1 2 /** 3 * \addtogroup uip 4 * @{ 5 */ 6 7 /** 8 * \file 9 * Header file for the uIP TCP/IP stack. 10 * \author Adam Dunkels <[email protected]> 11 * 12 * The uIP TCP/IP stack header file contains definitions for a number 13 * of C macros that are used by uIP programs as well as internal uIP 14 * structures, TCP/IP header structures and function declarations. 15 * 16 */ 17 18 19 /* 20 * Copyright (c) 2001-2003, Adam Dunkels. 21 * All rights reserved. 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 1. Redistributions of source code must retain the above copyright 27 * notice, this list of conditions and the following disclaimer. 28 * 2. Redistributions in binary form must reproduce the above copyright 29 * notice, this list of conditions and the following disclaimer in the 30 * documentation and/or other materials provided with the distribution. 31 * 3. The name of the author may not be used to endorse or promote 32 * products derived from this software without specific prior 33 * written permission. 34 * 35 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 36 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 37 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 38 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 39 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 40 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 41 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 42 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 43 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 44 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 45 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 46 * 47 * This file is part of the uIP TCP/IP stack. 48 * 49 * $Id: uip.h,v 1.40 2006/06/08 07:12:07 adam Exp $ 50 * 51 */ 52 53 #ifndef __UIP_H__ 54 #define __UIP_H__ 55 56 #include "uipopt.h" 57 58 /** 59 * Repressentation of an IP address. 60 * 61 */ 62 typedef u16_t uip_ip4addr_t[2]; 63 typedef u16_t uip_ip6addr_t[8]; 64 #if UIP_CONF_IPV6 65 typedef uip_ip6addr_t uip_ipaddr_t; 66 #else /* UIP_CONF_IPV6 */ 67 typedef uip_ip4addr_t uip_ipaddr_t; 68 #endif /* UIP_CONF_IPV6 */ 69 70 /*---------------------------------------------------------------------------*/ 71 /* First, the functions that should be called from the 72 * system. Initialization, the periodic timer and incoming packets are 73 * handled by the following three functions. 74 */ 75 76 /** 77 * \defgroup uipconffunc uIP configuration functions 78 * @{ 79 * 80 * The uIP configuration functions are used for setting run-time 81 * parameters in uIP such as IP addresses. 82 */ 83 84 /** 85 * Set the IP address of this host. 86 * 87 * The IP address is represented as a 4-byte array where the first 88 * octet of the IP address is put in the first member of the 4-byte 89 * array. 90 * 91 * Example: 92 \code 93 94 uip_ipaddr_t addr; 95 96 uip_ipaddr(&addr, 192,168,1,2); 97 uip_sethostaddr(&addr); 98 99 \endcode 100 * \param addr A pointer to an IP address of type uip_ipaddr_t; 101 * 102 * \sa uip_ipaddr() 103 * 104 * \hideinitializer 105 */ 106 #define uip_sethostaddr(addr) uip_ipaddr_copy(uip_hostaddr, (addr)) 107 108 /** 109 * Get the IP address of this host. 110 * 111 * The IP address is represented as a 4-byte array where the first 112 * octet of the IP address is put in the first member of the 4-byte 113 * array. 114 * 115 * Example: 116 \code 117 uip_ipaddr_t hostaddr; 118 119 uip_gethostaddr(&hostaddr); 120 \endcode 121 * \param addr A pointer to a uip_ipaddr_t variable that will be 122 * filled in with the currently configured IP address. 123 * 124 * \hideinitializer 125 */ 126 #define uip_gethostaddr(addr) uip_ipaddr_copy((addr), uip_hostaddr) 127 128 /** 129 * Set the default router's IP address. 130 * 131 * \param addr A pointer to a uip_ipaddr_t variable containing the IP 132 * address of the default router. 133 * 134 * \sa uip_ipaddr() 135 * 136 * \hideinitializer 137 */ 138 #define uip_setdraddr(addr) uip_ipaddr_copy(uip_draddr, (addr)) 139 140 /** 141 * Set the netmask. 142 * 143 * \param addr A pointer to a uip_ipaddr_t variable containing the IP 144 * address of the netmask. 145 * 146 * \sa uip_ipaddr() 147 * 148 * \hideinitializer 149 */ 150 #define uip_setnetmask(addr) uip_ipaddr_copy(uip_netmask, (addr)) 151 152 153 /** 154 * Get the default router's IP address. 155 * 156 * \param addr A pointer to a uip_ipaddr_t variable that will be 157 * filled in with the IP address of the default router. 158 * 159 * \hideinitializer 160 */ 161 #define uip_getdraddr(addr) uip_ipaddr_copy((addr), uip_draddr) 162 163 /** 164 * Get the netmask. 165 * 166 * \param addr A pointer to a uip_ipaddr_t variable that will be 167 * filled in with the value of the netmask. 168 * 169 * \hideinitializer 170 */ 171 #define uip_getnetmask(addr) uip_ipaddr_copy((addr), uip_netmask) 172 173 /** @} */ 174 175 /** 176 * \defgroup uipinit uIP initialization functions 177 * @{ 178 * 179 * The uIP initialization functions are used for booting uIP. 180 */ 181 182 /** 183 * uIP initialization function. 184 * 185 * This function should be called at boot up to initilize the uIP 186 * TCP/IP stack. 187 */ 188 void uip_init(void); 189 190 /** 191 * uIP initialization function. 192 * 193 * This function may be used at boot time to set the initial ip_id. 194 */ 195 void uip_setipid(u16_t id); 196 197 /** @} */ 198 199 /** 200 * \defgroup uipdevfunc uIP device driver functions 201 * @{ 202 * 203 * These functions are used by a network device driver for interacting 204 * with uIP. 205 */ 206 207 /** 208 * Process an incoming packet. 209 * 210 * This function should be called when the device driver has received 211 * a packet from the network. The packet from the device driver must 212 * be present in the uip_buf buffer, and the length of the packet 213 * should be placed in the uip_len variable. 214 * 215 * When the function returns, there may be an outbound packet placed 216 * in the uip_buf packet buffer. If so, the uip_len variable is set to 217 * the length of the packet. If no packet is to be sent out, the 218 * uip_len variable is set to 0. 219 * 220 * The usual way of calling the function is presented by the source 221 * code below. 222 \code 223 uip_len = devicedriver_poll(); 224 if(uip_len > 0) { 225 uip_input(); 226 if(uip_len > 0) { 227 devicedriver_send(); 228 } 229 } 230 \endcode 231 * 232 * \note If you are writing a uIP device driver that needs ARP 233 * (Address Resolution Protocol), e.g., when running uIP over 234 * Ethernet, you will need to call the uIP ARP code before calling 235 * this function: 236 \code 237 #define BUF ((struct uip_eth_hdr *)&uip_buf[0]) 238 uip_len = ethernet_devicedrver_poll(); 239 if(uip_len > 0) { 240 if(BUF->type == HTONS(UIP_ETHTYPE_IP)) { 241 uip_arp_ipin(); 242 uip_input(); 243 if(uip_len > 0) { 244 uip_arp_out(); 245 ethernet_devicedriver_send(); 246 } 247 } else if(BUF->type == HTONS(UIP_ETHTYPE_ARP)) { 248 uip_arp_arpin(); 249 if(uip_len > 0) { 250 ethernet_devicedriver_send(); 251 } 252 } 253 \endcode 254 * 255 * \hideinitializer 256 */ 257 #define uip_input() uip_process(UIP_DATA) 258 259 /** 260 * Periodic processing for a connection identified by its number. 261 * 262 * This function does the necessary periodic processing (timers, 263 * polling) for a uIP TCP conneciton, and should be called when the 264 * periodic uIP timer goes off. It should be called for every 265 * connection, regardless of whether they are open of closed. 266 * 267 * When the function returns, it may have an outbound packet waiting 268 * for service in the uIP packet buffer, and if so the uip_len 269 * variable is set to a value larger than zero. The device driver 270 * should be called to send out the packet. 271 * 272 * The ususal way of calling the function is through a for() loop like 273 * this: 274 \code 275 for(i = 0; i < UIP_CONNS; ++i) { 276 uip_periodic(i); 277 if(uip_len > 0) { 278 devicedriver_send(); 279 } 280 } 281 \endcode 282 * 283 * \note If you are writing a uIP device driver that needs ARP 284 * (Address Resolution Protocol), e.g., when running uIP over 285 * Ethernet, you will need to call the uip_arp_out() function before 286 * calling the device driver: 287 \code 288 for(i = 0; i < UIP_CONNS; ++i) { 289 uip_periodic(i); 290 if(uip_len > 0) { 291 uip_arp_out(); 292 ethernet_devicedriver_send(); 293 } 294 } 295 \endcode 296 * 297 * \param conn The number of the connection which is to be periodically polled. 298 * 299 * \hideinitializer 300 */ 301 #define uip_periodic(conn) do { uip_conn = &uip_conns[conn]; \ 302 uip_process(UIP_TIMER); } while (0) 303 304 /** 305 * 306 * 307 */ 308 #define uip_conn_active(conn) (uip_conns[conn].tcpstateflags != UIP_CLOSED) 309 310 /** 311 * Perform periodic processing for a connection identified by a pointer 312 * to its structure. 313 * 314 * Same as uip_periodic() but takes a pointer to the actual uip_conn 315 * struct instead of an integer as its argument. This function can be 316 * used to force periodic processing of a specific connection. 317 * 318 * \param conn A pointer to the uip_conn struct for the connection to 319 * be processed. 320 * 321 * \hideinitializer 322 */ 323 #define uip_periodic_conn(conn) do { uip_conn = conn; \ 324 uip_process(UIP_TIMER); } while (0) 325 326 /** 327 * Reuqest that a particular connection should be polled. 328 * 329 * Similar to uip_periodic_conn() but does not perform any timer 330 * processing. The application is polled for new data. 331 * 332 * \param conn A pointer to the uip_conn struct for the connection to 333 * be processed. 334 * 335 * \hideinitializer 336 */ 337 #define uip_poll_conn(conn) do { uip_conn = conn; \ 338 uip_process(UIP_POLL_REQUEST); } while (0) 339 340 341 #if UIP_UDP 342 /** 343 * Periodic processing for a UDP connection identified by its number. 344 * 345 * This function is essentially the same as uip_periodic(), but for 346 * UDP connections. It is called in a similar fashion as the 347 * uip_periodic() function: 348 \code 349 for(i = 0; i < UIP_UDP_CONNS; i++) { 350 uip_udp_periodic(i); 351 if(uip_len > 0) { 352 devicedriver_send(); 353 } 354 } 355 \endcode 356 * 357 * \note As for the uip_periodic() function, special care has to be 358 * taken when using uIP together with ARP and Ethernet: 359 \code 360 for(i = 0; i < UIP_UDP_CONNS; i++) { 361 uip_udp_periodic(i); 362 if(uip_len > 0) { 363 uip_arp_out(); 364 ethernet_devicedriver_send(); 365 } 366 } 367 \endcode 368 * 369 * \param conn The number of the UDP connection to be processed. 370 * 371 * \hideinitializer 372 */ 373 #define uip_udp_periodic(conn) do { uip_udp_conn = &uip_udp_conns[conn]; \ 374 uip_process(UIP_UDP_TIMER); } while (0) 375 376 /** 377 * Periodic processing for a UDP connection identified by a pointer to 378 * its structure. 379 * 380 * Same as uip_udp_periodic() but takes a pointer to the actual 381 * uip_conn struct instead of an integer as its argument. This 382 * function can be used to force periodic processing of a specific 383 * connection. 384 * 385 * \param conn A pointer to the uip_udp_conn struct for the connection 386 * to be processed. 387 * 388 * \hideinitializer 389 */ 390 #define uip_udp_periodic_conn(conn) do { uip_udp_conn = conn; \ 391 uip_process(UIP_UDP_TIMER); } while (0) 392 393 394 #endif /* UIP_UDP */ 395 396 /** 397 * The uIP packet buffer. 398 * 399 * The uip_buf array is used to hold incoming and outgoing 400 * packets. The device driver should place incoming data into this 401 * buffer. When sending data, the device driver should read the link 402 * level headers and the TCP/IP headers from this buffer. The size of 403 * the link level headers is configured by the UIP_LLH_LEN define. 404 * 405 * \note The application data need not be placed in this buffer, so 406 * the device driver must read it from the place pointed to by the 407 * uip_appdata pointer as illustrated by the following example: 408 \code 409 void 410 devicedriver_send(void) 411 { 412 hwsend(&uip_buf[0], UIP_LLH_LEN); 413 if(uip_len <= UIP_LLH_LEN + UIP_TCPIP_HLEN) { 414 hwsend(&uip_buf[UIP_LLH_LEN], uip_len - UIP_LLH_LEN); 415 } else { 416 hwsend(&uip_buf[UIP_LLH_LEN], UIP_TCPIP_HLEN); 417 hwsend(uip_appdata, uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN); 418 } 419 } 420 \endcode 421 */ 422 extern u8_t uip_buf[UIP_BUFSIZE+2]; 423 424 /** @} */ 425 426 /*---------------------------------------------------------------------------*/ 427 /* Functions that are used by the uIP application program. Opening and 428 * closing connections, sending and receiving data, etc. is all 429 * handled by the functions below. 430 */ 431 /** 432 * \defgroup uipappfunc uIP application functions 433 * @{ 434 * 435 * Functions used by an application running of top of uIP. 436 */ 437 438 /** 439 * Start listening to the specified port. 440 * 441 * \note Since this function expects the port number in network byte 442 * order, a conversion using HTONS() or uip_htons() is necessary. 443 * 444 \code 445 uip_listen(HTONS(80)); 446 \endcode 447 * 448 * \param port A 16-bit port number in network byte order. 449 */ 450 void uip_listen(u16_t port); 451 452 /** 453 * Stop listening to the specified port. 454 * 455 * \note Since this function expects the port number in network byte 456 * order, a conversion using HTONS() or uip_htons() is necessary. 457 * 458 \code 459 uip_unlisten(HTONS(80)); 460 \endcode 461 * 462 * \param port A 16-bit port number in network byte order. 463 */ 464 void uip_unlisten(u16_t port); 465 466 /** 467 * Connect to a remote host using TCP. 468 * 469 * This function is used to start a new connection to the specified 470 * port on the specied host. It allocates a new connection identifier, 471 * sets the connection to the SYN_SENT state and sets the 472 * retransmission timer to 0. This will cause a TCP SYN segment to be 473 * sent out the next time this connection is periodically processed, 474 * which usually is done within 0.5 seconds after the call to 475 * uip_connect(). 476 * 477 * \note This function is avaliable only if support for active open 478 * has been configured by defining UIP_ACTIVE_OPEN to 1 in uipopt.h. 479 * 480 * \note Since this function requires the port number to be in network 481 * byte order, a conversion using HTONS() or uip_htons() is necessary. 482 * 483 \code 484 uip_ipaddr_t ipaddr; 485 486 uip_ipaddr(&ipaddr, 192,168,1,2); 487 uip_connect(&ipaddr, HTONS(80)); 488 \endcode 489 * 490 * \param ripaddr The IP address of the remote hot. 491 * 492 * \param port A 16-bit port number in network byte order. 493 * 494 * \return A pointer to the uIP connection identifier for the new connection, 495 * or NULL if no connection could be allocated. 496 * 497 */ 498 struct uip_conn *uip_connect(uip_ipaddr_t *ripaddr, u16_t port); 499 500 501 502 /** 503 * \internal 504 * 505 * Check if a connection has outstanding (i.e., unacknowledged) data. 506 * 507 * \param conn A pointer to the uip_conn structure for the connection. 508 * 509 * \hideinitializer 510 */ 511 #define uip_outstanding(conn) ((conn)->len) 512 513 /** 514 * Send data on the current connection. 515 * 516 * This function is used to send out a single segment of TCP 517 * data. Only applications that have been invoked by uIP for event 518 * processing can send data. 519 * 520 * The amount of data that actually is sent out after a call to this 521 * funcion is determined by the maximum amount of data TCP allows. uIP 522 * will automatically crop the data so that only the appropriate 523 * amount of data is sent. The function uip_mss() can be used to query 524 * uIP for the amount of data that actually will be sent. 525 * 526 * \note This function does not guarantee that the sent data will 527 * arrive at the destination. If the data is lost in the network, the 528 * application will be invoked with the uip_rexmit() event being 529 * set. The application will then have to resend the data using this 530 * function. 531 * 532 * \param data A pointer to the data which is to be sent. 533 * 534 * \param len The maximum amount of data bytes to be sent. 535 * 536 * \hideinitializer 537 */ 538 void uip_send(const void *data, int len); 539 540 /** 541 * The length of any incoming data that is currently avaliable (if avaliable) 542 * in the uip_appdata buffer. 543 * 544 * The test function uip_data() must first be used to check if there 545 * is any data available at all. 546 * 547 * \hideinitializer 548 */ 549 /*void uip_datalen(void);*/ 550 #define uip_datalen() uip_len 551 552 /** 553 * The length of any out-of-band data (urgent data) that has arrived 554 * on the connection. 555 * 556 * \note The configuration parameter UIP_URGDATA must be set for this 557 * function to be enabled. 558 * 559 * \hideinitializer 560 */ 561 #define uip_urgdatalen() uip_urglen 562 563 /** 564 * Close the current connection. 565 * 566 * This function will close the current connection in a nice way. 567 * 568 * \hideinitializer 569 */ 570 #define uip_close() (uip_flags = UIP_CLOSE) 571 572 /** 573 * Abort the current connection. 574 * 575 * This function will abort (reset) the current connection, and is 576 * usually used when an error has occured that prevents using the 577 * uip_close() function. 578 * 579 * \hideinitializer 580 */ 581 #define uip_abort() (uip_flags = UIP_ABORT) 582 583 /** 584 * Tell the sending host to stop sending data. 585 * 586 * This function will close our receiver's window so that we stop 587 * receiving data for the current connection. 588 * 589 * \hideinitializer 590 */ 591 #define uip_stop() (uip_conn->tcpstateflags |= UIP_STOPPED) 592 593 /** 594 * Find out if the current connection has been previously stopped with 595 * uip_stop(). 596 * 597 * \hideinitializer 598 */ 599 #define uip_stopped(conn) ((conn)->tcpstateflags & UIP_STOPPED) 600 601 /** 602 * Restart the current connection, if is has previously been stopped 603 * with uip_stop(). 604 * 605 * This function will open the receiver's window again so that we 606 * start receiving data for the current connection. 607 * 608 * \hideinitializer 609 */ 610 #define uip_restart() do { uip_flags |= UIP_NEWDATA; \ 611 uip_conn->tcpstateflags &= ~UIP_STOPPED; \ 612 } while(0) 613 614 615 /* uIP tests that can be made to determine in what state the current 616 connection is, and what the application function should do. */ 617 618 /** 619 * Is the current connection a UDP connection? 620 * 621 * This function checks whether the current connection is a UDP connection. 622 * 623 * \hideinitializer 624 * 625 */ 626 #define uip_udpconnection() (uip_conn == NULL) 627 628 /** 629 * Is new incoming data available? 630 * 631 * Will reduce to non-zero if there is new data for the application 632 * present at the uip_appdata pointer. The size of the data is 633 * avaliable through the uip_len variable. 634 * 635 * \hideinitializer 636 */ 637 #define uip_newdata() (uip_flags & UIP_NEWDATA) 638 639 /** 640 * Has previously sent data been acknowledged? 641 * 642 * Will reduce to non-zero if the previously sent data has been 643 * acknowledged by the remote host. This means that the application 644 * can send new data. 645 * 646 * \hideinitializer 647 */ 648 #define uip_acked() (uip_flags & UIP_ACKDATA) 649 650 /** 651 * Has the connection just been connected? 652 * 653 * Reduces to non-zero if the current connection has been connected to 654 * a remote host. This will happen both if the connection has been 655 * actively opened (with uip_connect()) or passively opened (with 656 * uip_listen()). 657 * 658 * \hideinitializer 659 */ 660 #define uip_connected() (uip_flags & UIP_CONNECTED) 661 662 /** 663 * Has the connection been closed by the other end? 664 * 665 * Is non-zero if the connection has been closed by the remote 666 * host. The application may then do the necessary clean-ups. 667 * 668 * \hideinitializer 669 */ 670 #define uip_closed() (uip_flags & UIP_CLOSE) 671 672 /** 673 * Has the connection been aborted by the other end? 674 * 675 * Non-zero if the current connection has been aborted (reset) by the 676 * remote host. 677 * 678 * \hideinitializer 679 */ 680 #define uip_aborted() (uip_flags & UIP_ABORT) 681 682 /** 683 * Has the connection timed out? 684 * 685 * Non-zero if the current connection has been aborted due to too many 686 * retransmissions. 687 * 688 * \hideinitializer 689 */ 690 #define uip_timedout() (uip_flags & UIP_TIMEDOUT) 691 692 /** 693 * Do we need to retransmit previously data? 694 * 695 * Reduces to non-zero if the previously sent data has been lost in 696 * the network, and the application should retransmit it. The 697 * application should send the exact same data as it did the last 698 * time, using the uip_send() function. 699 * 700 * \hideinitializer 701 */ 702 #define uip_rexmit() (uip_flags & UIP_REXMIT) 703 704 /** 705 * Is the connection being polled by uIP? 706 * 707 * Is non-zero if the reason the application is invoked is that the 708 * current connection has been idle for a while and should be 709 * polled. 710 * 711 * The polling event can be used for sending data without having to 712 * wait for the remote host to send data. 713 * 714 * \hideinitializer 715 */ 716 #define uip_poll() (uip_flags & UIP_POLL) 717 718 /** 719 * Get the initial maxium segment size (MSS) of the current 720 * connection. 721 * 722 * \hideinitializer 723 */ 724 #define uip_initialmss() (uip_conn->initialmss) 725 726 /** 727 * Get the current maxium segment size that can be sent on the current 728 * connection. 729 * 730 * The current maxiumum segment size that can be sent on the 731 * connection is computed from the receiver's window and the MSS of 732 * the connection (which also is available by calling 733 * uip_initialmss()). 734 * 735 * \hideinitializer 736 */ 737 #define uip_mss() (uip_conn->mss) 738 739 /** 740 * Set up a new UDP connection. 741 * 742 * This function sets up a new UDP connection. The function will 743 * automatically allocate an unused local port for the new 744 * connection. However, another port can be chosen by using the 745 * uip_udp_bind() call, after the uip_udp_new() function has been 746 * called. 747 * 748 * Example: 749 \code 750 uip_ipaddr_t addr; 751 struct uip_udp_conn *c; 752 753 uip_ipaddr(&addr, 192,168,2,1); 754 c = uip_udp_new(&addr, HTONS(12345)); 755 if(c != NULL) { 756 uip_udp_bind(c, HTONS(12344)); 757 } 758 \endcode 759 * \param ripaddr The IP address of the remote host. 760 * 761 * \param rport The remote port number in network byte order. 762 * 763 * \return The uip_udp_conn structure for the new connection or NULL 764 * if no connection could be allocated. 765 */ 766 struct uip_udp_conn *uip_udp_new(uip_ipaddr_t *ripaddr, u16_t rport); 767 768 /** 769 * Removed a UDP connection. 770 * 771 * \param conn A pointer to the uip_udp_conn structure for the connection. 772 * 773 * \hideinitializer 774 */ 775 #define uip_udp_remove(conn) (conn)->lport = 0 776 777 /** 778 * Bind a UDP connection to a local port. 779 * 780 * \param conn A pointer to the uip_udp_conn structure for the 781 * connection. 782 * 783 * \param port The local port number, in network byte order. 784 * 785 * \hideinitializer 786 */ 787 #define uip_udp_bind(conn, port) (conn)->lport = port 788 789 /** 790 * Send a UDP datagram of length len on the current connection. 791 * 792 * This function can only be called in response to a UDP event (poll 793 * or newdata). The data must be present in the uip_buf buffer, at the 794 * place pointed to by the uip_appdata pointer. 795 * 796 * \param len The length of the data in the uip_buf buffer. 797 * 798 * \hideinitializer 799 */ 800 #define uip_udp_send(len) uip_send((char *)uip_appdata, len) 801 802 /** @} */ 803 804 /* uIP convenience and converting functions. */ 805 806 /** 807 * \defgroup uipconvfunc uIP conversion functions 808 * @{ 809 * 810 * These functions can be used for converting between different data 811 * formats used by uIP. 812 */ 813 814 /** 815 * Construct an IP address from four bytes. 816 * 817 * This function constructs an IP address of the type that uIP handles 818 * internally from four bytes. The function is handy for specifying IP 819 * addresses to use with e.g. the uip_connect() function. 820 * 821 * Example: 822 \code 823 uip_ipaddr_t ipaddr; 824 struct uip_conn *c; 825 826 uip_ipaddr(&ipaddr, 192,168,1,2); 827 c = uip_connect(&ipaddr, HTONS(80)); 828 \endcode 829 * 830 * \param addr A pointer to a uip_ipaddr_t variable that will be 831 * filled in with the IP address. 832 * 833 * \param addr0 The first octet of the IP address. 834 * \param addr1 The second octet of the IP address. 835 * \param addr2 The third octet of the IP address. 836 * \param addr3 The forth octet of the IP address. 837 * 838 * \hideinitializer 839 */ 840 #define uip_ipaddr(addr, addr0,addr1,addr2,addr3) do { \ 841 ((u16_t *)(addr))[0] = HTONS(((addr0) << 8) | (addr1)); \ 842 ((u16_t *)(addr))[1] = HTONS(((addr2) << 8) | (addr3)); \ 843 } while(0) 844 845 /** 846 * Construct an IPv6 address from eight 16-bit words. 847 * 848 * This function constructs an IPv6 address. 849 * 850 * \hideinitializer 851 */ 852 #define uip_ip6addr(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7) do { \ 853 ((u16_t *)(addr))[0] = HTONS((addr0)); \ 854 ((u16_t *)(addr))[1] = HTONS((addr1)); \ 855 ((u16_t *)(addr))[2] = HTONS((addr2)); \ 856 ((u16_t *)(addr))[3] = HTONS((addr3)); \ 857 ((u16_t *)(addr))[4] = HTONS((addr4)); \ 858 ((u16_t *)(addr))[5] = HTONS((addr5)); \ 859 ((u16_t *)(addr))[6] = HTONS((addr6)); \ 860 ((u16_t *)(addr))[7] = HTONS((addr7)); \ 861 } while(0) 862 863 /** 864 * Copy an IP address to another IP address. 865 * 866 * Copies an IP address from one place to another. 867 * 868 * Example: 869 \code 870 uip_ipaddr_t ipaddr1, ipaddr2; 871 872 uip_ipaddr(&ipaddr1, 192,16,1,2); 873 uip_ipaddr_copy(&ipaddr2, &ipaddr1); 874 \endcode 875 * 876 * \param dest The destination for the copy. 877 * \param src The source from where to copy. 878 * 879 * \hideinitializer 880 */ 881 #if !UIP_CONF_IPV6 882 #define uip_ipaddr_copy(dest, src) do { \ 883 ((u16_t *)dest)[0] = ((u16_t *)src)[0]; \ 884 ((u16_t *)dest)[1] = ((u16_t *)src)[1]; \ 885 } while(0) 886 #else /* !UIP_CONF_IPV6 */ 887 #define uip_ipaddr_copy(dest, src) memcpy(dest, src, sizeof(uip_ip6addr_t)) 888 #endif /* !UIP_CONF_IPV6 */ 889 890 /** 891 * Compare two IP addresses 892 * 893 * Compares two IP addresses. 894 * 895 * Example: 896 \code 897 uip_ipaddr_t ipaddr1, ipaddr2; 898 899 uip_ipaddr(&ipaddr1, 192,16,1,2); 900 if(uip_ipaddr_cmp(&ipaddr2, &ipaddr1)) { 901 printf("They are the same"); 902 } 903 \endcode 904 * 905 * \param addr1 The first IP address. 906 * \param addr2 The second IP address. 907 * 908 * \hideinitializer 909 */ 910 #if !UIP_CONF_IPV6 911 #define uip_ipaddr_cmp(addr1, addr2) (((u16_t *)addr1)[0] == ((u16_t *)addr2)[0] && \ 912 ((u16_t *)addr1)[1] == ((u16_t *)addr2)[1]) 913 #else /* !UIP_CONF_IPV6 */ 914 #define uip_ipaddr_cmp(addr1, addr2) (memcmp(addr1, addr2, sizeof(uip_ip6addr_t)) == 0) 915 #endif /* !UIP_CONF_IPV6 */ 916 917 /** 918 * Compare two IP addresses with netmasks 919 * 920 * Compares two IP addresses with netmasks. The masks are used to mask 921 * out the bits that are to be compared. 922 * 923 * Example: 924 \code 925 uip_ipaddr_t ipaddr1, ipaddr2, mask; 926 927 uip_ipaddr(&mask, 255,255,255,0); 928 uip_ipaddr(&ipaddr1, 192,16,1,2); 929 uip_ipaddr(&ipaddr2, 192,16,1,3); 930 if(uip_ipaddr_maskcmp(&ipaddr1, &ipaddr2, &mask)) { 931 printf("They are the same"); 932 } 933 \endcode 934 * 935 * \param addr1 The first IP address. 936 * \param addr2 The second IP address. 937 * \param mask The netmask. 938 * 939 * \hideinitializer 940 */ 941 #define uip_ipaddr_maskcmp(addr1, addr2, mask) \ 942 (((((u16_t *)addr1)[0] & ((u16_t *)mask)[0]) == \ 943 (((u16_t *)addr2)[0] & ((u16_t *)mask)[0])) && \ 944 ((((u16_t *)addr1)[1] & ((u16_t *)mask)[1]) == \ 945 (((u16_t *)addr2)[1] & ((u16_t *)mask)[1]))) 946 947 948 /** 949 * Mask out the network part of an IP address. 950 * 951 * Masks out the network part of an IP address, given the address and 952 * the netmask. 953 * 954 * Example: 955 \code 956 uip_ipaddr_t ipaddr1, ipaddr2, netmask; 957 958 uip_ipaddr(&ipaddr1, 192,16,1,2); 959 uip_ipaddr(&netmask, 255,255,255,0); 960 uip_ipaddr_mask(&ipaddr2, &ipaddr1, &netmask); 961 \endcode 962 * 963 * In the example above, the variable "ipaddr2" will contain the IP 964 * address 192.168.1.0. 965 * 966 * \param dest Where the result is to be placed. 967 * \param src The IP address. 968 * \param mask The netmask. 969 * 970 * \hideinitializer 971 */ 972 #define uip_ipaddr_mask(dest, src, mask) do { \ 973 ((u16_t *)dest)[0] = ((u16_t *)src)[0] & ((u16_t *)mask)[0]; \ 974 ((u16_t *)dest)[1] = ((u16_t *)src)[1] & ((u16_t *)mask)[1]; \ 975 } while(0) 976 977 /** 978 * Pick the first octet of an IP address. 979 * 980 * Picks out the first octet of an IP address. 981 * 982 * Example: 983 \code 984 uip_ipaddr_t ipaddr; 985 u8_t octet; 986 987 uip_ipaddr(&ipaddr, 1,2,3,4); 988 octet = uip_ipaddr1(&ipaddr); 989 \endcode 990 * 991 * In the example above, the variable "octet" will contain the value 1. 992 * 993 * \hideinitializer 994 */ 995 #define uip_ipaddr1(addr) (uip_htons(((u16_t *)(addr))[0]) >> 8) 996 997 /** 998 * Pick the second octet of an IP address. 999 * 1000 * Picks out the second octet of an IP address. 1001 * 1002 * Example: 1003 \code 1004 uip_ipaddr_t ipaddr; 1005 u8_t octet; 1006 1007 uip_ipaddr(&ipaddr, 1,2,3,4); 1008 octet = uip_ipaddr2(&ipaddr); 1009 \endcode 1010 * 1011 * In the example above, the variable "octet" will contain the value 2. 1012 * 1013 * \hideinitializer 1014 */ 1015 #define uip_ipaddr2(addr) (uip_htons(((u16_t *)(addr))[0]) & 0xff) 1016 1017 /** 1018 * Pick the third octet of an IP address. 1019 * 1020 * Picks out the third octet of an IP address. 1021 * 1022 * Example: 1023 \code 1024 uip_ipaddr_t ipaddr; 1025 u8_t octet; 1026 1027 uip_ipaddr(&ipaddr, 1,2,3,4); 1028 octet = uip_ipaddr3(&ipaddr); 1029 \endcode 1030 * 1031 * In the example above, the variable "octet" will contain the value 3. 1032 * 1033 * \hideinitializer 1034 */ 1035 #define uip_ipaddr3(addr) (uip_htons(((u16_t *)(addr))[1]) >> 8) 1036 1037 /** 1038 * Pick the fourth octet of an IP address. 1039 * 1040 * Picks out the fourth octet of an IP address. 1041 * 1042 * Example: 1043 \code 1044 uip_ipaddr_t ipaddr; 1045 u8_t octet; 1046 1047 uip_ipaddr(&ipaddr, 1,2,3,4); 1048 octet = uip_ipaddr4(&ipaddr); 1049 \endcode 1050 * 1051 * In the example above, the variable "octet" will contain the value 4. 1052 * 1053 * \hideinitializer 1054 */ 1055 #define uip_ipaddr4(addr) (uip_htons(((u16_t *)(addr))[1]) & 0xff) 1056 1057 /** 1058 * Convert 16-bit quantity from host byte order to network byte order. 1059 * 1060 * This macro is primarily used for converting constants from host 1061 * byte order to network byte order. For converting variables to 1062 * network byte order, use the uip_htons() function instead. 1063 * 1064 * \hideinitializer 1065 */ 1066 #ifndef HTONS 1067 # if UIP_BYTE_ORDER == UIP_BIG_ENDIAN 1068 # define HTONS(n) (n) 1069 # else /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */ 1070 # define HTONS(n) (u16_t)((((u16_t) (n)) << 8) | (((u16_t) (n)) >> 8)) 1071 # endif /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */ 1072 #else 1073 #error "HTONS already defined!" 1074 #endif /* HTONS */ 1075 1076 /** 1077 * Convert 16-bit quantity from host byte order to network byte order. 1078 * 1079 * This function is primarily used for converting variables from host 1080 * byte order to network byte order. For converting constants to 1081 * network byte order, use the HTONS() macro instead. 1082 */ 1083 1084 #ifndef uip_htons 1085 u16_t uip_htons(u16_t val); 1086 #endif /* uip_htons */ 1087 #ifndef ntohs 1088 #define ntohs uip_htons 1089 #endif 1090 1091 /** @} */ 1092 1093 /** 1094 * Pointer to the application data in the packet buffer. 1095 * 1096 * This pointer points to the application data when the application is 1097 * called. If the application wishes to send data, the application may 1098 * use this space to write the data into before calling uip_send(). 1099 */ 1100 extern volatile u8_t *uip_appdata; 1101 1102 #if UIP_URGDATA > 0 1103 /* u8_t *uip_urgdata: 1104 * 1105 * This pointer points to any urgent data that has been received. Only 1106 * present if compiled with support for urgent data (UIP_URGDATA). 1107 */ 1108 extern void *uip_urgdata; 1109 #endif /* UIP_URGDATA > 0 */ 1110 1111 1112 /** 1113 * \defgroup uipdrivervars Variables used in uIP device drivers 1114 * @{ 1115 * 1116 * uIP has a few global variables that are used in device drivers for 1117 * uIP. 1118 */ 1119 1120 /** 1121 * The length of the packet in the uip_buf buffer. 1122 * 1123 * The global variable uip_len holds the length of the packet in the 1124 * uip_buf buffer. 1125 * 1126 * When the network device driver calls the uIP input function, 1127 * uip_len should be set to the length of the packet in the uip_buf 1128 * buffer. 1129 * 1130 * When sending packets, the device driver should use the contents of 1131 * the uip_len variable to determine the length of the outgoing 1132 * packet. 1133 * 1134 */ 1135 extern u16_t uip_len; 1136 1137 /** @} */ 1138 1139 #if UIP_URGDATA > 0 1140 extern u16_t uip_urglen, uip_surglen; 1141 #endif /* UIP_URGDATA > 0 */ 1142 1143 1144 /** 1145 * Representation of a uIP TCP connection. 1146 * 1147 * The uip_conn structure is used for identifying a connection. All 1148 * but one field in the structure are to be considered read-only by an 1149 * application. The only exception is the appstate field whos purpose 1150 * is to let the application store application-specific state (e.g., 1151 * file pointers) for the connection. The type of this field is 1152 * configured in the "uipopt.h" header file. 1153 */ 1154 struct uip_conn { 1155 uip_ipaddr_t ripaddr; /**< The IP address of the remote host. */ 1156 1157 u16_t lport; /**< The local TCP port, in network byte order. */ 1158 u16_t rport; /**< The local remote TCP port, in network byte 1159 order. */ 1160 1161 u8_t rcv_nxt[4]; /**< The sequence number that we expect to 1162 receive next. */ 1163 u8_t snd_nxt[4]; /**< The sequence number that was last sent by 1164 us. */ 1165 u16_t len; /**< Length of the data that was previously sent. */ 1166 u16_t mss; /**< Current maximum segment size for the 1167 connection. */ 1168 u16_t initialmss; /**< Initial maximum segment size for the 1169 connection. */ 1170 u8_t sa; /**< Retransmission time-out calculation state 1171 variable. */ 1172 u8_t sv; /**< Retransmission time-out calculation state 1173 variable. */ 1174 u8_t rto; /**< Retransmission time-out. */ 1175 u8_t tcpstateflags; /**< TCP state and flags. */ 1176 u8_t timer; /**< The retransmission timer. */ 1177 u8_t nrtx; /**< The number of retransmissions for the last 1178 segment sent. */ 1179 1180 /** The application state. */ 1181 uip_tcp_appstate_t appstate; 1182 }; 1183 1184 1185 /** 1186 * Pointer to the current TCP connection. 1187 * 1188 * The uip_conn pointer can be used to access the current TCP 1189 * connection. 1190 */ 1191 extern struct uip_conn *uip_conn; 1192 /* The array containing all uIP connections. */ 1193 extern struct uip_conn uip_conns[UIP_CONNS]; 1194 /** 1195 * \addtogroup uiparch 1196 * @{ 1197 */ 1198 1199 /** 1200 * 4-byte array used for the 32-bit sequence number calculations. 1201 */ 1202 extern u8_t uip_acc32[4]; 1203 1204 /** @} */ 1205 1206 1207 #if UIP_UDP 1208 /** 1209 * Representation of a uIP UDP connection. 1210 */ 1211 struct uip_udp_conn { 1212 uip_ipaddr_t ripaddr; /**< The IP address of the remote peer. */ 1213 u16_t lport; /**< The local port number in network byte order. */ 1214 u16_t rport; /**< The remote port number in network byte order. */ 1215 u8_t ttl; /**< Default time-to-live. */ 1216 1217 /** The application state. */ 1218 uip_udp_appstate_t appstate; 1219 }; 1220 1221 /** 1222 * The current UDP connection. 1223 */ 1224 extern struct uip_udp_conn *uip_udp_conn; 1225 extern struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS]; 1226 #endif /* UIP_UDP */ 1227 1228 /** 1229 * The structure holding the TCP/IP statistics that are gathered if 1230 * UIP_STATISTICS is set to 1. 1231 * 1232 */ 1233 struct uip_stats { 1234 struct { 1235 uip_stats_t drop; /**< Number of dropped packets at the IP 1236 layer. */ 1237 uip_stats_t recv; /**< Number of received packets at the IP 1238 layer. */ 1239 uip_stats_t sent; /**< Number of sent packets at the IP 1240 layer. */ 1241 uip_stats_t vhlerr; /**< Number of packets dropped due to wrong 1242 IP version or header length. */ 1243 uip_stats_t hblenerr; /**< Number of packets dropped due to wrong 1244 IP length, high byte. */ 1245 uip_stats_t lblenerr; /**< Number of packets dropped due to wrong 1246 IP length, low byte. */ 1247 uip_stats_t fragerr; /**< Number of packets dropped since they 1248 were IP fragments. */ 1249 uip_stats_t chkerr; /**< Number of packets dropped due to IP 1250 checksum errors. */ 1251 uip_stats_t protoerr; /**< Number of packets dropped since they 1252 were neither ICMP, UDP nor TCP. */ 1253 } ip; /**< IP statistics. */ 1254 struct { 1255 uip_stats_t drop; /**< Number of dropped ICMP packets. */ 1256 uip_stats_t recv; /**< Number of received ICMP packets. */ 1257 uip_stats_t sent; /**< Number of sent ICMP packets. */ 1258 uip_stats_t typeerr; /**< Number of ICMP packets with a wrong 1259 type. */ 1260 } icmp; /**< ICMP statistics. */ 1261 struct { 1262 uip_stats_t drop; /**< Number of dropped TCP segments. */ 1263 uip_stats_t recv; /**< Number of recived TCP segments. */ 1264 uip_stats_t sent; /**< Number of sent TCP segments. */ 1265 uip_stats_t chkerr; /**< Number of TCP segments with a bad 1266 checksum. */ 1267 uip_stats_t ackerr; /**< Number of TCP segments with a bad ACK 1268 number. */ 1269 uip_stats_t rst; /**< Number of recevied TCP RST (reset) segments. */ 1270 uip_stats_t rexmit; /**< Number of retransmitted TCP segments. */ 1271 uip_stats_t syndrop; /**< Number of dropped SYNs due to too few 1272 connections was avaliable. */ 1273 uip_stats_t synrst; /**< Number of SYNs for closed ports, 1274 triggering a RST. */ 1275 } tcp; /**< TCP statistics. */ 1276 #if UIP_UDP 1277 struct { 1278 uip_stats_t drop; /**< Number of dropped UDP segments. */ 1279 uip_stats_t recv; /**< Number of recived UDP segments. */ 1280 uip_stats_t sent; /**< Number of sent UDP segments. */ 1281 uip_stats_t chkerr; /**< Number of UDP segments with a bad 1282 checksum. */ 1283 } udp; /**< UDP statistics. */ 1284 #endif /* UIP_UDP */ 1285 }; 1286 1287 /** 1288 * The uIP TCP/IP statistics. 1289 * 1290 * This is the variable in which the uIP TCP/IP statistics are gathered. 1291 */ 1292 extern struct uip_stats uip_stat; 1293 1294 1295 /*---------------------------------------------------------------------------*/ 1296 /* All the stuff below this point is internal to uIP and should not be 1297 * used directly by an application or by a device driver. 1298 */ 1299 /*---------------------------------------------------------------------------*/ 1300 /* u8_t uip_flags: 1301 * 1302 * When the application is called, uip_flags will contain the flags 1303 * that are defined in this file. Please read below for more 1304 * infomation. 1305 */ 1306 extern u8_t uip_flags; 1307 1308 /* The following flags may be set in the global variable uip_flags 1309 before calling the application callback. The UIP_ACKDATA, 1310 UIP_NEWDATA, and UIP_CLOSE flags may both be set at the same time, 1311 whereas the others are mutualy exclusive. Note that these flags 1312 should *NOT* be accessed directly, but only through the uIP 1313 functions/macros. */ 1314 1315 #define UIP_ACKDATA 1 /* Signifies that the outstanding data was 1316 acked and the application should send 1317 out new data instead of retransmitting 1318 the last data. */ 1319 #define UIP_NEWDATA 2 /* Flags the fact that the peer has sent 1320 us new data. */ 1321 #define UIP_REXMIT 4 /* Tells the application to retransmit the 1322 data that was last sent. */ 1323 #define UIP_POLL 8 /* Used for polling the application, to 1324 check if the application has data that 1325 it wants to send. */ 1326 #define UIP_CLOSE 16 /* The remote host has closed the 1327 connection, thus the connection has 1328 gone away. Or the application signals 1329 that it wants to close the 1330 connection. */ 1331 #define UIP_ABORT 32 /* The remote host has aborted the 1332 connection, thus the connection has 1333 gone away. Or the application signals 1334 that it wants to abort the 1335 connection. */ 1336 #define UIP_CONNECTED 64 /* We have got a connection from a remote 1337 host and have set up a new connection 1338 for it, or an active connection has 1339 been successfully established. */ 1340 1341 #define UIP_TIMEDOUT 128 /* The connection has been aborted due to 1342 too many retransmissions. */ 1343 1344 /* uip_process(flag): 1345 * 1346 * The actual uIP function which does all the work. 1347 */ 1348 void uip_process(u8_t flag); 1349 1350 /* The following flags are passed as an argument to the uip_process() 1351 function. They are used to distinguish between the two cases where 1352 uip_process() is called. It can be called either because we have 1353 incoming data that should be processed, or because the periodic 1354 timer has fired. These values are never used directly, but only in 1355 the macrose defined in this file. */ 1356 1357 #define UIP_DATA 1 /* Tells uIP that there is incoming 1358 data in the uip_buf buffer. The 1359 length of the data is stored in the 1360 global variable uip_len. */ 1361 #define UIP_TIMER 2 /* Tells uIP that the periodic timer 1362 has fired. */ 1363 #define UIP_POLL_REQUEST 3 /* Tells uIP that a connection should 1364 be polled. */ 1365 #define UIP_UDP_SEND_CONN 4 /* Tells uIP that a UDP datagram 1366 should be constructed in the 1367 uip_buf buffer. */ 1368 #if UIP_UDP 1369 #define UIP_UDP_TIMER 5 1370 #endif /* UIP_UDP */ 1371 1372 /* The TCP states used in the uip_conn->tcpstateflags. */ 1373 #define UIP_CLOSED 0 1374 #define UIP_SYN_RCVD 1 1375 #define UIP_SYN_SENT 2 1376 #define UIP_ESTABLISHED 3 1377 #define UIP_FIN_WAIT_1 4 1378 #define UIP_FIN_WAIT_2 5 1379 #define UIP_CLOSING 6 1380 #define UIP_TIME_WAIT 7 1381 #define UIP_LAST_ACK 8 1382 #define UIP_TS_MASK 15 1383 1384 #define UIP_STOPPED 16 1385 1386 /* The TCP and IP headers. */ 1387 struct uip_tcpip_hdr { 1388 #if UIP_CONF_IPV6 1389 /* IPv6 header. */ 1390 u8_t vtc, 1391 tcflow; 1392 u16_t flow; 1393 u8_t len[2]; 1394 u8_t proto, ttl; 1395 uip_ip6addr_t srcipaddr, destipaddr; 1396 #else /* UIP_CONF_IPV6 */ 1397 /* IPv4 header. */ 1398 u8_t vhl, 1399 tos, 1400 len[2], 1401 ipid[2], 1402 ipoffset[2], 1403 ttl, 1404 proto; 1405 u16_t ipchksum; 1406 u16_t srcipaddr[2], 1407 destipaddr[2]; 1408 #endif /* UIP_CONF_IPV6 */ 1409 1410 /* TCP header. */ 1411 u16_t srcport, 1412 destport; 1413 u8_t seqno[4], 1414 ackno[4], 1415 tcpoffset, 1416 flags, 1417 wnd[2]; 1418 u16_t tcpchksum; 1419 u8_t urgp[2]; 1420 u8_t optdata[4]; 1421 }; 1422 1423 /* The ICMP and IP headers. */ 1424 struct uip_icmpip_hdr { 1425 #if UIP_CONF_IPV6 1426 /* IPv6 header. */ 1427 u8_t vtc, 1428 tcf; 1429 u16_t flow; 1430 u8_t len[2]; 1431 u8_t proto, ttl; 1432 uip_ip6addr_t srcipaddr, destipaddr; 1433 #else /* UIP_CONF_IPV6 */ 1434 /* IPv4 header. */ 1435 u8_t vhl, 1436 tos, 1437 len[2], 1438 ipid[2], 1439 ipoffset[2], 1440 ttl, 1441 proto; 1442 u16_t ipchksum; 1443 u16_t srcipaddr[2], 1444 destipaddr[2]; 1445 #endif /* UIP_CONF_IPV6 */ 1446 1447 /* ICMP (echo) header. */ 1448 u8_t type, icode; 1449 u16_t icmpchksum; 1450 #if !UIP_CONF_IPV6 1451 u16_t id, seqno; 1452 #else /* !UIP_CONF_IPV6 */ 1453 u8_t flags, reserved1, reserved2, reserved3; 1454 u8_t icmp6data[16]; 1455 u8_t options[1]; 1456 #endif /* !UIP_CONF_IPV6 */ 1457 }; 1458 1459 1460 /* The UDP and IP headers. */ 1461 struct uip_udpip_hdr { 1462 #if UIP_CONF_IPV6 1463 /* IPv6 header. */ 1464 u8_t vtc, 1465 tcf; 1466 u16_t flow; 1467 u8_t len[2]; 1468 u8_t proto, ttl; 1469 uip_ip6addr_t srcipaddr, destipaddr; 1470 #else /* UIP_CONF_IPV6 */ 1471 /* IP header. */ 1472 u8_t vhl, 1473 tos, 1474 len[2], 1475 ipid[2], 1476 ipoffset[2], 1477 ttl, 1478 proto; 1479 u16_t ipchksum; 1480 u16_t srcipaddr[2], 1481 destipaddr[2]; 1482 #endif /* UIP_CONF_IPV6 */ 1483 1484 /* UDP header. */ 1485 u16_t srcport, 1486 destport; 1487 u16_t udplen; 1488 u16_t udpchksum; 1489 }; 1490 1491 1492 1493 /** 1494 * The buffer size available for user data in the \ref uip_buf buffer. 1495 * 1496 * This macro holds the available size for user data in the \ref 1497 * uip_buf buffer. The macro is intended to be used for checking 1498 * bounds of available user data. 1499 * 1500 * Example: 1501 \code 1502 snprintf(uip_appdata, UIP_APPDATA_SIZE, "%u\n", i); 1503 \endcode 1504 * 1505 * \hideinitializer 1506 */ 1507 #define UIP_APPDATA_SIZE (UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN) 1508 1509 1510 #define UIP_PROTO_ICMP 1 1511 #define UIP_PROTO_TCP 6 1512 #define UIP_PROTO_UDP 17 1513 #define UIP_PROTO_ICMP6 58 1514 1515 /* Header sizes. */ 1516 #if UIP_CONF_IPV6 1517 #define UIP_IPH_LEN 40 1518 #else /* UIP_CONF_IPV6 */ 1519 #define UIP_IPH_LEN 20 /* Size of IP header */ 1520 #endif /* UIP_CONF_IPV6 */ 1521 #define UIP_UDPH_LEN 8 /* Size of UDP header */ 1522 #define UIP_TCPH_LEN 20 /* Size of TCP header */ 1523 #define UIP_IPUDPH_LEN (UIP_UDPH_LEN + UIP_IPH_LEN) /* Size of IP + 1524 UDP 1525 header */ 1526 #define UIP_IPTCPH_LEN (UIP_TCPH_LEN + UIP_IPH_LEN) /* Size of IP + 1527 TCP 1528 header */ 1529 #define UIP_TCPIP_HLEN UIP_IPTCPH_LEN 1530 1531 1532 #if UIP_FIXEDADDR 1533 extern const uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr; 1534 #else /* UIP_FIXEDADDR */ 1535 extern uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr; 1536 #endif /* UIP_FIXEDADDR */ 1537 1538 1539 1540 /** 1541 * Representation of a 48-bit Ethernet address. 1542 */ 1543 struct uip_eth_addr { 1544 u8_t addr[6]; 1545 }; 1546 1547 /** 1548 * Calculate the Internet checksum over a buffer. 1549 * 1550 * The Internet checksum is the one's complement of the one's 1551 * complement sum of all 16-bit words in the buffer. 1552 * 1553 * See RFC1071. 1554 * 1555 * \param buf A pointer to the buffer over which the checksum is to be 1556 * computed. 1557 * 1558 * \param len The length of the buffer over which the checksum is to 1559 * be computed. 1560 * 1561 * \return The Internet checksum of the buffer. 1562 */ 1563 u16_t uip_chksum(u16_t *buf, u16_t len); 1564 1565 /** 1566 * Calculate the IP header checksum of the packet header in uip_buf. 1567 * 1568 * The IP header checksum is the Internet checksum of the 20 bytes of 1569 * the IP header. 1570 * 1571 * \return The IP header checksum of the IP header in the uip_buf 1572 * buffer. 1573 */ 1574 u16_t uip_ipchksum(void); 1575 1576 /** 1577 * Calculate the TCP checksum of the packet in uip_buf and uip_appdata. 1578 * 1579 * The TCP checksum is the Internet checksum of data contents of the 1580 * TCP segment, and a pseudo-header as defined in RFC793. 1581 * 1582 * \return The TCP checksum of the TCP segment in uip_buf and pointed 1583 * to by uip_appdata. 1584 */ 1585 u16_t uip_tcpchksum(void); 1586 1587 /** 1588 * Calculate the UDP checksum of the packet in uip_buf and uip_appdata. 1589 * 1590 * The UDP checksum is the Internet checksum of data contents of the 1591 * UDP segment, and a pseudo-header as defined in RFC768. 1592 * 1593 * \return The UDP checksum of the UDP segment in uip_buf and pointed 1594 * to by uip_appdata. 1595 */ 1596 u16_t uip_udpchksum(void); 1597 1598 1599 #endif /* __UIP_H__ */ 1600 1601 1602 /** @} */ 1603