct wake_q_node {
787 struct wake_q_node *next;
788 };
789
790 struct kmap_ctrl {
791 #ifdef CONFIG_KMAP_LOCAL
792 int idx;
793 pte_t pteval[KM_MAX_IDX];
794 #endif
795 };
796
797 struct task_struct {
798 #ifdef CONFIG_THREAD_INFO_IN_TASK
799 /*
800 * For reasons of header soup (see current_thread_info()), this
801 * must be the first element of task_struct.
802 */
803 struct thread_info thread_info;
804 #endif
805 unsigned int __state;
806
807 /* saved state for "spinlock sleepers" */
808 unsigned int saved_state;
809
810 /*
811 * This begins the randomizable portion of task_struct. Only
812 * scheduling-critical items should be added above here.
813 */
814 randomized_struct_fields_start
815
816 void *stack;
817 refcount_t usage;
818 /* Per task flags (PF_*), defined further below: */
819 unsigned int flags;
820 unsigned int ptrace;
821
822 #ifdef CONFIG_MEM_ALLOC_PROFILING
823 struct alloc_tag *alloc_tag;
824 #endif
825
826 #ifdef CONFIG_SMP
827 int on_cpu;
828 struct __call_single_node wake_entry;
829 unsigned int wakee_flips;
830 unsigned long wakee_flip_decay_ts;
831 struct task_struct *last_wakee;
832
833 /*
834 * recent_used_cpu is initially set as the last CPU used by a task
835 * that wakes affine another task. Waker/wakee relationships can
836 * push tasks around a CPU where each wakeup moves to the next one.
837 * Tracking a recently used CPU allows a quick search for a recently
838 * used CPU that may be idle.
839 */
840 int recent_used_cpu;
841 int wake_cpu;
842 #endif
843 int on_rq;
844
845 int prio;
846 int static_prio;
847 int normal_prio;
848 unsigned int rt_priority;
849
850 struct sched_entity se;
851 struct sched_rt_entity rt;
852 struct sched_dl_entity dl;
853 struct sched_dl_entity *dl_server;
854 #ifdef CONFIG_SCHED_CLASS_EXT
855 struct sched_ext_entity scx;
856 #endif
857 const struct sched_class *sched_class;
858
859 #ifdef CONFIG_SCHED_CORE
860 struct rb_node core_node;
861 unsigned long core_cookie;
862 unsigned int core_occupation;
863 #endif
864
865 #ifdef CONFIG_CGROUP_SCHED
866 struct task_group *sched_task_group;
867 #endif
868
869
870 #ifdef CONFIG_UCLAMP_TASK
871 /*
872 * Clamp values requested for a scheduling entity.
873 * Must be updated with task_rq_lock() held.
874 */
875 struct uclamp_se uclamp_req[UCLAMP_CNT];
876 /*
877 * Effective clamp values used for a scheduling entity.
878 * Must be updated with task_rq_lock() held.
879 */
880 struct uclamp_se uclamp[UCLAMP_CNT];
881 #endif
882
883 struct sched_statistics stats;
884
885 #ifdef CONFIG_PREEMPT_NOTIFIERS
886 /* List of struct preempt_notifier: */
887 struct hlist_head preempt_notifiers;
888 #endif
889
890 #ifdef CONFIG_BLK_DEV_IO_TRACE
891 unsigned int btrace_seq;
892 #endif
893
894 unsigned int policy;
895 unsigned long max_allowed_capacity;
896 int nr_cpus_allowed;
897 const cpumask_t *cpus_ptr;
898 cpumask_t *user_cpus_ptr;
899 cpumask_t cpus_mask;
900 void *migration_pending;
901 #ifdef CONFIG_SMP
902 unsigned short migration_disabled;
903 #endif
904 unsigned short migration_flags;
905
906 #ifdef CONFIG_PREEMPT_RCU
907 int rcu_read_lock_nesting;
908 union rcu_special rcu_read_unlock_special;
909 struct list_head rcu_node_entry;
910 struct rcu_node *rcu_blocked_node;
911 #endif /* #ifdef CONFIG_PREEMPT_RCU */
912
913 #ifdef CONFIG_TASKS_RCU
914 unsigned long rcu_tasks_nvcsw;
915 u8 rcu_tasks_holdout;
916 u8 rcu_tasks_idx;
917 int rcu_tasks_idle_cpu;
918 struct list_head rcu_tasks_holdout_list;
919 int rcu_tasks_exit_cpu;
920 struct list_head rcu_tasks_exit_list;
921 #endif /* #ifdef CONFIG_TASKS_RCU */
922
923 #ifdef CONFIG_TASKS_TRACE_RCU
924 int trc_reader_nesting;
925 int trc_ipi_to_cpu;
926 union rcu_special trc_reader_special;
927 struct list_head trc_holdout_list;
928 struct list_head trc_blkd_node;
929 int trc_blkd_cpu;
930 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
931
932 struct sched_info sched_info;
933
934 struct list_head tasks;
935 #ifdef CONFIG_SMP
936 struct plist_node pushable_tasks;
937 struct rb_node pushable_dl_tasks;
938 #endif
939
940 struct mm_struct *mm;
941 struct mm_struct *active_mm;
942 struct address_space *faults_disabled_mapping;
943
944 int exit_state;
945 int exit_code;
946 int exit_signal;
947 /* The signal sent when the parent dies: */
948 int pdeath_signal;
949 /* JOBCTL_*, siglock protected: */
950 unsigned long jobctl;
951
952 /* Used for emulating ABI behavior of previous Linux versions: */
953 unsigned int personality;
954
955 /* Scheduler bits, serialized by scheduler locks: */
956 unsigned sched_reset_on_fork:1;
957 unsigned sched_contributes_to_load:1;
958 unsigned sched_migrated:1;
959 unsigned sched_task_hot:1;
960
961 /* Force alignment to the next boundary: */
962 unsigned :0;
963
964 /* Unserialized, strictly 'current' */
965
966 /*
967 * This field must not be in the scheduler word above due to wakelist
968 * queueing no longer being serialized by p->on_cpu. However:
969 *
970 * p->XXX = X; ttwu()
971 * schedule() if (p->on_rq && ..) // false
972 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
973 * deactivate_task() ttwu_queue_wakelist())
974 * p->on_rq = 0; p->sched_remote_wakeup = Y;
975 *
976 * guarantees all stores of 'current' are visible before
977 * ->sched_remote_wakeup gets used, so it can be in this word.
978 */
979 unsigned sched_remote_wakeup:1;
980 #ifdef CONFIG_RT_MUTEXES
981 unsigned sched_rt_mutex:1;
982 #endif
983
984 /* Bit to tell TOMOYO we're in execve(): */
985 unsigned in_execve:1;
986 unsigned in_iowait:1;
987 #ifndef TIF_RESTORE_SIGMASK
988 unsigned restore_sigmask:1;
989 #endif
990 #ifdef CONFIG_MEMCG_V1
991 unsigned in_user_fault:1;
992 #endif
993 #ifdef CONFIG_LRU_GEN
994 /* whether the LRU algorithm may apply to this access */
995 unsigned in_lru_fault:1;
996 #endif
997 #ifdef CONFIG_COMPAT_BRK
998 unsigned brk_randomized:1;
999 #endif
1000 #ifdef CONFIG_CGROUPS
1001 /* disallow userland-initiated cgroup migration */
1002 unsigned no_cgroup_migration:1;
1003 /* task is frozen/stopped (used by the cgroup freezer) */
1004 unsigned frozen:1;
1005 #endif
1006 #ifdef CONFIG_BLK_CGROUP
1007 unsigned use_memdelay:1;
1008 #endif
1009 #ifdef CONFIG_PSI
1010 /* Stalled due to lack of memory */
1011 unsigned in_memstall:1;
1012 #endif
1013 #ifdef CONFIG_PAGE_OWNER
1014 /* Used by page_owner=on to detect recursion in page tracking. */
1015 unsigned in_page_owner:1;
1016 #endif
1017 #ifdef CONFIG_EVENTFD
1018 /* Recursion prevention for eventfd_signal() */
1019 unsigned in_eventfd:1;
1020 #endif
1021 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1022 unsigned pasid_activated:1;
1023 #endif
1024 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1025 unsigned reported_split_lock:1;
1026 #endif
1027 #ifdef CONFIG_TASK_DELAY_ACCT
1028 /* delay due to memory thrashing */
1029 unsigned in_thrashing:1;
1030 #endif
1031 #ifdef CONFIG_PREEMPT_RT
1032 struct netdev_xmit net_xmit;
1033 #endif
1034 unsigned long atomic_flags; /* Flags requiring atomic access. */
1035
1036 struct restart_block restart_block;
1037
1038 pid_t pid;
1039 pid_t tgid;
1040
1041 #ifdef CONFIG_STACKPROTECTOR
1042 /* Canary value for the -fstack-protector GCC feature: */
1043 unsigned long stack_canary;
1044 #endif
1045 /*
1046 * Pointers to the (original) parent process, youngest child, younger sibling,
1047 * older sibling, respectively. (p->father can be replaced with
1048 * p->real_parent->pid)
1049 */
1050
1051 /* Real parent process: */
1052 struct task_struct __rcu *real_parent;
1053
1054 /* Recipient of SIGCHLD, wait4() reports: */
1055 struct task_struct __rcu *parent;
1056
1057 /*
1058 * Children/sibling form the list of natural children:
1059 */
1060 struct list_head children;
1061 struct list_head sibling;
1062 struct task_struct *group_leader;
1063
1064 /*
1065 * 'ptraced' is the list of tasks this task is using ptrace() on.
1066 *
1067 * This includes both natural children and PTRACE_ATTACH targets.
1068 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1069 */
1070 struct list_head ptraced;
1071 struct list_head ptrace_entry;
1072
1073 /* PID/PID hash table linkage. */
1074 struct pid *thread_pid;
1075 struct hlist_node pid_links[PIDTYPE_MAX];
1076 struct list_head thread_node;
1077
1078 struct completion *vfork_done;
1079
1080 /* CLONE_CHILD_SETTID: */
1081 int __user *set_child_tid;
1082
1083 /* CLONE_CHILD_CLEARTID: */
1084 int __user *clear_child_tid;
1085
1086 /* PF_KTHREAD | PF_IO_WORKER */
1087 void *worker_private;
1088
1089 u64 utime;
1090 u64 stime;
1091 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1092 u64 utimescaled;
1093 u64 stimescaled;
1094 #endif
1095 u64 gtime;
1096 struct prev_cputime prev_cputime;
1097 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1098 struct vtime vtime;
1099 #endif
1100
1101 #ifdef CONFIG_NO_HZ_FULL
1102 atomic_t tick_dep_mask;
1103 #endif
1104 /* Context switch counts: */
1105 unsigned long nvcsw;
1106 unsigned long nivcsw;
1107
1108 /* Monotonic time in nsecs: */
1109 u64 start_time;
1110
1111 /* Boot based time in nsecs: */
1112 u64 start_boottime;
1113
1114 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1115 unsigned long min_flt;
1116 unsigned long maj_flt;
1117
1118 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1119 struct posix_cputimers posix_cputimers;
1120
1121 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1122 struct posix_cputimers_work posix_cputimers_work;
1123 #endif
1124
1125 /* Process credentials: */
1126
1127 /* Tracer's credentials at attach: */
1128 const struct cred __rcu *ptracer_cred;
1129
1130 /* Objective and real subjective task credentials (COW): */
1131 const struct cred __rcu *real_cred;
1132
1133 /* Effective (overridable) subjective task credentials (COW): */
1134 const struct cred __rcu *cred;
1135
1136 #ifdef CONFIG_KEYS
1137 /* Cached requested key. */
1138 struct key *cached_requested_key;
1139 #endif
1140
1141 /*
1142 * executable name, excluding path.
1143 *
1144 * - normally initialized begin_new_exec()
1145 * - set it with set_task_comm()
1146 * - strscpy_pad() to ensure it is always NUL-terminated and
1147 * zero-padded
1148 * - task_lock() to ensure the operation is atomic and the name is
1149 * fully updated.
1150 */
1151 char comm[TASK_COMM_LEN];
1152
1153 struct nameidata *nameidata;
1154
1155 #ifdef CONFIG_SYSVIPC
1156 struct sysv_sem sysvsem;
1157 struct sysv_shm sysvshm;
1158 #endif
1159 #ifdef CONFIG_DETECT_HUNG_TASK
1160 unsigned long last_switch_count;
1161 unsigned long last_switch_time;
1162 #endif
1163 /* Filesystem information: */
1164 struct fs_struct *fs;
1165
1166 /* Open file information: */
1167 struct files_struct *files;
1168
1169 #ifdef CONFIG_IO_URING
1170 struct io_uring_task *io_uring;
1171 #endif
1172
1173 /* Namespaces: */
1174 struct nsproxy *nsproxy;
1175
1176 /* Signal handlers: */
1177 struct signal_struct *signal;
1178 struct sighand_struct __rcu *sighand;
1179 sigset_t blocked;
1180 sigset_t real_blocked;
1181 /* Restored if set_restore_sigmask() was used: */
1182 sigset_t saved_sigmask;
1183 struct sigpending pending;
1184 unsigned long sas_ss_sp;
1185 size_t sas_ss_size;
1186 unsigned int sas_ss_flags;
1187
1188 struct callback_head *task_works;
1189
1190 #ifdef CONFIG_AUDIT
1191 #ifdef CONFIG_AUDITSYSCALL
1192 struct audit_context *audit_context;
1193 #endif
1194 kuid_t loginuid;
1195 unsigned int sessionid;
1196 #endif
1197 struct seccomp seccomp;
1198 struct syscall_user_dispatch syscall_dispatch;
1199
1200 /* Thread group tracking: */
1201 u64 parent_exec_id;
1202 u64 self_exec_id;
1203
1204 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1205 spinlock_t alloc_lock;
1206
1207 /* Protection of the PI data structures: */
1208 raw_spinlock_t pi_lock;
1209
1210 struct wake_q_node wake_q;
1211
1212 #ifdef CONFIG_RT_MUTEXES
1213 /* PI waiters blocked on a rt_mutex held by this task: */
1214 struct rb_root_cached pi_waiters;
1215 /* Updated under owner's pi_lock and rq lock */
1216 struct task_struct *pi_top_task;
1217 /* Deadlock detection and priority inheritance handling: */
1218 struct rt_mutex_waiter *pi_blocked_on;
1219 #endif
1220
1221 #ifdef CONFIG_DEBUG_MUTEXES
1222 /* Mutex deadlock detection: */
1223 struct mutex_waiter *blocked_on;
1224 #endif
1225
1226 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1227 int non_block_count;
1228 #endif
1229
1230 #ifdef CONFIG_TRACE_IRQFLAGS
1231 struct irqtrace_events irqtrace;
1232 unsigned int hardirq_threaded;
1233 u64 hardirq_chain_key;
1234 int softirqs_enabled;
1235 int softirq_context;
1236 int irq_config;
1237 #endif
1238 #ifdef CONFIG_PREEMPT_RT
1239 int softirq_disable_cnt;
1240 #endif
1241
1242 #ifdef CONFIG_LOCKDEP
1243 # define MAX_LOCK_DEPTH 48UL
1244 u64 curr_chain_key;
1245 int lockdep_depth;
1246 unsigned int lockdep_recursion;
1247 struct held_lock held_locks[MAX_LOCK_DEPTH];
1248 #endif
1249
1250 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1251 unsigned int in_ubsan;
1252 #endif
1253
1254 /* Journalling filesystem info: */
1255 void *journal_info;
1256
1257 /* Stacked block device info: */
1258 struct bio_list *bio_list;
1259
1260 /* Stack plugging: */
1261 struct blk_plug *plug;
1262
1263 /* VM state: */
1264 struct reclaim_state *reclaim_state;
1265
1266 struct io_context *io_context;
1267
1268 #ifdef CONFIG_COMPACTION
1269 struct capture_control *capture_control;
1270 #endif
1271 /* Ptrace state: */
1272 unsigned long ptrace_message;
1273 kernel_siginfo_t *last_siginfo;
1274
1275 struct task_io_accounting ioac;
1276 #ifdef CONFIG_PSI
1277 /* Pressure stall state */
1278 unsigned int psi_flags;
1279 #endif
1280 #ifdef CONFIG_TASK_XACCT
1281 /* Accumulated RSS usage: */
1282 u64 acct_rss_mem1;
1283 /* Accumulated virtual memory usage: */
1284 u64 acct_vm_mem1;
1285 /* stime + utime since last update: */
1286 u64 acct_timexpd;
1287 #endif
1288 #ifdef CONFIG_CPUSETS
1289 /* Protected by ->alloc_lock: */
1290 nodemask_t mems_allowed;
1291 /* Sequence number to catch updates: */
1292 seqcount_spinlock_t mems_allowed_seq;
1293 int cpuset_mem_spread_rotor;
1294 #endif
1295 #ifdef CONFIG_CGROUPS
1296 /* Control Group info protected by css_set_lock: */
1297 struct css_set __rcu *cgroups;
1298 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1299 struct list_head cg_list;
1300 #endif
1301 #ifdef CONFIG_X86_CPU_RESCTRL
1302 u32 closid;
1303 u32 rmid;
1304 #endif
1305 #ifdef CONFIG_FUTEX
1306 struct robust_list_head __user *robust_list;
1307 #ifdef CONFIG_COMPAT
1308 struct compat_robust_list_head __user *compat_robust_list;
1309 #endif
1310 struct list_head pi_state_list;
1311 struct futex_pi_state *pi_state_cache;
1312 struct mutex futex_exit_mutex;
1313 unsigned int futex_state;
1314 #endif
1315 #ifdef CONFIG_PERF_EVENTS
1316 u8 perf_recursion[PERF_NR_CONTEXTS];
1317 struct perf_event_context *perf_event_ctxp;
1318 struct mutex perf_event_mutex;
1319 struct list_head perf_event_list;
1320 struct perf_ctx_data __rcu *perf_ctx_data;
1321 #endif
1322 #ifdef CONFIG_DEBUG_PREEMPT
1323 unsigned long preempt_disable_ip;
1324 #endif
1325 #ifdef CONFIG_NUMA
1326 /* Protected by alloc_lock: */
1327 struct mempolicy *mempolicy;
1328 short il_prev;
1329 u8 il_weight;
1330 short pref_node_fork;
1331 #endif
1332 #ifdef CONFIG_NUMA_BALANCING
1333 int numa_scan_seq;
1334 unsigned int numa_scan_period;
1335 unsigned int numa_scan_period_max;
1336 int numa_preferred_nid;
1337 unsigned long numa_migrate_retry;
1338 /* Migration stamp: */
1339 u64 node_stamp;
1340 u64 last_task_numa_placement;
1341 u64 last_sum_exec_runtime;
1342 struct callback_head numa_work;
1343
1344 /*
1345 * This pointer is only modified for current in syscall and
1346 * pagefault context (and for tasks being destroyed), so it can be read
1347 * from any of the following contexts:
1348 * - RCU read-side critical section
1349 * - current->numa_group from everywhere
1350 * - task's runqueue locked, task not running
1351 */
1352 struct numa_group __rcu *numa_group;
1353
1354 /*
1355 * numa_faults is an array split into four regions:
1356 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1357 * in this precise order.
1358 *
1359 * faults_memory: Exponential decaying average of faults on a per-node
1360 * basis. Scheduling placement decisions are made based on these
1361 * counts. The values remain static for the duration of a PTE scan.
1362 * faults_cpu: Track the nodes the process was running on when a NUMA
1363 * hinting fault was incurred.
1364 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1365 * during the current scan window. When the scan completes, the counts
1366 * in faults_memory and faults_cpu decay and these values are copied.
1367 */
1368 unsigned long *numa_faults;
1369 unsigned long total_numa_faults;
1370
1371 /*
1372 * numa_faults_locality tracks if faults recorded during the last
1373 * scan window were remote/local or failed to migrate. The task scan
1374 * period is adapted based on the locality of the faults with different
1375 * weights depending on whether they were shared or private faults
1376 */
1377 unsigned long numa_faults_locality[3];
1378
1379 unsigned long numa_pages_migrated;
1380 #endif /* CONFIG_NUMA_BALANCING */
1381
1382 #ifdef CONFIG_RSEQ
1383 struct rseq __user *rseq;
1384 u32 rseq_len;
1385 u32 rseq_sig;
1386 /*
1387 * RmW on rseq_event_mask must be performed atomically
1388 * with respect to preemption.
1389 */
1390 unsigned long rseq_event_mask;
1391 # ifdef CONFIG_DEBUG_RSEQ
1392 /*
1393 * This is a place holder to save a copy of the rseq fields for
1394 * validation of read-only fields. The struct rseq has a
1395 * variable-length array at the end, so it cannot be used
1396 * directly. Reserve a size large enough for the known fields.
1397 */
1398 char rseq_fields[sizeof(struct rseq)];
1399 # endif
1400 #endif
1401
1402 #ifdef CONFIG_SCHED_MM_CID
1403 int mm_cid; /* Current cid in mm */
1404 int last_mm_cid; /* Most recent cid in mm */
1405 int migrate_from_cpu;
1406 int mm_cid_active; /* Whether cid bitmap is active */
1407 struct callback_head cid_work;
1408 #endif
1409
1410 struct tlbflush_unmap_batch tlb_ubc;
1411
1412 /* Cache last used pipe for splice(): */
1413 struct pipe_inode_info *splice_pipe;
1414
1415 struct page_frag task_frag;
1416
1417 #ifdef CONFIG_TASK_DELAY_ACCT
1418 struct task_delay_info *delays;
1419 #endif
1420
1421 #ifdef CONFIG_FAULT_INJECTION
1422 int make_it_fail;
1423 unsigned int fail_nth;
1424 #endif
1425 /*
1426 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1427 * balance_dirty_pages() for a dirty throttling pause:
1428 */
1429 int nr_dirtied;
1430 int nr_dirtied_pause;
1431 /* Start of a write-and-pause period: */
1432 unsigned long dirty_paused_when;
1433
1434 #ifdef CONFIG_LATENCYTOP
1435 int latency_record_count;
1436 struct latency_record latency_record[LT_SAVECOUNT];
1437 #endif
1438 /*
1439 * Time slack values; these are used to round up poll() and
1440 * select() etc timeout values. These are in nanoseconds.
1441 */
1442 u64 timer_slack_ns;
1443 u64 default_timer_slack_ns;
1444
1445 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1446 unsigned int kasan_depth;
1447 #endif
1448
1449 #ifdef CONFIG_KCSAN
1450 struct kcsan_ctx kcsan_ctx;
1451 #ifdef CONFIG_TRACE_IRQFLAGS
1452 struct irqtrace_events kcsan_save_irqtrace;
1453 #endif
1454 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1455 int kcsan_stack_depth;
1456 #endif
1457 #endif
1458
1459 #ifdef CONFIG_KMSAN
1460 struct kmsan_ctx kmsan_ctx;
1461 #endif
1462
1463 #if IS_ENABLED(CONFIG_KUNIT)
1464 struct kunit *kunit_test;
1465 #endif
1466
1467 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1468 /* Index of current stored address in ret_stack: */
1469 int curr_ret_stack;
1470 int curr_ret_depth;
1471
1472 /* Stack of return addresses for return function tracing: */
1473 unsigned long *ret_stack;
1474
1475 /* Timestamp for last schedule: */
1476 unsigned long long ftrace_timestamp;
1477 unsigned long long ftrace_sleeptime;
1478
1479 /*
1480 * Number of functions that haven't been traced
1481 * because of depth overrun:
1482 */
1483 atomic_t trace_overrun;
1484
1485 /* Pause tracing: */
1486 atomic_t tracing_graph_pause;
1487 #endif
1488
1489 #ifdef CONFIG_TRACING
1490 /* Bitmask and counter of trace recursion: */
1491 unsigned long trace_recursion;
1492 #endif /* CONFIG_TRACING */
1493
1494 #ifdef CONFIG_KCOV
1495 /* See kernel/kcov.c for more details. */
1496
1497 /* Coverage collection mode enabled for this task (0 if disabled): */
1498 unsigned int kcov_mode;
1499
1500 /* Size of the kcov_area: */
1501 unsigned int kcov_size;
1502
1503 /* Buffer for coverage collection: */
1504 void *kcov_area;
1505
1506 /* KCOV descriptor wired with this task or NULL: */
1507 struct kcov *kcov;
1508
1509 /* KCOV common handle for remote coverage collection: */
1510 u64 kcov_handle;
1511
1512 /* KCOV sequence number: */
1513 int kcov_sequence;
1514
1515 /* Collect coverage from softirq context: */
1516 unsigned int kcov_softirq;
1517 #endif
1518
1519 #ifdef CONFIG_MEMCG_V1
1520 struct mem_cgroup *memcg_in_oom;
1521 #endif
1522
1523 #ifdef CONFIG_MEMCG
1524 /* Number of pages to reclaim on returning to userland: */
1525 unsigned int memcg_nr_pages_over_high;
1526
1527 /* Used by memcontrol for targeted memcg charge: */
1528 struct mem_cgroup *active_memcg;
1529
1530 /* Cache for current->cgroups->memcg->objcg lookups: */
1531 struct obj_cgroup *objcg;
1532 #endif
1533
1534 #ifdef CONFIG_BLK_CGROUP
1535 struct gendisk *throttle_disk;
1536 #endif
1537
1538 #ifdef CONFIG_UPROBES
1539 struct uprobe_task *utask;
1540 #endif
1541 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1542 unsigned int sequential_io;
1543 unsigned int sequential_io_avg;
1544 #endif
1545 struct kmap_ctrl kmap_ctrl;
1546 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1547 unsigned long task_state_change;
1548 # ifdef CONFIG_PREEMPT_RT
1549 unsigned long saved_state_change;
1550 # endif
1551 #endif
1552 struct rcu_head rcu;
1553 refcount_t rcu_users;
1554 int pagefault_disabled;
1555 #ifdef CONFIG_MMU
1556 struct task_struct *oom_reaper_list;
1557 struct timer_list oom_reaper_timer;
1558 #endif
1559 #ifdef CONFIG_VMAP_STACK
1560 struct vm_struct *stack_vm_area;
1561 #endif
1562 #ifdef CONFIG_THREAD_INFO_IN_TASK
1563 /* A live task holds one reference: */
1564 refcount_t stack_refcount;
1565 #endif
1566 #ifdef CONFIG_LIVEPATCH
1567 int patch_state;
1568 #endif
1569 #ifdef CONFIG_SECURITY
1570 /* Used by LSM modules for access restriction: */
1571 void *security;
1572 #endif
1573 #ifdef CONFIG_BPF_SYSCALL
1574 /* Used by BPF task local storage */
1575 struct bpf_local_storage __rcu *bpf_storage;
1576 /* Used for BPF run context */
1577 struct bpf_run_ctx *bpf_ctx;
1578 #endif
1579 /* Used by BPF for per-TASK xdp storage */
1580 struct bpf_net_context *bpf_net_context;
1581
1582 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1583 unsigned long lowest_stack;
1584 unsigned long prev_lowest_stack;
1585 #endif
1586
1587 #ifdef CONFIG_X86_MCE
1588 void __user *mce_vaddr;
1589 __u64 mce_kflags;
1590 u64 mce_addr;
1591 __u64 mce_ripv : 1,
1592 mce_whole_page : 1,
1593 __mce_reserved : 62;
1594 struct callback_head mce_kill_me;
1595 int mce_count;
1596 #endif
1597
1598 #ifdef CONFIG_KRETPROBES
1599 struct llist_head kretprobe_instances;
1600 #endif
1601 #ifdef CONFIG_RETHOOK
1602 struct llist_head rethooks;
1603 #endif
1604
1605 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1606 /*
1607 * If L1D flush is supported on mm context switch
1608 * then we use this callback head to queue kill work
1609 * to kill tasks that are not running on SMT disabled
1610 * cores
1611 */
1612 struct callback_head l1d_flush_kill;
1613 #endif
1614
1615 #ifdef CONFIG_RV
1616 /*
1617 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1618 * If we find justification for more monitors, we can think
1619 * about adding more or developing a dynamic method. So far,
1620 * none of these are justified.
1621 */
1622 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1623 #endif
1624
1625 #ifdef CONFIG_USER_EVENTS
1626 struct user_event_mm *user_event_mm;
1627 #endif
1628
1629 /*
1630 * New fields for task_struct should be added above here, so that
1631 * they are included in the randomized portion of task_struct.
1632 */
1633 randomized_struct_fields_end
1634
1635 /* CPU-specific state of this task: */
1636 struct thread_struct thread;
1637
1638 /*
1639 * WARNING: on x86, 'thread_struct' contains a variable-sized
1640 * structure. It *MUST* be at the end of 'task_struct'.
1641 *
1642 * Do not put anything below here!
1643 */
1644 };
1645
1646 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1647 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1648
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1649 static inline unsigned int __task_state_index(unsigned int tsk_state,
1650 unsigned int tsk_exit_state)
1651 {
1652 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1653
1654 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1655
1656 if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1657 state = TASK_REPORT_IDLE;
1658
1659 /*
1660 * We're lying here, but rather than expose a completely new task state
1661 * to userspace, we can make this appear as if the task has gone through
1662 * a regular rt_mutex_lock() call.
1663 * Report frozen tasks as uninterruptible.
1664 */
1665 if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1666 state = TASK_UNINTERRUPTIBLE;
1667
1668 return fls(state);
1669 }
1670
task_state_index(struct task_struct * tsk)1671 static inline unsigned int task_state_index(struct task_struct *tsk)
1672 {
1673 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1674 }
1675
task_index_to_char(unsigned int state)1676 static inline char task_index_to_char(unsigned int state)
1677 {
1678 static const char state_char[] = "RSDTtXZPI";
1679
1680 BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1681
1682 return state_char[state];
1683 }
1684
task_state_to_char(struct task_struct * tsk)1685 static inline char task_state_to_char(struct task_struct *tsk)
1686 {
1687 return task_index_to_char(task_state_index(tsk));
1688 }
1689
1690 extern struct pid *cad_pid;
1691
1692 /*
1693 * Per process flags
1694 */
1695 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1696 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1697 #define PF_EXITING 0x00000004 /* Getting shut down */
1698 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1699 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1700 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1701 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1702 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1703 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1704 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1705 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1706 #define PF_MEMALLOC 0x00000800 /* Allocating memory to free memory. See memalloc_noreclaim_save() */
1707 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1708 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1709 #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */
1710 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1711 #define PF_KCOMPACTD 0x00010000 /* I am kcompactd */
1712 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1713 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1714 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1715 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1716 * I am cleaning dirty pages from some other bdi. */
1717 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1718 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1719 #define PF__HOLE__00800000 0x00800000
1720 #define PF__HOLE__01000000 0x01000000
1721 #define PF__HOLE__02000000 0x02000000
1722 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1723 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1724 #define PF_MEMALLOC_PIN 0x10000000 /* Allocations constrained to zones which allow long term pinning.
1725 * See memalloc_pin_save() */
1726 #define PF_BLOCK_TS 0x20000000 /* plug has ts that needs updating */
1727 #define PF__HOLE__40000000 0x40000000
1728 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1729
1730 /*
1731 * Only the _current_ task can read/write to tsk->flags, but other
1732 * tasks can access tsk->flags in readonly mode for example
1733 * with tsk_used_math (like during threaded core dumping).
1734 * There is however an exception to this rule during ptrace
1735 * or during fork: the ptracer task is allowed to write to the
1736 * child->flags of its traced child (same goes for fork, the parent
1737 * can write to the child->flags), because we're guaranteed the
1738 * child is not running and in turn not changing child->flags
1739 * at the same time the parent does it.
1740 */
1741 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1742 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1743 #define clear_used_math() clear_stopped_child_used_math(current)
1744 #define set_used_math() set_stopped_child_used_math(current)
1745
1746 #define conditional_stopped_child_used_math(condition, child) \
1747 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1748
1749 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1750
1751 #define copy_to_stopped_child_used_math(child) \
1752 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1753
1754 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1755 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1756 #define used_math() tsk_used_math(current)
1757
is_percpu_thread(void)1758 static __always_inline bool is_percpu_thread(void)
1759 {
1760 #ifdef CONFIG_SMP
1761 return (current->flags & PF_NO_SETAFFINITY) &&
1762 (current->nr_cpus_allowed == 1);
1763 #else
1764 return true;
1765 #endif
1766 }
1767
1768 /* Per-process atomic flags. */
1769 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1770 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1771 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1772 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1773 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1774 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1775 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1776 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1777
1778 #define TASK_PFA_TEST(name, func) \
1779 static inline bool task_##func(struct task_struct *p) \
1780 { return test_bit(PFA_##name, &p->atomic_flags); }
1781
1782 #define TASK_PFA_SET(name, func) \
1783 static inline void task_set_##func(struct task_struct *p) \
1784 { set_bit(PFA_##name, &p->atomic_flags); }
1785
1786 #define TASK_PFA_CLEAR(name, func) \
1787 static inline void task_clear_##func(struct task_struct *p) \
1788 { clear_bit(PFA_##name, &p->atomic_flags); }
1789
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1790 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1791 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1792
1793 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1794 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1795 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1796
1797 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1798 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1799 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1800
1801 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1802 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1803 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1804
1805 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1806 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1807 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1808
1809 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1810 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1811
1812 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1813 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1814 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1815
1816 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1817 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1818
1819 static inline void
1820 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1821 {
1822 current->flags &= ~flags;
1823 current->flags |= orig_flags & flags;
1824 }
1825
1826 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1827 extern int task_can_attach(struct task_struct *p);
1828 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1829 extern void dl_bw_free(int cpu, u64 dl_bw);
1830 #ifdef CONFIG_SMP
1831
1832 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1833 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1834
1835 /**
1836 * set_cpus_allowed_ptr - set CPU affinity mask of a task
1837 * @p: the task
1838 * @new_mask: CPU affinity mask
1839 *
1840 * Return: zero if successful, or a negative error code
1841 */
1842 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1843 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1844 extern void release_user_cpus_ptr(struct task_struct *p);
1845 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1846 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1847 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1848 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1849 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1850 {
1851 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1852 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1853 {
1854 /* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1855 if ((*cpumask_bits(new_mask) & 1) == 0)
1856 return -EINVAL;
1857 return 0;
1858 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1859 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1860 {
1861 if (src->user_cpus_ptr)
1862 return -EINVAL;
1863 return 0;
1864 }
release_user_cpus_ptr(struct task_struct * p)1865 static inline void release_user_cpus_ptr(struct task_struct *p)
1866 {
1867 WARN_ON(p->user_cpus_ptr);
1868 }
1869
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1870 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1871 {
1872 return 0;
1873 }
1874 #endif
1875
1876 extern int yield_to(struct task_struct *p, bool preempt);
1877 extern void set_user_nice(struct task_struct *p, long nice);
1878 extern int task_prio(const struct task_struct *p);
1879
1880 /**
1881 * task_nice - return the nice value of a given task.
1882 * @p: the task in question.
1883 *
1884 * Return: The nice value [ -20 ... 0 ... 19 ].
1885 */
task_nice(const struct task_struct * p)1886 static inline int task_nice(const struct task_struct *p)
1887 {
1888 return PRIO_TO_NICE((p)->static_prio);
1889 }
1890
1891 extern int can_nice(const struct task_struct *p, const int nice);
1892 extern int task_curr(const struct task_struct *p);
1893 extern int idle_cpu(int cpu);
1894 extern int available_idle_cpu(int cpu);
1895 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1896 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1897 extern void sched_set_fifo(struct task_struct *p);
1898 extern void sched_set_fifo_low(struct task_struct *p);
1899 extern void sched_set_normal(struct task_struct *p, int nice);
1900 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1901 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1902 extern struct task_struct *idle_task(int cpu);
1903
1904 /**
1905 * is_idle_task - is the specified task an idle task?
1906 * @p: the task in question.
1907 *
1908 * Return: 1 if @p is an idle task. 0 otherwise.
1909 */
is_idle_task(const struct task_struct * p)1910 static __always_inline bool is_idle_task(const struct task_struct *p)
1911 {
1912 return !!(p->flags & PF_IDLE);
1913 }
1914
1915 extern struct task_struct *curr_task(int cpu);
1916 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1917
1918 void yield(void);
1919
1920 union thread_union {
1921 struct task_struct task;
1922 #ifndef CONFIG_THREAD_INFO_IN_TASK
1923 struct thread_info thread_info;
1924 #endif
1925 unsigned long stack[THREAD_SIZE/sizeof(long)];
1926 };
1927
1928 #ifndef CONFIG_THREAD_INFO_IN_TASK
1929 extern struct thread_info init_thread_info;
1930 #endif
1931
1932 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1933
1934 #ifdef CONFIG_THREAD_INFO_IN_TASK
1935 # define task_thread_info(task) (&(task)->thread_info)
1936 #else
1937 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1938 #endif
1939
1940 /*
1941 * find a task by one of its numerical ids
1942 *
1943 * find_task_by_pid_ns():
1944 * finds a task by its pid in the specified namespace
1945 * find_task_by_vpid():
1946 * finds a task by its virtual pid
1947 *
1948 * see also find_vpid() etc in include/linux/pid.h
1949 */
1950
1951 extern struct task_struct *find_task_by_vpid(pid_t nr);
1952 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1953
1954 /*
1955 * find a task by its virtual pid and get the task struct
1956 */
1957 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1958
1959 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1960 extern int wake_up_process(struct task_struct *tsk);
1961 extern void wake_up_new_task(struct task_struct *tsk);
1962
1963 #ifdef CONFIG_SMP
1964 extern void kick_process(struct task_struct *tsk);
1965 #else
kick_process(struct task_struct * tsk)1966 static inline void kick_process(struct task_struct *tsk) { }
1967 #endif
1968
1969 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1970 #define set_task_comm(tsk, from) ({ \
1971 BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN); \
1972 __set_task_comm(tsk, from, false); \
1973 })
1974
1975 /*
1976 * - Why not use task_lock()?
1977 * User space can randomly change their names anyway, so locking for readers
1978 * doesn't make sense. For writers, locking is probably necessary, as a race
1979 * condition could lead to long-term mixed results.
1980 * The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1981 * always NUL-terminated and zero-padded. Therefore the race condition between
1982 * reader and writer is not an issue.
1983 *
1984 * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1985 * Since the callers don't perform any return value checks, this safeguard is
1986 * necessary.
1987 */
1988 #define get_task_comm(buf, tsk) ({ \
1989 BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN); \
1990 strscpy_pad(buf, (tsk)->comm); \
1991 buf; \
1992 })
1993
1994 #ifdef CONFIG_SMP
scheduler_ipi(void)1995 static __always_inline void scheduler_ipi(void)
1996 {
1997 /*
1998 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1999 * TIF_NEED_RESCHED remotely (for the first time) will also send
2000 * this IPI.
2001 */
2002 preempt_fold_need_resched();
2003 }
2004 #else
scheduler_ipi(void)2005 static inline void scheduler_ipi(void) { }
2006 #endif
2007
2008 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2009
2010 /*
2011 * Set thread flags in other task's structures.
2012 * See asm/thread_info.h for TIF_xxxx flags available:
2013 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2014 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2015 {
2016 set_ti_thread_flag(task_thread_info(tsk), flag);
2017 }
2018
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2019 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2020 {
2021 clear_ti_thread_flag(task_thread_info(tsk), flag);
2022 }
2023
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2024 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2025 bool value)
2026 {
2027 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2028 }
2029
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2030 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2031 {
2032 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2033 }
2034
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2035 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2036 {
2037 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2038 }
2039
test_tsk_thread_flag(struct task_struct * tsk,int flag)2040 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2041 {
2042 return test_ti_thread_flag(task_thread_info(tsk), flag);
2043 }
2044
set_tsk_need_resched(struct task_struct * tsk)2045 static inline void set_tsk_need_resched(struct task_struct *tsk)
2046 {
2047 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2048 }
2049
clear_tsk_need_resched(struct task_struct * tsk)2050 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2051 {
2052 atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2053 (atomic_long_t *)&task_thread_info(tsk)->flags);
2054 }
2055
test_tsk_need_resched(struct task_struct * tsk)2056 static inline int test_tsk_need_resched(struct task_struct *tsk)
2057 {
2058 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2059 }
2060
2061 /*
2062 * cond_resched() and cond_resched_lock(): latency reduction via
2063 * explicit rescheduling in places that are safe. The return
2064 * value indicates whether a reschedule was done in fact.
2065 * cond_resched_lock() will drop the spinlock before scheduling,
2066 */
2067 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2068 extern int __cond_resched(void);
2069
2070 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2071
2072 void sched_dynamic_klp_enable(void);
2073 void sched_dynamic_klp_disable(void);
2074
2075 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2076
_cond_resched(void)2077 static __always_inline int _cond_resched(void)
2078 {
2079 return static_call_mod(cond_resched)();
2080 }
2081
2082 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2083
2084 extern int dynamic_cond_resched(void);
2085
_cond_resched(void)2086 static __always_inline int _cond_resched(void)
2087 {
2088 return dynamic_cond_resched();
2089 }
2090
2091 #else /* !CONFIG_PREEMPTION */
2092
_cond_resched(void)2093 static inline int _cond_resched(void)
2094 {
2095 klp_sched_try_switch();
2096 return __cond_resched();
2097 }
2098
2099 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2100
2101 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2102
_cond_resched(void)2103 static inline int _cond_resched(void)
2104 {
2105 klp_sched_try_switch();
2106 return 0;
2107 }
2108
2109 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2110
2111 #define cond_resched() ({ \
2112 __might_resched(__FILE__, __LINE__, 0); \
2113 _cond_resched(); \
2114 })
2115
2116 extern int __cond_resched_lock(spinlock_t *lock);
2117 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2118 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2119
2120 #define MIGHT_RESCHED_RCU_SHIFT 8
2121 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2122
2123 #ifndef CONFIG_PREEMPT_RT
2124 /*
2125 * Non RT kernels have an elevated preempt count due to the held lock,
2126 * but are not allowed to be inside a RCU read side critical section
2127 */
2128 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2129 #else
2130 /*
2131 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2132 * cond_resched*lock() has to take that into account because it checks for
2133 * preempt_count() and rcu_preempt_depth().
2134 */
2135 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2136 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2137 #endif
2138
2139 #define cond_resched_lock(lock) ({ \
2140 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2141 __cond_resched_lock(lock); \
2142 })
2143
2144 #define cond_resched_rwlock_read(lock) ({ \
2145 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2146 __cond_resched_rwlock_read(lock); \
2147 })
2148
2149 #define cond_resched_rwlock_write(lock) ({ \
2150 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2151 __cond_resched_rwlock_write(lock); \
2152 })
2153
need_resched(void)2154 static __always_inline bool need_resched(void)
2155 {
2156 return unlikely(tif_need_resched());
2157 }
2158
2159 /*
2160 * Wrappers for p->thread_info->cpu access. No-op on UP.
2161 */
2162 #ifdef CONFIG_SMP
2163
task_cpu(const struct task_struct * p)2164 static inline unsigned int task_cpu(const struct task_struct *p)
2165 {
2166 return READ_ONCE(task_thread_info(p)->cpu);
2167 }
2168
2169 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2170
2171 #else
2172
task_cpu(const struct task_struct * p)2173 static inline unsigned int task_cpu(const struct task_struct *p)
2174 {
2175 return 0;
2176 }
2177
set_task_cpu(struct task_struct * p,unsigned int cpu)2178 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2179 {
2180 }
2181
2182 #endif /* CONFIG_SMP */
2183
task_is_runnable(struct task_struct * p)2184 static inline bool task_is_runnable(struct task_struct *p)
2185 {
2186 return p->on_rq && !p->se.sched_delayed;
2187 }
2188
2189 extern bool sched_task_on_rq(struct task_struct *p);
2190 extern unsigned long get_wchan(struct task_struct *p);
2191 extern struct task_struct *cpu_curr_snapshot(int cpu);
2192
2193 #include <linux/spinlock.h>
2194
2195 /*
2196 * In order to reduce various lock holder preemption latencies provide an
2197 * interface to see if a vCPU is currently running or not.
2198 *
2199 * This allows us to terminate optimistic spin loops and block, analogous to
2200 * the native optimistic spin heuristic of testing if the lock owner task is
2201 * running or not.
2202 */
2203 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2204 static inline bool vcpu_is_preempted(int cpu)
2205 {
2206 return false;
2207 }
2208 #endif
2209
2210 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2211 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2212
2213 #ifndef TASK_SIZE_OF
2214 #define TASK_SIZE_OF(tsk) TASK_SIZE
2215 #endif
2216
2217 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2218 static inline bool owner_on_cpu(struct task_struct *owner)
2219 {
2220 /*
2221 * As lock holder preemption issue, we both skip spinning if
2222 * task is not on cpu or its cpu is preempted
2223 */
2224 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2225 }
2226
2227 /* Returns effective CPU energy utilization, as seen by the scheduler */
2228 unsigned long sched_cpu_util(int cpu);
2229 #endif /* CONFIG_SMP */
2230
2231 #ifdef CONFIG_SCHED_CORE
2232 extern void sched_core_free(struct task_struct *tsk);
2233 extern void sched_core_fork(struct task_struct *p);
2234 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2235 unsigned long uaddr);
2236 extern int sched_core_idle_cpu(int cpu);
2237 #else
sched_core_free(struct task_struct * tsk)2238 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2239 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2240 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2241 #endif
2242
2243 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2244
2245 #ifdef CONFIG_MEM_ALLOC_PROFILING
alloc_tag_save(struct alloc_tag * tag)2246 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2247 {
2248 swap(current->alloc_tag, tag);
2249 return tag;
2250 }
2251
alloc_tag_restore(struct alloc_tag * tag,struct alloc_tag * old)2252 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2253 {
2254 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2255 WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2256 #endif
2257 current->alloc_tag = old;
2258 }
2259 #else
2260 #define alloc_tag_save(_tag) NULL
2261 #define alloc_tag_restore(_tag, _old) do {} while (0)
2262 #endif
2263
2264 #endif
2265