1 /*
2  * Copyright (c) 2022-2024, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <stdio.h>
10 
11 #include <arch_helpers.h>
12 #include <bl31/bl31.h>
13 #include <bl31/ehf.h>
14 #include <bl31/interrupt_mgmt.h>
15 #include <common/debug.h>
16 #include <common/fdt_wrappers.h>
17 #include <common/runtime_svc.h>
18 #include <common/uuid.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/smccc.h>
21 #include <lib/utils.h>
22 #include <lib/xlat_tables/xlat_tables_v2.h>
23 #include <libfdt.h>
24 #include <plat/common/platform.h>
25 #include <services/el3_spmc_logical_sp.h>
26 #include <services/ffa_svc.h>
27 #include <services/spmc_svc.h>
28 #include <services/spmd_svc.h>
29 #include "spmc.h"
30 #include "spmc_shared_mem.h"
31 
32 #include <platform_def.h>
33 
34 /* FFA_MEM_PERM_* helpers */
35 #define FFA_MEM_PERM_MASK		U(7)
36 #define FFA_MEM_PERM_DATA_MASK		U(3)
37 #define FFA_MEM_PERM_DATA_SHIFT		U(0)
38 #define FFA_MEM_PERM_DATA_NA		U(0)
39 #define FFA_MEM_PERM_DATA_RW		U(1)
40 #define FFA_MEM_PERM_DATA_RES		U(2)
41 #define FFA_MEM_PERM_DATA_RO		U(3)
42 #define FFA_MEM_PERM_INST_EXEC          (U(0) << 2)
43 #define FFA_MEM_PERM_INST_NON_EXEC      (U(1) << 2)
44 
45 /* Declare the maximum number of SPs and El3 LPs. */
46 #define MAX_SP_LP_PARTITIONS SECURE_PARTITION_COUNT + MAX_EL3_LP_DESCS_COUNT
47 
48 /*
49  * Allocate a secure partition descriptor to describe each SP in the system that
50  * does not reside at EL3.
51  */
52 static struct secure_partition_desc sp_desc[SECURE_PARTITION_COUNT];
53 
54 /*
55  * Allocate an NS endpoint descriptor to describe each VM and the Hypervisor in
56  * the system that interacts with a SP. It is used to track the Hypervisor
57  * buffer pair, version and ID for now. It could be extended to track VM
58  * properties when the SPMC supports indirect messaging.
59  */
60 static struct ns_endpoint_desc ns_ep_desc[NS_PARTITION_COUNT];
61 
62 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
63 					  uint32_t flags,
64 					  void *handle,
65 					  void *cookie);
66 
67 /*
68  * Helper function to obtain the array storing the EL3
69  * Logical Partition descriptors.
70  */
get_el3_lp_array(void)71 struct el3_lp_desc *get_el3_lp_array(void)
72 {
73 	return (struct el3_lp_desc *) EL3_LP_DESCS_START;
74 }
75 
76 /*
77  * Helper function to obtain the descriptor of the last SP to whom control was
78  * handed to on this physical cpu. Currently, we assume there is only one SP.
79  * TODO: Expand to track multiple partitions when required.
80  */
spmc_get_current_sp_ctx(void)81 struct secure_partition_desc *spmc_get_current_sp_ctx(void)
82 {
83 	return &(sp_desc[ACTIVE_SP_DESC_INDEX]);
84 }
85 
86 /*
87  * Helper function to obtain the execution context of an SP on the
88  * current physical cpu.
89  */
spmc_get_sp_ec(struct secure_partition_desc * sp)90 struct sp_exec_ctx *spmc_get_sp_ec(struct secure_partition_desc *sp)
91 {
92 	return &(sp->ec[get_ec_index(sp)]);
93 }
94 
95 /* Helper function to get pointer to SP context from its ID. */
spmc_get_sp_ctx(uint16_t id)96 struct secure_partition_desc *spmc_get_sp_ctx(uint16_t id)
97 {
98 	/* Check for Secure World Partitions. */
99 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
100 		if (sp_desc[i].sp_id == id) {
101 			return &(sp_desc[i]);
102 		}
103 	}
104 	return NULL;
105 }
106 
107 /*
108  * Helper function to obtain the descriptor of the Hypervisor or OS kernel.
109  * We assume that the first descriptor is reserved for this entity.
110  */
spmc_get_hyp_ctx(void)111 struct ns_endpoint_desc *spmc_get_hyp_ctx(void)
112 {
113 	return &(ns_ep_desc[0]);
114 }
115 
116 /*
117  * Helper function to obtain the RX/TX buffer pair descriptor of the Hypervisor
118  * or OS kernel in the normal world or the last SP that was run.
119  */
spmc_get_mbox_desc(bool secure_origin)120 struct mailbox *spmc_get_mbox_desc(bool secure_origin)
121 {
122 	/* Obtain the RX/TX buffer pair descriptor. */
123 	if (secure_origin) {
124 		return &(spmc_get_current_sp_ctx()->mailbox);
125 	} else {
126 		return &(spmc_get_hyp_ctx()->mailbox);
127 	}
128 }
129 
130 /******************************************************************************
131  * This function returns to the place where spmc_sp_synchronous_entry() was
132  * called originally.
133  ******************************************************************************/
spmc_sp_synchronous_exit(struct sp_exec_ctx * ec,uint64_t rc)134 __dead2 void spmc_sp_synchronous_exit(struct sp_exec_ctx *ec, uint64_t rc)
135 {
136 	/*
137 	 * The SPM must have initiated the original request through a
138 	 * synchronous entry into the secure partition. Jump back to the
139 	 * original C runtime context with the value of rc in x0;
140 	 */
141 	spm_secure_partition_exit(ec->c_rt_ctx, rc);
142 
143 	panic();
144 }
145 
146 /*******************************************************************************
147  * Return FFA_ERROR with specified error code.
148  ******************************************************************************/
spmc_ffa_error_return(void * handle,int error_code)149 uint64_t spmc_ffa_error_return(void *handle, int error_code)
150 {
151 	SMC_RET8(handle, FFA_ERROR,
152 		 FFA_TARGET_INFO_MBZ, error_code,
153 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ, FFA_PARAM_MBZ,
154 		 FFA_PARAM_MBZ, FFA_PARAM_MBZ);
155 }
156 
157 /******************************************************************************
158  * Helper function to validate a secure partition ID to ensure it does not
159  * conflict with any other FF-A component and follows the convention to
160  * indicate it resides within the secure world.
161  ******************************************************************************/
is_ffa_secure_id_valid(uint16_t partition_id)162 bool is_ffa_secure_id_valid(uint16_t partition_id)
163 {
164 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
165 
166 	/* Ensure the ID is not the invalid partition ID. */
167 	if (partition_id == INV_SP_ID) {
168 		return false;
169 	}
170 
171 	/* Ensure the ID is not the SPMD ID. */
172 	if (partition_id == SPMD_DIRECT_MSG_ENDPOINT_ID) {
173 		return false;
174 	}
175 
176 	/*
177 	 * Ensure the ID follows the convention to indicate it resides
178 	 * in the secure world.
179 	 */
180 	if (!ffa_is_secure_world_id(partition_id)) {
181 		return false;
182 	}
183 
184 	/* Ensure we don't conflict with the SPMC partition ID. */
185 	if (partition_id == FFA_SPMC_ID) {
186 		return false;
187 	}
188 
189 	/* Ensure we do not already have an SP context with this ID. */
190 	if (spmc_get_sp_ctx(partition_id)) {
191 		return false;
192 	}
193 
194 	/* Ensure we don't clash with any Logical SP's. */
195 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
196 		if (el3_lp_descs[i].sp_id == partition_id) {
197 			return false;
198 		}
199 	}
200 
201 	return true;
202 }
203 
204 /*******************************************************************************
205  * This function either forwards the request to the other world or returns
206  * with an ERET depending on the source of the call.
207  * We can assume that the destination is for an entity at a lower exception
208  * level as any messages destined for a logical SP resident in EL3 will have
209  * already been taken care of by the SPMC before entering this function.
210  ******************************************************************************/
spmc_smc_return(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * handle,void * cookie,uint64_t flags,uint16_t dst_id)211 static uint64_t spmc_smc_return(uint32_t smc_fid,
212 				bool secure_origin,
213 				uint64_t x1,
214 				uint64_t x2,
215 				uint64_t x3,
216 				uint64_t x4,
217 				void *handle,
218 				void *cookie,
219 				uint64_t flags,
220 				uint16_t dst_id)
221 {
222 	/* If the destination is in the normal world always go via the SPMD. */
223 	if (ffa_is_normal_world_id(dst_id)) {
224 		return spmd_smc_handler(smc_fid, x1, x2, x3, x4,
225 					cookie, handle, flags);
226 	}
227 	/*
228 	 * If the caller is secure and we want to return to the secure world,
229 	 * ERET directly.
230 	 */
231 	else if (secure_origin && ffa_is_secure_world_id(dst_id)) {
232 		SMC_RET5(handle, smc_fid, x1, x2, x3, x4);
233 	}
234 	/* If we originated in the normal world then switch contexts. */
235 	else if (!secure_origin && ffa_is_secure_world_id(dst_id)) {
236 		return spmd_smc_switch_state(smc_fid, secure_origin, x1, x2,
237 					     x3, x4, handle, flags);
238 	} else {
239 		/* Unknown State. */
240 		panic();
241 	}
242 
243 	/* Shouldn't be Reached. */
244 	return 0;
245 }
246 
247 /*******************************************************************************
248  * FF-A ABI Handlers.
249  ******************************************************************************/
250 
251 /*******************************************************************************
252  * Helper function to validate arg2 as part of a direct message.
253  ******************************************************************************/
direct_msg_validate_arg2(uint64_t x2)254 static inline bool direct_msg_validate_arg2(uint64_t x2)
255 {
256 	/* Check message type. */
257 	if (x2 & FFA_FWK_MSG_BIT) {
258 		/* We have a framework message, ensure it is a known message. */
259 		if (x2 & ~(FFA_FWK_MSG_MASK | FFA_FWK_MSG_BIT)) {
260 			VERBOSE("Invalid message format 0x%lx.\n", x2);
261 			return false;
262 		}
263 	} else {
264 		/* We have a partition messages, ensure x2 is not set. */
265 		if (x2 != (uint64_t) 0) {
266 			VERBOSE("Arg2 MBZ for partition messages. (0x%lx).\n",
267 				x2);
268 			return false;
269 		}
270 	}
271 	return true;
272 }
273 
274 /*******************************************************************************
275  * Helper function to validate the destination ID of a direct response.
276  ******************************************************************************/
direct_msg_validate_dst_id(uint16_t dst_id)277 static bool direct_msg_validate_dst_id(uint16_t dst_id)
278 {
279 	struct secure_partition_desc *sp;
280 
281 	/* Check if we're targeting a normal world partition. */
282 	if (ffa_is_normal_world_id(dst_id)) {
283 		return true;
284 	}
285 
286 	/* Or directed to the SPMC itself.*/
287 	if (dst_id == FFA_SPMC_ID) {
288 		return true;
289 	}
290 
291 	/* Otherwise ensure the SP exists. */
292 	sp = spmc_get_sp_ctx(dst_id);
293 	if (sp != NULL) {
294 		return true;
295 	}
296 
297 	return false;
298 }
299 
300 /*******************************************************************************
301  * Helper function to validate the response from a Logical Partition.
302  ******************************************************************************/
direct_msg_validate_lp_resp(uint16_t origin_id,uint16_t lp_id,void * handle)303 static bool direct_msg_validate_lp_resp(uint16_t origin_id, uint16_t lp_id,
304 					void *handle)
305 {
306 	/* Retrieve populated Direct Response Arguments. */
307 	uint64_t x1 = SMC_GET_GP(handle, CTX_GPREG_X1);
308 	uint64_t x2 = SMC_GET_GP(handle, CTX_GPREG_X2);
309 	uint16_t src_id = ffa_endpoint_source(x1);
310 	uint16_t dst_id = ffa_endpoint_destination(x1);
311 
312 	if (src_id != lp_id) {
313 		ERROR("Invalid EL3 LP source ID (0x%x).\n", src_id);
314 		return false;
315 	}
316 
317 	/*
318 	 * Check the destination ID is valid and ensure the LP is responding to
319 	 * the original request.
320 	 */
321 	if ((!direct_msg_validate_dst_id(dst_id)) || (dst_id != origin_id)) {
322 		ERROR("Invalid EL3 LP destination ID (0x%x).\n", dst_id);
323 		return false;
324 	}
325 
326 	if (!direct_msg_validate_arg2(x2)) {
327 		ERROR("Invalid EL3 LP message encoding.\n");
328 		return false;
329 	}
330 	return true;
331 }
332 
333 /*******************************************************************************
334  * Handle direct request messages and route to the appropriate destination.
335  ******************************************************************************/
direct_req_smc_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)336 static uint64_t direct_req_smc_handler(uint32_t smc_fid,
337 				       bool secure_origin,
338 				       uint64_t x1,
339 				       uint64_t x2,
340 				       uint64_t x3,
341 				       uint64_t x4,
342 				       void *cookie,
343 				       void *handle,
344 				       uint64_t flags)
345 {
346 	uint16_t src_id = ffa_endpoint_source(x1);
347 	uint16_t dst_id = ffa_endpoint_destination(x1);
348 	struct el3_lp_desc *el3_lp_descs;
349 	struct secure_partition_desc *sp;
350 	unsigned int idx;
351 
352 	/* Check if arg2 has been populated correctly based on message type. */
353 	if (!direct_msg_validate_arg2(x2)) {
354 		return spmc_ffa_error_return(handle,
355 					     FFA_ERROR_INVALID_PARAMETER);
356 	}
357 
358 	/* Validate Sender is either the current SP or from the normal world. */
359 	if ((secure_origin && src_id != spmc_get_current_sp_ctx()->sp_id) ||
360 		(!secure_origin && !ffa_is_normal_world_id(src_id))) {
361 		ERROR("Invalid direct request source ID (0x%x).\n", src_id);
362 		return spmc_ffa_error_return(handle,
363 					FFA_ERROR_INVALID_PARAMETER);
364 	}
365 
366 	el3_lp_descs = get_el3_lp_array();
367 
368 	/* Check if the request is destined for a Logical Partition. */
369 	for (unsigned int i = 0U; i < MAX_EL3_LP_DESCS_COUNT; i++) {
370 		if (el3_lp_descs[i].sp_id == dst_id) {
371 			uint64_t ret = el3_lp_descs[i].direct_req(
372 						smc_fid, secure_origin, x1, x2,
373 						x3, x4, cookie, handle, flags);
374 			if (!direct_msg_validate_lp_resp(src_id, dst_id,
375 							 handle)) {
376 				panic();
377 			}
378 
379 			/* Message checks out. */
380 			return ret;
381 		}
382 	}
383 
384 	/*
385 	 * If the request was not targeted to a LSP and from the secure world
386 	 * then it is invalid since a SP cannot call into the Normal world and
387 	 * there is no other SP to call into. If there are other SPs in future
388 	 * then the partition runtime model would need to be validated as well.
389 	 */
390 	if (secure_origin) {
391 		VERBOSE("Direct request not supported to the Normal World.\n");
392 		return spmc_ffa_error_return(handle,
393 					     FFA_ERROR_INVALID_PARAMETER);
394 	}
395 
396 	/* Check if the SP ID is valid. */
397 	sp = spmc_get_sp_ctx(dst_id);
398 	if (sp == NULL) {
399 		VERBOSE("Direct request to unknown partition ID (0x%x).\n",
400 			dst_id);
401 		return spmc_ffa_error_return(handle,
402 					     FFA_ERROR_INVALID_PARAMETER);
403 	}
404 
405 	/* Protect the runtime state of a UP S-EL0 SP with a lock. */
406 	if (sp->runtime_el == S_EL0) {
407 		spin_lock(&sp->rt_state_lock);
408 	}
409 
410 	/*
411 	 * Check that the target execution context is in a waiting state before
412 	 * forwarding the direct request to it.
413 	 */
414 	idx = get_ec_index(sp);
415 	if (sp->ec[idx].rt_state != RT_STATE_WAITING) {
416 		VERBOSE("SP context on core%u is not waiting (%u).\n",
417 			idx, sp->ec[idx].rt_model);
418 
419 		if (sp->runtime_el == S_EL0) {
420 			spin_unlock(&sp->rt_state_lock);
421 		}
422 
423 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
424 	}
425 
426 	/*
427 	 * Everything checks out so forward the request to the SP after updating
428 	 * its state and runtime model.
429 	 */
430 	sp->ec[idx].rt_state = RT_STATE_RUNNING;
431 	sp->ec[idx].rt_model = RT_MODEL_DIR_REQ;
432 	sp->ec[idx].dir_req_origin_id = src_id;
433 
434 	if (sp->runtime_el == S_EL0) {
435 		spin_unlock(&sp->rt_state_lock);
436 	}
437 
438 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
439 			       handle, cookie, flags, dst_id);
440 }
441 
442 /*******************************************************************************
443  * Handle direct response messages and route to the appropriate destination.
444  ******************************************************************************/
direct_resp_smc_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)445 static uint64_t direct_resp_smc_handler(uint32_t smc_fid,
446 					bool secure_origin,
447 					uint64_t x1,
448 					uint64_t x2,
449 					uint64_t x3,
450 					uint64_t x4,
451 					void *cookie,
452 					void *handle,
453 					uint64_t flags)
454 {
455 	uint16_t dst_id = ffa_endpoint_destination(x1);
456 	struct secure_partition_desc *sp;
457 	unsigned int idx;
458 
459 	/* Check if arg2 has been populated correctly based on message type. */
460 	if (!direct_msg_validate_arg2(x2)) {
461 		return spmc_ffa_error_return(handle,
462 					     FFA_ERROR_INVALID_PARAMETER);
463 	}
464 
465 	/* Check that the response did not originate from the Normal world. */
466 	if (!secure_origin) {
467 		VERBOSE("Direct Response not supported from Normal World.\n");
468 		return spmc_ffa_error_return(handle,
469 					     FFA_ERROR_INVALID_PARAMETER);
470 	}
471 
472 	/*
473 	 * Check that the response is either targeted to the Normal world or the
474 	 * SPMC e.g. a PM response.
475 	 */
476 	if (!direct_msg_validate_dst_id(dst_id)) {
477 		VERBOSE("Direct response to invalid partition ID (0x%x).\n",
478 			dst_id);
479 		return spmc_ffa_error_return(handle,
480 					     FFA_ERROR_INVALID_PARAMETER);
481 	}
482 
483 	/* Obtain the SP descriptor and update its runtime state. */
484 	sp = spmc_get_sp_ctx(ffa_endpoint_source(x1));
485 	if (sp == NULL) {
486 		VERBOSE("Direct response to unknown partition ID (0x%x).\n",
487 			dst_id);
488 		return spmc_ffa_error_return(handle,
489 					     FFA_ERROR_INVALID_PARAMETER);
490 	}
491 
492 	if (sp->runtime_el == S_EL0) {
493 		spin_lock(&sp->rt_state_lock);
494 	}
495 
496 	/* Sanity check state is being tracked correctly in the SPMC. */
497 	idx = get_ec_index(sp);
498 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
499 
500 	/* Ensure SP execution context was in the right runtime model. */
501 	if (sp->ec[idx].rt_model != RT_MODEL_DIR_REQ) {
502 		VERBOSE("SP context on core%u not handling direct req (%u).\n",
503 			idx, sp->ec[idx].rt_model);
504 		if (sp->runtime_el == S_EL0) {
505 			spin_unlock(&sp->rt_state_lock);
506 		}
507 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
508 	}
509 
510 	if (sp->ec[idx].dir_req_origin_id != dst_id) {
511 		WARN("Invalid direct resp partition ID 0x%x != 0x%x on core%u.\n",
512 		     dst_id, sp->ec[idx].dir_req_origin_id, idx);
513 		if (sp->runtime_el == S_EL0) {
514 			spin_unlock(&sp->rt_state_lock);
515 		}
516 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
517 	}
518 
519 	/* Update the state of the SP execution context. */
520 	sp->ec[idx].rt_state = RT_STATE_WAITING;
521 
522 	/* Clear the ongoing direct request ID. */
523 	sp->ec[idx].dir_req_origin_id = INV_SP_ID;
524 
525 	if (sp->runtime_el == S_EL0) {
526 		spin_unlock(&sp->rt_state_lock);
527 	}
528 
529 	/*
530 	 * If the receiver is not the SPMC then forward the response to the
531 	 * Normal world.
532 	 */
533 	if (dst_id == FFA_SPMC_ID) {
534 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
535 		/* Should not get here. */
536 		panic();
537 	}
538 
539 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
540 			       handle, cookie, flags, dst_id);
541 }
542 
543 /*******************************************************************************
544  * This function handles the FFA_MSG_WAIT SMC to allow an SP to relinquish its
545  * cycles.
546  ******************************************************************************/
msg_wait_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)547 static uint64_t msg_wait_handler(uint32_t smc_fid,
548 				 bool secure_origin,
549 				 uint64_t x1,
550 				 uint64_t x2,
551 				 uint64_t x3,
552 				 uint64_t x4,
553 				 void *cookie,
554 				 void *handle,
555 				 uint64_t flags)
556 {
557 	struct secure_partition_desc *sp;
558 	unsigned int idx;
559 
560 	/*
561 	 * Check that the response did not originate from the Normal world as
562 	 * only the secure world can call this ABI.
563 	 */
564 	if (!secure_origin) {
565 		VERBOSE("Normal world cannot call FFA_MSG_WAIT.\n");
566 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
567 	}
568 
569 	/* Get the descriptor of the SP that invoked FFA_MSG_WAIT. */
570 	sp = spmc_get_current_sp_ctx();
571 	if (sp == NULL) {
572 		return spmc_ffa_error_return(handle,
573 					     FFA_ERROR_INVALID_PARAMETER);
574 	}
575 
576 	/*
577 	 * Get the execution context of the SP that invoked FFA_MSG_WAIT.
578 	 */
579 	idx = get_ec_index(sp);
580 	if (sp->runtime_el == S_EL0) {
581 		spin_lock(&sp->rt_state_lock);
582 	}
583 
584 	/* Ensure SP execution context was in the right runtime model. */
585 	if (sp->ec[idx].rt_model == RT_MODEL_DIR_REQ) {
586 		if (sp->runtime_el == S_EL0) {
587 			spin_unlock(&sp->rt_state_lock);
588 		}
589 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
590 	}
591 
592 	/* Sanity check the state is being tracked correctly in the SPMC. */
593 	assert(sp->ec[idx].rt_state == RT_STATE_RUNNING);
594 
595 	/*
596 	 * Perform a synchronous exit if the partition was initialising. The
597 	 * state is updated after the exit.
598 	 */
599 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
600 		if (sp->runtime_el == S_EL0) {
601 			spin_unlock(&sp->rt_state_lock);
602 		}
603 		spmc_sp_synchronous_exit(&sp->ec[idx], x4);
604 		/* Should not get here */
605 		panic();
606 	}
607 
608 	/* Update the state of the SP execution context. */
609 	sp->ec[idx].rt_state = RT_STATE_WAITING;
610 
611 	/* Resume normal world if a secure interrupt was handled. */
612 	if (sp->ec[idx].rt_model == RT_MODEL_INTR) {
613 		/* FFA_MSG_WAIT can only be called from the secure world. */
614 		unsigned int secure_state_in = SECURE;
615 		unsigned int secure_state_out = NON_SECURE;
616 
617 		cm_el1_sysregs_context_save(secure_state_in);
618 		cm_el1_sysregs_context_restore(secure_state_out);
619 		cm_set_next_eret_context(secure_state_out);
620 
621 		if (sp->runtime_el == S_EL0) {
622 			spin_unlock(&sp->rt_state_lock);
623 		}
624 
625 		SMC_RET0(cm_get_context(secure_state_out));
626 	}
627 
628 	/* Protect the runtime state of a S-EL0 SP with a lock. */
629 	if (sp->runtime_el == S_EL0) {
630 		spin_unlock(&sp->rt_state_lock);
631 	}
632 
633 	/* Forward the response to the Normal world. */
634 	return spmc_smc_return(smc_fid, secure_origin, x1, x2, x3, x4,
635 			       handle, cookie, flags, FFA_NWD_ID);
636 }
637 
ffa_error_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)638 static uint64_t ffa_error_handler(uint32_t smc_fid,
639 				 bool secure_origin,
640 				 uint64_t x1,
641 				 uint64_t x2,
642 				 uint64_t x3,
643 				 uint64_t x4,
644 				 void *cookie,
645 				 void *handle,
646 				 uint64_t flags)
647 {
648 	struct secure_partition_desc *sp;
649 	unsigned int idx;
650 
651 	/* Check that the response did not originate from the Normal world. */
652 	if (!secure_origin) {
653 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
654 	}
655 
656 	/* Get the descriptor of the SP that invoked FFA_ERROR. */
657 	sp = spmc_get_current_sp_ctx();
658 	if (sp == NULL) {
659 		return spmc_ffa_error_return(handle,
660 					     FFA_ERROR_INVALID_PARAMETER);
661 	}
662 
663 	/* Get the execution context of the SP that invoked FFA_ERROR. */
664 	idx = get_ec_index(sp);
665 
666 	/*
667 	 * We only expect FFA_ERROR to be received during SP initialisation
668 	 * otherwise this is an invalid call.
669 	 */
670 	if (sp->ec[idx].rt_model == RT_MODEL_INIT) {
671 		ERROR("SP 0x%x failed to initialize.\n", sp->sp_id);
672 		spmc_sp_synchronous_exit(&sp->ec[idx], x2);
673 		/* Should not get here. */
674 		panic();
675 	}
676 
677 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
678 }
679 
ffa_version_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)680 static uint64_t ffa_version_handler(uint32_t smc_fid,
681 				    bool secure_origin,
682 				    uint64_t x1,
683 				    uint64_t x2,
684 				    uint64_t x3,
685 				    uint64_t x4,
686 				    void *cookie,
687 				    void *handle,
688 				    uint64_t flags)
689 {
690 	uint32_t requested_version = x1 & FFA_VERSION_MASK;
691 
692 	if (requested_version & FFA_VERSION_BIT31_MASK) {
693 		/* Invalid encoding, return an error. */
694 		SMC_RET1(handle, FFA_ERROR_NOT_SUPPORTED);
695 		/* Execution stops here. */
696 	}
697 
698 	/* Determine the caller to store the requested version. */
699 	if (secure_origin) {
700 		/*
701 		 * Ensure that the SP is reporting the same version as
702 		 * specified in its manifest. If these do not match there is
703 		 * something wrong with the SP.
704 		 * TODO: Should we abort the SP? For now assert this is not
705 		 *       case.
706 		 */
707 		assert(requested_version ==
708 		       spmc_get_current_sp_ctx()->ffa_version);
709 	} else {
710 		/*
711 		 * If this is called by the normal world, record this
712 		 * information in its descriptor.
713 		 */
714 		spmc_get_hyp_ctx()->ffa_version = requested_version;
715 	}
716 
717 	SMC_RET1(handle, MAKE_FFA_VERSION(FFA_VERSION_MAJOR,
718 					  FFA_VERSION_MINOR));
719 }
720 
721 /*******************************************************************************
722  * Helper function to obtain the FF-A version of the calling partition.
723  ******************************************************************************/
get_partition_ffa_version(bool secure_origin)724 uint32_t get_partition_ffa_version(bool secure_origin)
725 {
726 	if (secure_origin) {
727 		return spmc_get_current_sp_ctx()->ffa_version;
728 	} else {
729 		return spmc_get_hyp_ctx()->ffa_version;
730 	}
731 }
732 
rxtx_map_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)733 static uint64_t rxtx_map_handler(uint32_t smc_fid,
734 				 bool secure_origin,
735 				 uint64_t x1,
736 				 uint64_t x2,
737 				 uint64_t x3,
738 				 uint64_t x4,
739 				 void *cookie,
740 				 void *handle,
741 				 uint64_t flags)
742 {
743 	int ret;
744 	uint32_t error_code;
745 	uint32_t mem_atts = secure_origin ? MT_SECURE : MT_NS;
746 	struct mailbox *mbox;
747 	uintptr_t tx_address = x1;
748 	uintptr_t rx_address = x2;
749 	uint32_t page_count = x3 & FFA_RXTX_PAGE_COUNT_MASK; /* Bits [5:0] */
750 	uint32_t buf_size = page_count * FFA_PAGE_SIZE;
751 
752 	/*
753 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
754 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
755 	 * ABI on behalf of a VM and reject it if this is the case.
756 	 */
757 	if (tx_address == 0 || rx_address == 0) {
758 		WARN("Mapping RX/TX Buffers on behalf of VM not supported.\n");
759 		return spmc_ffa_error_return(handle,
760 					     FFA_ERROR_INVALID_PARAMETER);
761 	}
762 
763 	/* Ensure the specified buffers are not the same. */
764 	if (tx_address == rx_address) {
765 		WARN("TX Buffer must not be the same as RX Buffer.\n");
766 		return spmc_ffa_error_return(handle,
767 					     FFA_ERROR_INVALID_PARAMETER);
768 	}
769 
770 	/* Ensure the buffer size is not 0. */
771 	if (buf_size == 0U) {
772 		WARN("Buffer size must not be 0\n");
773 		return spmc_ffa_error_return(handle,
774 					     FFA_ERROR_INVALID_PARAMETER);
775 	}
776 
777 	/*
778 	 * Ensure the buffer size is a multiple of the translation granule size
779 	 * in TF-A.
780 	 */
781 	if (buf_size % PAGE_SIZE != 0U) {
782 		WARN("Buffer size must be aligned to translation granule.\n");
783 		return spmc_ffa_error_return(handle,
784 					     FFA_ERROR_INVALID_PARAMETER);
785 	}
786 
787 	/* Obtain the RX/TX buffer pair descriptor. */
788 	mbox = spmc_get_mbox_desc(secure_origin);
789 
790 	spin_lock(&mbox->lock);
791 
792 	/* Check if buffers have already been mapped. */
793 	if (mbox->rx_buffer != 0 || mbox->tx_buffer != 0) {
794 		WARN("RX/TX Buffers already mapped (%p/%p)\n",
795 		     (void *) mbox->rx_buffer, (void *)mbox->tx_buffer);
796 		error_code = FFA_ERROR_DENIED;
797 		goto err;
798 	}
799 
800 	/* memmap the TX buffer as read only. */
801 	ret = mmap_add_dynamic_region(tx_address, /* PA */
802 			tx_address, /* VA */
803 			buf_size, /* size */
804 			mem_atts | MT_RO_DATA); /* attrs */
805 	if (ret != 0) {
806 		/* Return the correct error code. */
807 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
808 						FFA_ERROR_INVALID_PARAMETER;
809 		WARN("Unable to map TX buffer: %d\n", error_code);
810 		goto err;
811 	}
812 
813 	/* memmap the RX buffer as read write. */
814 	ret = mmap_add_dynamic_region(rx_address, /* PA */
815 			rx_address, /* VA */
816 			buf_size, /* size */
817 			mem_atts | MT_RW_DATA); /* attrs */
818 
819 	if (ret != 0) {
820 		error_code = (ret == -ENOMEM) ? FFA_ERROR_NO_MEMORY :
821 						FFA_ERROR_INVALID_PARAMETER;
822 		WARN("Unable to map RX buffer: %d\n", error_code);
823 		/* Unmap the TX buffer again. */
824 		mmap_remove_dynamic_region(tx_address, buf_size);
825 		goto err;
826 	}
827 
828 	mbox->tx_buffer = (void *) tx_address;
829 	mbox->rx_buffer = (void *) rx_address;
830 	mbox->rxtx_page_count = page_count;
831 	spin_unlock(&mbox->lock);
832 
833 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
834 	/* Execution stops here. */
835 err:
836 	spin_unlock(&mbox->lock);
837 	return spmc_ffa_error_return(handle, error_code);
838 }
839 
rxtx_unmap_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)840 static uint64_t rxtx_unmap_handler(uint32_t smc_fid,
841 				   bool secure_origin,
842 				   uint64_t x1,
843 				   uint64_t x2,
844 				   uint64_t x3,
845 				   uint64_t x4,
846 				   void *cookie,
847 				   void *handle,
848 				   uint64_t flags)
849 {
850 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
851 	uint32_t buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
852 
853 	/*
854 	 * The SPMC does not support mapping of VM RX/TX pairs to facilitate
855 	 * indirect messaging with SPs. Check if the Hypervisor has invoked this
856 	 * ABI on behalf of a VM and reject it if this is the case.
857 	 */
858 	if (x1 != 0UL) {
859 		return spmc_ffa_error_return(handle,
860 					     FFA_ERROR_INVALID_PARAMETER);
861 	}
862 
863 	spin_lock(&mbox->lock);
864 
865 	/* Check if buffers are currently mapped. */
866 	if (mbox->rx_buffer == 0 || mbox->tx_buffer == 0) {
867 		spin_unlock(&mbox->lock);
868 		return spmc_ffa_error_return(handle,
869 					     FFA_ERROR_INVALID_PARAMETER);
870 	}
871 
872 	/* Unmap RX Buffer */
873 	if (mmap_remove_dynamic_region((uintptr_t) mbox->rx_buffer,
874 				       buf_size) != 0) {
875 		WARN("Unable to unmap RX buffer!\n");
876 	}
877 
878 	mbox->rx_buffer = 0;
879 
880 	/* Unmap TX Buffer */
881 	if (mmap_remove_dynamic_region((uintptr_t) mbox->tx_buffer,
882 				       buf_size) != 0) {
883 		WARN("Unable to unmap TX buffer!\n");
884 	}
885 
886 	mbox->tx_buffer = 0;
887 	mbox->rxtx_page_count = 0;
888 
889 	spin_unlock(&mbox->lock);
890 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
891 }
892 
893 /*
894  * Helper function to populate the properties field of a Partition Info Get
895  * descriptor.
896  */
897 static uint32_t
partition_info_get_populate_properties(uint32_t sp_properties,enum sp_execution_state sp_ec_state)898 partition_info_get_populate_properties(uint32_t sp_properties,
899 				       enum sp_execution_state sp_ec_state)
900 {
901 	uint32_t properties = sp_properties;
902 	uint32_t ec_state;
903 
904 	/* Determine the execution state of the SP. */
905 	ec_state = sp_ec_state == SP_STATE_AARCH64 ?
906 		   FFA_PARTITION_INFO_GET_AARCH64_STATE :
907 		   FFA_PARTITION_INFO_GET_AARCH32_STATE;
908 
909 	properties |= ec_state << FFA_PARTITION_INFO_GET_EXEC_STATE_SHIFT;
910 
911 	return properties;
912 }
913 
914 /*
915  * Collate the partition information in a v1.1 partition information
916  * descriptor format, this will be converter later if required.
917  */
partition_info_get_handler_v1_1(uint32_t * uuid,struct ffa_partition_info_v1_1 * partitions,uint32_t max_partitions,uint32_t * partition_count)918 static int partition_info_get_handler_v1_1(uint32_t *uuid,
919 					   struct ffa_partition_info_v1_1
920 						  *partitions,
921 					   uint32_t max_partitions,
922 					   uint32_t *partition_count)
923 {
924 	uint32_t index;
925 	struct ffa_partition_info_v1_1 *desc;
926 	bool null_uuid = is_null_uuid(uuid);
927 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
928 
929 	/* Deal with Logical Partitions. */
930 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
931 		if (null_uuid || uuid_match(uuid, el3_lp_descs[index].uuid)) {
932 			/* Found a matching UUID, populate appropriately. */
933 			if (*partition_count >= max_partitions) {
934 				return FFA_ERROR_NO_MEMORY;
935 			}
936 
937 			desc = &partitions[*partition_count];
938 			desc->ep_id = el3_lp_descs[index].sp_id;
939 			desc->execution_ctx_count = PLATFORM_CORE_COUNT;
940 			/* LSPs must be AArch64. */
941 			desc->properties =
942 				partition_info_get_populate_properties(
943 					el3_lp_descs[index].properties,
944 					SP_STATE_AARCH64);
945 
946 			if (null_uuid) {
947 				copy_uuid(desc->uuid, el3_lp_descs[index].uuid);
948 			}
949 			(*partition_count)++;
950 		}
951 	}
952 
953 	/* Deal with physical SP's. */
954 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
955 		if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) {
956 			/* Found a matching UUID, populate appropriately. */
957 			if (*partition_count >= max_partitions) {
958 				return FFA_ERROR_NO_MEMORY;
959 			}
960 
961 			desc = &partitions[*partition_count];
962 			desc->ep_id = sp_desc[index].sp_id;
963 			/*
964 			 * Execution context count must match No. cores for
965 			 * S-EL1 SPs.
966 			 */
967 			desc->execution_ctx_count = PLATFORM_CORE_COUNT;
968 			desc->properties =
969 				partition_info_get_populate_properties(
970 					sp_desc[index].properties,
971 					sp_desc[index].execution_state);
972 
973 			if (null_uuid) {
974 				copy_uuid(desc->uuid, sp_desc[index].uuid);
975 			}
976 			(*partition_count)++;
977 		}
978 	}
979 	return 0;
980 }
981 
982 /*
983  * Handle the case where that caller only wants the count of partitions
984  * matching a given UUID and does not want the corresponding descriptors
985  * populated.
986  */
partition_info_get_handler_count_only(uint32_t * uuid)987 static uint32_t partition_info_get_handler_count_only(uint32_t *uuid)
988 {
989 	uint32_t index = 0;
990 	uint32_t partition_count = 0;
991 	bool null_uuid = is_null_uuid(uuid);
992 	struct el3_lp_desc *el3_lp_descs = get_el3_lp_array();
993 
994 	/* Deal with Logical Partitions. */
995 	for (index = 0U; index < EL3_LP_DESCS_COUNT; index++) {
996 		if (null_uuid ||
997 		    uuid_match(uuid, el3_lp_descs[index].uuid)) {
998 			(partition_count)++;
999 		}
1000 	}
1001 
1002 	/* Deal with physical SP's. */
1003 	for (index = 0U; index < SECURE_PARTITION_COUNT; index++) {
1004 		if (null_uuid || uuid_match(uuid, sp_desc[index].uuid)) {
1005 			(partition_count)++;
1006 		}
1007 	}
1008 	return partition_count;
1009 }
1010 
1011 /*
1012  * If the caller of the PARTITION_INFO_GET ABI was a v1.0 caller, populate
1013  * the corresponding descriptor format from the v1.1 descriptor array.
1014  */
partition_info_populate_v1_0(struct ffa_partition_info_v1_1 * partitions,struct mailbox * mbox,int partition_count)1015 static uint64_t partition_info_populate_v1_0(struct ffa_partition_info_v1_1
1016 					     *partitions,
1017 					     struct mailbox *mbox,
1018 					     int partition_count)
1019 {
1020 	uint32_t index;
1021 	uint32_t buf_size;
1022 	uint32_t descriptor_size;
1023 	struct ffa_partition_info_v1_0 *v1_0_partitions =
1024 		(struct ffa_partition_info_v1_0 *) mbox->rx_buffer;
1025 
1026 	buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1027 	descriptor_size = partition_count *
1028 			  sizeof(struct ffa_partition_info_v1_0);
1029 
1030 	if (descriptor_size > buf_size) {
1031 		return FFA_ERROR_NO_MEMORY;
1032 	}
1033 
1034 	for (index = 0U; index < partition_count; index++) {
1035 		v1_0_partitions[index].ep_id = partitions[index].ep_id;
1036 		v1_0_partitions[index].execution_ctx_count =
1037 			partitions[index].execution_ctx_count;
1038 		/* Only report v1.0 properties. */
1039 		v1_0_partitions[index].properties =
1040 			(partitions[index].properties &
1041 			FFA_PARTITION_INFO_GET_PROPERTIES_V1_0_MASK);
1042 	}
1043 	return 0;
1044 }
1045 
1046 /*
1047  * Main handler for FFA_PARTITION_INFO_GET which supports both FF-A v1.1 and
1048  * v1.0 implementations.
1049  */
partition_info_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1050 static uint64_t partition_info_get_handler(uint32_t smc_fid,
1051 					   bool secure_origin,
1052 					   uint64_t x1,
1053 					   uint64_t x2,
1054 					   uint64_t x3,
1055 					   uint64_t x4,
1056 					   void *cookie,
1057 					   void *handle,
1058 					   uint64_t flags)
1059 {
1060 	int ret;
1061 	uint32_t partition_count = 0;
1062 	uint32_t size = 0;
1063 	uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1064 	struct mailbox *mbox;
1065 	uint64_t info_get_flags;
1066 	bool count_only;
1067 	uint32_t uuid[4];
1068 
1069 	uuid[0] = x1;
1070 	uuid[1] = x2;
1071 	uuid[2] = x3;
1072 	uuid[3] = x4;
1073 
1074 	/* Determine if the Partition descriptors should be populated. */
1075 	info_get_flags = SMC_GET_GP(handle, CTX_GPREG_X5);
1076 	count_only = (info_get_flags & FFA_PARTITION_INFO_GET_COUNT_FLAG_MASK);
1077 
1078 	/* Handle the case where we don't need to populate the descriptors. */
1079 	if (count_only) {
1080 		partition_count = partition_info_get_handler_count_only(uuid);
1081 		if (partition_count == 0) {
1082 			return spmc_ffa_error_return(handle,
1083 						FFA_ERROR_INVALID_PARAMETER);
1084 		}
1085 	} else {
1086 		struct ffa_partition_info_v1_1 partitions[MAX_SP_LP_PARTITIONS];
1087 
1088 		/*
1089 		 * Handle the case where the partition descriptors are required,
1090 		 * check we have the buffers available and populate the
1091 		 * appropriate structure version.
1092 		 */
1093 
1094 		/* Obtain the v1.1 format of the descriptors. */
1095 		ret = partition_info_get_handler_v1_1(uuid, partitions,
1096 						      MAX_SP_LP_PARTITIONS,
1097 						      &partition_count);
1098 
1099 		/* Check if an error occurred during discovery. */
1100 		if (ret != 0) {
1101 			goto err;
1102 		}
1103 
1104 		/* If we didn't find any matches the UUID is unknown. */
1105 		if (partition_count == 0) {
1106 			ret = FFA_ERROR_INVALID_PARAMETER;
1107 			goto err;
1108 		}
1109 
1110 		/* Obtain the partition mailbox RX/TX buffer pair descriptor. */
1111 		mbox = spmc_get_mbox_desc(secure_origin);
1112 
1113 		/*
1114 		 * If the caller has not bothered registering its RX/TX pair
1115 		 * then return an error code.
1116 		 */
1117 		spin_lock(&mbox->lock);
1118 		if (mbox->rx_buffer == NULL) {
1119 			ret = FFA_ERROR_BUSY;
1120 			goto err_unlock;
1121 		}
1122 
1123 		/* Ensure the RX buffer is currently free. */
1124 		if (mbox->state != MAILBOX_STATE_EMPTY) {
1125 			ret = FFA_ERROR_BUSY;
1126 			goto err_unlock;
1127 		}
1128 
1129 		/* Zero the RX buffer before populating. */
1130 		(void)memset(mbox->rx_buffer, 0,
1131 			     mbox->rxtx_page_count * FFA_PAGE_SIZE);
1132 
1133 		/*
1134 		 * Depending on the FF-A version of the requesting partition
1135 		 * we may need to convert to a v1.0 format otherwise we can copy
1136 		 * directly.
1137 		 */
1138 		if (ffa_version == MAKE_FFA_VERSION(U(1), U(0))) {
1139 			ret = partition_info_populate_v1_0(partitions,
1140 							   mbox,
1141 							   partition_count);
1142 			if (ret != 0) {
1143 				goto err_unlock;
1144 			}
1145 		} else {
1146 			uint32_t buf_size = mbox->rxtx_page_count *
1147 					    FFA_PAGE_SIZE;
1148 
1149 			/* Ensure the descriptor will fit in the buffer. */
1150 			size = sizeof(struct ffa_partition_info_v1_1);
1151 			if (partition_count * size  > buf_size) {
1152 				ret = FFA_ERROR_NO_MEMORY;
1153 				goto err_unlock;
1154 			}
1155 			memcpy(mbox->rx_buffer, partitions,
1156 			       partition_count * size);
1157 		}
1158 
1159 		mbox->state = MAILBOX_STATE_FULL;
1160 		spin_unlock(&mbox->lock);
1161 	}
1162 	SMC_RET4(handle, FFA_SUCCESS_SMC32, 0, partition_count, size);
1163 
1164 err_unlock:
1165 	spin_unlock(&mbox->lock);
1166 err:
1167 	return spmc_ffa_error_return(handle, ret);
1168 }
1169 
ffa_feature_success(void * handle,uint32_t arg2)1170 static uint64_t ffa_feature_success(void *handle, uint32_t arg2)
1171 {
1172 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, arg2);
1173 }
1174 
ffa_features_retrieve_request(bool secure_origin,uint32_t input_properties,void * handle)1175 static uint64_t ffa_features_retrieve_request(bool secure_origin,
1176 					      uint32_t input_properties,
1177 					      void *handle)
1178 {
1179 	/*
1180 	 * If we're called by the normal world we don't support any
1181 	 * additional features.
1182 	 */
1183 	if (!secure_origin) {
1184 		if ((input_properties & FFA_FEATURES_RET_REQ_NS_BIT) != 0U) {
1185 			return spmc_ffa_error_return(handle,
1186 						     FFA_ERROR_NOT_SUPPORTED);
1187 		}
1188 
1189 	} else {
1190 		struct secure_partition_desc *sp = spmc_get_current_sp_ctx();
1191 		/*
1192 		 * If v1.1 the NS bit must be set otherwise it is an invalid
1193 		 * call. If v1.0 check and store whether the SP has requested
1194 		 * the use of the NS bit.
1195 		 */
1196 		if (sp->ffa_version == MAKE_FFA_VERSION(1, 1)) {
1197 			if ((input_properties &
1198 			     FFA_FEATURES_RET_REQ_NS_BIT) == 0U) {
1199 				return spmc_ffa_error_return(handle,
1200 						       FFA_ERROR_NOT_SUPPORTED);
1201 			}
1202 			return ffa_feature_success(handle,
1203 						   FFA_FEATURES_RET_REQ_NS_BIT);
1204 		} else {
1205 			sp->ns_bit_requested = (input_properties &
1206 					       FFA_FEATURES_RET_REQ_NS_BIT) !=
1207 					       0U;
1208 		}
1209 		if (sp->ns_bit_requested) {
1210 			return ffa_feature_success(handle,
1211 						   FFA_FEATURES_RET_REQ_NS_BIT);
1212 		}
1213 	}
1214 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1215 }
1216 
ffa_features_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1217 static uint64_t ffa_features_handler(uint32_t smc_fid,
1218 				     bool secure_origin,
1219 				     uint64_t x1,
1220 				     uint64_t x2,
1221 				     uint64_t x3,
1222 				     uint64_t x4,
1223 				     void *cookie,
1224 				     void *handle,
1225 				     uint64_t flags)
1226 {
1227 	uint32_t function_id = (uint32_t) x1;
1228 	uint32_t input_properties = (uint32_t) x2;
1229 
1230 	/* Check if a Feature ID was requested. */
1231 	if ((function_id & FFA_FEATURES_BIT31_MASK) == 0U) {
1232 		/* We currently don't support any additional features. */
1233 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1234 	}
1235 
1236 	/*
1237 	 * Handle the cases where we have separate handlers due to additional
1238 	 * properties.
1239 	 */
1240 	switch (function_id) {
1241 	case FFA_MEM_RETRIEVE_REQ_SMC32:
1242 	case FFA_MEM_RETRIEVE_REQ_SMC64:
1243 		return ffa_features_retrieve_request(secure_origin,
1244 						     input_properties,
1245 						     handle);
1246 	}
1247 
1248 	/*
1249 	 * We don't currently support additional input properties for these
1250 	 * other ABIs therefore ensure this value is set to 0.
1251 	 */
1252 	if (input_properties != 0U) {
1253 		return spmc_ffa_error_return(handle,
1254 					     FFA_ERROR_NOT_SUPPORTED);
1255 	}
1256 
1257 	/* Report if any other FF-A ABI is supported. */
1258 	switch (function_id) {
1259 	/* Supported features from both worlds. */
1260 	case FFA_ERROR:
1261 	case FFA_SUCCESS_SMC32:
1262 	case FFA_INTERRUPT:
1263 	case FFA_SPM_ID_GET:
1264 	case FFA_ID_GET:
1265 	case FFA_FEATURES:
1266 	case FFA_VERSION:
1267 	case FFA_RX_RELEASE:
1268 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
1269 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
1270 	case FFA_PARTITION_INFO_GET:
1271 	case FFA_RXTX_MAP_SMC32:
1272 	case FFA_RXTX_MAP_SMC64:
1273 	case FFA_RXTX_UNMAP:
1274 	case FFA_MEM_FRAG_TX:
1275 	case FFA_MSG_RUN:
1276 
1277 		/*
1278 		 * We are relying on the fact that the other registers
1279 		 * will be set to 0 as these values align with the
1280 		 * currently implemented features of the SPMC. If this
1281 		 * changes this function must be extended to handle
1282 		 * reporting the additional functionality.
1283 		 */
1284 
1285 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1286 		/* Execution stops here. */
1287 
1288 	/* Supported ABIs only from the secure world. */
1289 	case FFA_SECONDARY_EP_REGISTER_SMC64:
1290 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
1291 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
1292 	case FFA_MEM_RELINQUISH:
1293 	case FFA_MSG_WAIT:
1294 	case FFA_CONSOLE_LOG_SMC32:
1295 	case FFA_CONSOLE_LOG_SMC64:
1296 
1297 		if (!secure_origin) {
1298 			return spmc_ffa_error_return(handle,
1299 				FFA_ERROR_NOT_SUPPORTED);
1300 		}
1301 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1302 		/* Execution stops here. */
1303 
1304 	/* Supported features only from the normal world. */
1305 	case FFA_MEM_SHARE_SMC32:
1306 	case FFA_MEM_SHARE_SMC64:
1307 	case FFA_MEM_LEND_SMC32:
1308 	case FFA_MEM_LEND_SMC64:
1309 	case FFA_MEM_RECLAIM:
1310 	case FFA_MEM_FRAG_RX:
1311 
1312 		if (secure_origin) {
1313 			return spmc_ffa_error_return(handle,
1314 					FFA_ERROR_NOT_SUPPORTED);
1315 		}
1316 		SMC_RET1(handle, FFA_SUCCESS_SMC32);
1317 		/* Execution stops here. */
1318 
1319 	default:
1320 		return spmc_ffa_error_return(handle,
1321 					FFA_ERROR_NOT_SUPPORTED);
1322 	}
1323 }
1324 
ffa_id_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1325 static uint64_t ffa_id_get_handler(uint32_t smc_fid,
1326 				   bool secure_origin,
1327 				   uint64_t x1,
1328 				   uint64_t x2,
1329 				   uint64_t x3,
1330 				   uint64_t x4,
1331 				   void *cookie,
1332 				   void *handle,
1333 				   uint64_t flags)
1334 {
1335 	if (secure_origin) {
1336 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1337 			 spmc_get_current_sp_ctx()->sp_id);
1338 	} else {
1339 		SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0,
1340 			 spmc_get_hyp_ctx()->ns_ep_id);
1341 	}
1342 }
1343 
1344 /*
1345  * Enable an SP to query the ID assigned to the SPMC.
1346  */
ffa_spm_id_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1347 static uint64_t ffa_spm_id_get_handler(uint32_t smc_fid,
1348 				       bool secure_origin,
1349 				       uint64_t x1,
1350 				       uint64_t x2,
1351 				       uint64_t x3,
1352 				       uint64_t x4,
1353 				       void *cookie,
1354 				       void *handle,
1355 				       uint64_t flags)
1356 {
1357 	assert(x1 == 0UL);
1358 	assert(x2 == 0UL);
1359 	assert(x3 == 0UL);
1360 	assert(x4 == 0UL);
1361 	assert(SMC_GET_GP(handle, CTX_GPREG_X5) == 0UL);
1362 	assert(SMC_GET_GP(handle, CTX_GPREG_X6) == 0UL);
1363 	assert(SMC_GET_GP(handle, CTX_GPREG_X7) == 0UL);
1364 
1365 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0x0, FFA_SPMC_ID);
1366 }
1367 
ffa_run_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1368 static uint64_t ffa_run_handler(uint32_t smc_fid,
1369 				bool secure_origin,
1370 				uint64_t x1,
1371 				uint64_t x2,
1372 				uint64_t x3,
1373 				uint64_t x4,
1374 				void *cookie,
1375 				void *handle,
1376 				uint64_t flags)
1377 {
1378 	struct secure_partition_desc *sp;
1379 	uint16_t target_id = FFA_RUN_EP_ID(x1);
1380 	uint16_t vcpu_id = FFA_RUN_VCPU_ID(x1);
1381 	unsigned int idx;
1382 	unsigned int *rt_state;
1383 	unsigned int *rt_model;
1384 
1385 	/* Can only be called from the normal world. */
1386 	if (secure_origin) {
1387 		ERROR("FFA_RUN can only be called from NWd.\n");
1388 		return spmc_ffa_error_return(handle,
1389 					     FFA_ERROR_INVALID_PARAMETER);
1390 	}
1391 
1392 	/* Cannot run a Normal world partition. */
1393 	if (ffa_is_normal_world_id(target_id)) {
1394 		ERROR("Cannot run a NWd partition (0x%x).\n", target_id);
1395 		return spmc_ffa_error_return(handle,
1396 					     FFA_ERROR_INVALID_PARAMETER);
1397 	}
1398 
1399 	/* Check that the target SP exists. */
1400 	sp = spmc_get_sp_ctx(target_id);
1401 	if (sp == NULL) {
1402 		ERROR("Unknown partition ID (0x%x).\n", target_id);
1403 		return spmc_ffa_error_return(handle,
1404 					     FFA_ERROR_INVALID_PARAMETER);
1405 	}
1406 
1407 	idx = get_ec_index(sp);
1408 
1409 	if (idx != vcpu_id) {
1410 		ERROR("Cannot run vcpu %d != %d.\n", idx, vcpu_id);
1411 		return spmc_ffa_error_return(handle,
1412 					     FFA_ERROR_INVALID_PARAMETER);
1413 	}
1414 	if (sp->runtime_el == S_EL0) {
1415 		spin_lock(&sp->rt_state_lock);
1416 	}
1417 	rt_state = &((sp->ec[idx]).rt_state);
1418 	rt_model = &((sp->ec[idx]).rt_model);
1419 	if (*rt_state == RT_STATE_RUNNING) {
1420 		if (sp->runtime_el == S_EL0) {
1421 			spin_unlock(&sp->rt_state_lock);
1422 		}
1423 		ERROR("Partition (0x%x) is already running.\n", target_id);
1424 		return spmc_ffa_error_return(handle, FFA_ERROR_BUSY);
1425 	}
1426 
1427 	/*
1428 	 * Sanity check that if the execution context was not waiting then it
1429 	 * was either in the direct request or the run partition runtime model.
1430 	 */
1431 	if (*rt_state == RT_STATE_PREEMPTED || *rt_state == RT_STATE_BLOCKED) {
1432 		assert(*rt_model == RT_MODEL_RUN ||
1433 		       *rt_model == RT_MODEL_DIR_REQ);
1434 	}
1435 
1436 	/*
1437 	 * If the context was waiting then update the partition runtime model.
1438 	 */
1439 	if (*rt_state == RT_STATE_WAITING) {
1440 		*rt_model = RT_MODEL_RUN;
1441 	}
1442 
1443 	/*
1444 	 * Forward the request to the correct SP vCPU after updating
1445 	 * its state.
1446 	 */
1447 	*rt_state = RT_STATE_RUNNING;
1448 
1449 	if (sp->runtime_el == S_EL0) {
1450 		spin_unlock(&sp->rt_state_lock);
1451 	}
1452 
1453 	return spmc_smc_return(smc_fid, secure_origin, x1, 0, 0, 0,
1454 			       handle, cookie, flags, target_id);
1455 }
1456 
rx_release_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1457 static uint64_t rx_release_handler(uint32_t smc_fid,
1458 				   bool secure_origin,
1459 				   uint64_t x1,
1460 				   uint64_t x2,
1461 				   uint64_t x3,
1462 				   uint64_t x4,
1463 				   void *cookie,
1464 				   void *handle,
1465 				   uint64_t flags)
1466 {
1467 	struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1468 
1469 	spin_lock(&mbox->lock);
1470 
1471 	if (mbox->state != MAILBOX_STATE_FULL) {
1472 		spin_unlock(&mbox->lock);
1473 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1474 	}
1475 
1476 	mbox->state = MAILBOX_STATE_EMPTY;
1477 	spin_unlock(&mbox->lock);
1478 
1479 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1480 }
1481 
spmc_ffa_console_log(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1482 static uint64_t spmc_ffa_console_log(uint32_t smc_fid,
1483 				     bool secure_origin,
1484 				     uint64_t x1,
1485 				     uint64_t x2,
1486 				     uint64_t x3,
1487 				     uint64_t x4,
1488 				     void *cookie,
1489 				     void *handle,
1490 				     uint64_t flags)
1491 {
1492 	/* Maximum number of characters is 48: 6 registers of 8 bytes each. */
1493 	char chars[48] = {0};
1494 	size_t chars_max;
1495 	size_t chars_count = x1;
1496 
1497 	/* Does not support request from Nwd. */
1498 	if (!secure_origin) {
1499 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1500 	}
1501 
1502 	assert(smc_fid == FFA_CONSOLE_LOG_SMC32 || smc_fid == FFA_CONSOLE_LOG_SMC64);
1503 	if (smc_fid == FFA_CONSOLE_LOG_SMC32) {
1504 		uint32_t *registers = (uint32_t *)chars;
1505 		registers[0] = (uint32_t)x2;
1506 		registers[1] = (uint32_t)x3;
1507 		registers[2] = (uint32_t)x4;
1508 		registers[3] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X5);
1509 		registers[4] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X6);
1510 		registers[5] = (uint32_t)SMC_GET_GP(handle, CTX_GPREG_X7);
1511 		chars_max = 6 * sizeof(uint32_t);
1512 	} else {
1513 		uint64_t *registers = (uint64_t *)chars;
1514 		registers[0] = x2;
1515 		registers[1] = x3;
1516 		registers[2] = x4;
1517 		registers[3] = SMC_GET_GP(handle, CTX_GPREG_X5);
1518 		registers[4] = SMC_GET_GP(handle, CTX_GPREG_X6);
1519 		registers[5] = SMC_GET_GP(handle, CTX_GPREG_X7);
1520 		chars_max = 6 * sizeof(uint64_t);
1521 	}
1522 
1523 	if ((chars_count == 0) || (chars_count > chars_max)) {
1524 		return spmc_ffa_error_return(handle, FFA_ERROR_INVALID_PARAMETER);
1525 	}
1526 
1527 	for (size_t i = 0; (i < chars_count) && (chars[i] != '\0'); i++) {
1528 		putchar(chars[i]);
1529 	}
1530 
1531 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1532 }
1533 
1534 /*
1535  * Perform initial validation on the provided secondary entry point.
1536  * For now ensure it does not lie within the BL31 Image or the SP's
1537  * RX/TX buffers as these are mapped within EL3.
1538  * TODO: perform validation for additional invalid memory regions.
1539  */
validate_secondary_ep(uintptr_t ep,struct secure_partition_desc * sp)1540 static int validate_secondary_ep(uintptr_t ep, struct secure_partition_desc *sp)
1541 {
1542 	struct mailbox *mb;
1543 	uintptr_t buffer_size;
1544 	uintptr_t sp_rx_buffer;
1545 	uintptr_t sp_tx_buffer;
1546 	uintptr_t sp_rx_buffer_limit;
1547 	uintptr_t sp_tx_buffer_limit;
1548 
1549 	mb = &sp->mailbox;
1550 	buffer_size = (uintptr_t) (mb->rxtx_page_count * FFA_PAGE_SIZE);
1551 	sp_rx_buffer = (uintptr_t) mb->rx_buffer;
1552 	sp_tx_buffer = (uintptr_t) mb->tx_buffer;
1553 	sp_rx_buffer_limit = sp_rx_buffer + buffer_size;
1554 	sp_tx_buffer_limit = sp_tx_buffer + buffer_size;
1555 
1556 	/*
1557 	 * Check if the entry point lies within BL31, or the
1558 	 * SP's RX or TX buffer.
1559 	 */
1560 	if ((ep >= BL31_BASE && ep < BL31_LIMIT) ||
1561 	    (ep >= sp_rx_buffer && ep < sp_rx_buffer_limit) ||
1562 	    (ep >= sp_tx_buffer && ep < sp_tx_buffer_limit)) {
1563 		return -EINVAL;
1564 	}
1565 	return 0;
1566 }
1567 
1568 /*******************************************************************************
1569  * This function handles the FFA_SECONDARY_EP_REGISTER SMC to allow an SP to
1570  *  register an entry point for initialization during a secondary cold boot.
1571  ******************************************************************************/
ffa_sec_ep_register_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1572 static uint64_t ffa_sec_ep_register_handler(uint32_t smc_fid,
1573 					    bool secure_origin,
1574 					    uint64_t x1,
1575 					    uint64_t x2,
1576 					    uint64_t x3,
1577 					    uint64_t x4,
1578 					    void *cookie,
1579 					    void *handle,
1580 					    uint64_t flags)
1581 {
1582 	struct secure_partition_desc *sp;
1583 	struct sp_exec_ctx *sp_ctx;
1584 
1585 	/* This request cannot originate from the Normal world. */
1586 	if (!secure_origin) {
1587 		WARN("%s: Can only be called from SWd.\n", __func__);
1588 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1589 	}
1590 
1591 	/* Get the context of the current SP. */
1592 	sp = spmc_get_current_sp_ctx();
1593 	if (sp == NULL) {
1594 		WARN("%s: Cannot find SP context.\n", __func__);
1595 		return spmc_ffa_error_return(handle,
1596 					     FFA_ERROR_INVALID_PARAMETER);
1597 	}
1598 
1599 	/* Only an S-EL1 SP should be invoking this ABI. */
1600 	if (sp->runtime_el != S_EL1) {
1601 		WARN("%s: Can only be called for a S-EL1 SP.\n", __func__);
1602 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1603 	}
1604 
1605 	/* Ensure the SP is in its initialization state. */
1606 	sp_ctx = spmc_get_sp_ec(sp);
1607 	if (sp_ctx->rt_model != RT_MODEL_INIT) {
1608 		WARN("%s: Can only be called during SP initialization.\n",
1609 		     __func__);
1610 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1611 	}
1612 
1613 	/* Perform initial validation of the secondary entry point. */
1614 	if (validate_secondary_ep(x1, sp)) {
1615 		WARN("%s: Invalid entry point provided (0x%lx).\n",
1616 		     __func__, x1);
1617 		return spmc_ffa_error_return(handle,
1618 					     FFA_ERROR_INVALID_PARAMETER);
1619 	}
1620 
1621 	/*
1622 	 * Update the secondary entrypoint in SP context.
1623 	 * We don't need a lock here as during partition initialization there
1624 	 * will only be a single core online.
1625 	 */
1626 	sp->secondary_ep = x1;
1627 	VERBOSE("%s: 0x%lx\n", __func__, sp->secondary_ep);
1628 
1629 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1630 }
1631 
1632 /*******************************************************************************
1633  * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs
1634  * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This
1635  * function converts a permission value from the FF-A format to the mmap_attr_t
1636  * format by setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and
1637  * MT_EXECUTE/MT_EXECUTE_NEVER. The other fields are left as 0 because they are
1638  * ignored by the function xlat_change_mem_attributes_ctx().
1639  ******************************************************************************/
ffa_perm_to_mmap_perm(unsigned int perms)1640 static unsigned int ffa_perm_to_mmap_perm(unsigned int perms)
1641 {
1642 	unsigned int tf_attr = 0U;
1643 	unsigned int access;
1644 
1645 	/* Deal with data access permissions first. */
1646 	access = (perms & FFA_MEM_PERM_DATA_MASK) >> FFA_MEM_PERM_DATA_SHIFT;
1647 
1648 	switch (access) {
1649 	case FFA_MEM_PERM_DATA_RW:
1650 		/* Return 0 if the execute is set with RW. */
1651 		if ((perms & FFA_MEM_PERM_INST_NON_EXEC) != 0) {
1652 			tf_attr |= MT_RW | MT_USER | MT_EXECUTE_NEVER;
1653 		}
1654 		break;
1655 
1656 	case FFA_MEM_PERM_DATA_RO:
1657 		tf_attr |= MT_RO | MT_USER;
1658 		/* Deal with the instruction access permissions next. */
1659 		if ((perms & FFA_MEM_PERM_INST_NON_EXEC) == 0) {
1660 			tf_attr |= MT_EXECUTE;
1661 		} else {
1662 			tf_attr |= MT_EXECUTE_NEVER;
1663 		}
1664 		break;
1665 
1666 	case FFA_MEM_PERM_DATA_NA:
1667 	default:
1668 		return tf_attr;
1669 	}
1670 
1671 	return tf_attr;
1672 }
1673 
1674 /*******************************************************************************
1675  * Handler to set the permissions of a set of contiguous pages of a S-EL0 SP
1676  ******************************************************************************/
ffa_mem_perm_set_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1677 static uint64_t ffa_mem_perm_set_handler(uint32_t smc_fid,
1678 					 bool secure_origin,
1679 					 uint64_t x1,
1680 					 uint64_t x2,
1681 					 uint64_t x3,
1682 					 uint64_t x4,
1683 					 void *cookie,
1684 					 void *handle,
1685 					 uint64_t flags)
1686 {
1687 	struct secure_partition_desc *sp;
1688 	unsigned int idx;
1689 	uintptr_t base_va = (uintptr_t) x1;
1690 	size_t size = (size_t)(x2 * PAGE_SIZE);
1691 	uint32_t tf_attr;
1692 	int ret;
1693 
1694 	/* This request cannot originate from the Normal world. */
1695 	if (!secure_origin) {
1696 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1697 	}
1698 
1699 	if (size == 0) {
1700 		return spmc_ffa_error_return(handle,
1701 					     FFA_ERROR_INVALID_PARAMETER);
1702 	}
1703 
1704 	/* Get the context of the current SP. */
1705 	sp = spmc_get_current_sp_ctx();
1706 	if (sp == NULL) {
1707 		return spmc_ffa_error_return(handle,
1708 					     FFA_ERROR_INVALID_PARAMETER);
1709 	}
1710 
1711 	/* A S-EL1 SP has no business invoking this ABI. */
1712 	if (sp->runtime_el == S_EL1) {
1713 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1714 	}
1715 
1716 	if ((x3 & ~((uint64_t)FFA_MEM_PERM_MASK)) != 0) {
1717 		return spmc_ffa_error_return(handle,
1718 					     FFA_ERROR_INVALID_PARAMETER);
1719 	}
1720 
1721 	/* Get the execution context of the calling SP. */
1722 	idx = get_ec_index(sp);
1723 
1724 	/*
1725 	 * Ensure that the S-EL0 SP is initialising itself. We do not need to
1726 	 * synchronise this operation through a spinlock since a S-EL0 SP is UP
1727 	 * and can only be initialising on this cpu.
1728 	 */
1729 	if (sp->ec[idx].rt_model != RT_MODEL_INIT) {
1730 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1731 	}
1732 
1733 	VERBOSE("Setting memory permissions:\n");
1734 	VERBOSE("  Start address  : 0x%lx\n", base_va);
1735 	VERBOSE("  Number of pages: %lu (%zu bytes)\n", x2, size);
1736 	VERBOSE("  Attributes     : 0x%x\n", (uint32_t)x3);
1737 
1738 	/* Convert inbound permissions to TF-A permission attributes */
1739 	tf_attr = ffa_perm_to_mmap_perm((unsigned int)x3);
1740 	if (tf_attr == 0U) {
1741 		return spmc_ffa_error_return(handle,
1742 					     FFA_ERROR_INVALID_PARAMETER);
1743 	}
1744 
1745 	/* Request the change in permissions */
1746 	ret = xlat_change_mem_attributes_ctx(sp->xlat_ctx_handle,
1747 					     base_va, size, tf_attr);
1748 	if (ret != 0) {
1749 		return spmc_ffa_error_return(handle,
1750 					     FFA_ERROR_INVALID_PARAMETER);
1751 	}
1752 
1753 	SMC_RET1(handle, FFA_SUCCESS_SMC32);
1754 }
1755 
1756 /*******************************************************************************
1757  * Permissions are encoded using a different format in the FFA_MEM_PERM_* ABIs
1758  * than in the Trusted Firmware, where the mmap_attr_t enum type is used. This
1759  * function converts a permission value from the mmap_attr_t format to the FF-A
1760  * format.
1761  ******************************************************************************/
mmap_perm_to_ffa_perm(unsigned int attr)1762 static unsigned int mmap_perm_to_ffa_perm(unsigned int attr)
1763 {
1764 	unsigned int perms = 0U;
1765 	unsigned int data_access;
1766 
1767 	if ((attr & MT_USER) == 0) {
1768 		/* No access from EL0. */
1769 		data_access = FFA_MEM_PERM_DATA_NA;
1770 	} else {
1771 		if ((attr & MT_RW) != 0) {
1772 			data_access = FFA_MEM_PERM_DATA_RW;
1773 		} else {
1774 			data_access = FFA_MEM_PERM_DATA_RO;
1775 		}
1776 	}
1777 
1778 	perms |= (data_access & FFA_MEM_PERM_DATA_MASK)
1779 		<< FFA_MEM_PERM_DATA_SHIFT;
1780 
1781 	if ((attr & MT_EXECUTE_NEVER) != 0U) {
1782 		perms |= FFA_MEM_PERM_INST_NON_EXEC;
1783 	}
1784 
1785 	return perms;
1786 }
1787 
1788 /*******************************************************************************
1789  * Handler to get the permissions of a set of contiguous pages of a S-EL0 SP
1790  ******************************************************************************/
ffa_mem_perm_get_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)1791 static uint64_t ffa_mem_perm_get_handler(uint32_t smc_fid,
1792 					 bool secure_origin,
1793 					 uint64_t x1,
1794 					 uint64_t x2,
1795 					 uint64_t x3,
1796 					 uint64_t x4,
1797 					 void *cookie,
1798 					 void *handle,
1799 					 uint64_t flags)
1800 {
1801 	struct secure_partition_desc *sp;
1802 	unsigned int idx;
1803 	uintptr_t base_va = (uintptr_t)x1;
1804 	uint32_t tf_attr = 0;
1805 	int ret;
1806 
1807 	/* This request cannot originate from the Normal world. */
1808 	if (!secure_origin) {
1809 		return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
1810 	}
1811 
1812 	/* Get the context of the current SP. */
1813 	sp = spmc_get_current_sp_ctx();
1814 	if (sp == NULL) {
1815 		return spmc_ffa_error_return(handle,
1816 					     FFA_ERROR_INVALID_PARAMETER);
1817 	}
1818 
1819 	/* A S-EL1 SP has no business invoking this ABI. */
1820 	if (sp->runtime_el == S_EL1) {
1821 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1822 	}
1823 
1824 	/* Get the execution context of the calling SP. */
1825 	idx = get_ec_index(sp);
1826 
1827 	/*
1828 	 * Ensure that the S-EL0 SP is initialising itself. We do not need to
1829 	 * synchronise this operation through a spinlock since a S-EL0 SP is UP
1830 	 * and can only be initialising on this cpu.
1831 	 */
1832 	if (sp->ec[idx].rt_model != RT_MODEL_INIT) {
1833 		return spmc_ffa_error_return(handle, FFA_ERROR_DENIED);
1834 	}
1835 
1836 	/* Request the permissions */
1837 	ret = xlat_get_mem_attributes_ctx(sp->xlat_ctx_handle, base_va, &tf_attr);
1838 	if (ret != 0) {
1839 		return spmc_ffa_error_return(handle,
1840 					     FFA_ERROR_INVALID_PARAMETER);
1841 	}
1842 
1843 	/* Convert TF-A permission to FF-A permissions attributes. */
1844 	x2 = mmap_perm_to_ffa_perm(tf_attr);
1845 
1846 	SMC_RET3(handle, FFA_SUCCESS_SMC32, 0, x2);
1847 }
1848 
1849 /*******************************************************************************
1850  * This function will parse the Secure Partition Manifest. From manifest, it
1851  * will fetch details for preparing Secure partition image context and secure
1852  * partition image boot arguments if any.
1853  ******************************************************************************/
sp_manifest_parse(void * sp_manifest,int offset,struct secure_partition_desc * sp,entry_point_info_t * ep_info,int32_t * boot_info_reg)1854 static int sp_manifest_parse(void *sp_manifest, int offset,
1855 			     struct secure_partition_desc *sp,
1856 			     entry_point_info_t *ep_info,
1857 			     int32_t *boot_info_reg)
1858 {
1859 	int32_t ret, node;
1860 	uint32_t config_32;
1861 
1862 	/*
1863 	 * Look for the mandatory fields that are expected to be present in
1864 	 * the SP manifests.
1865 	 */
1866 	node = fdt_path_offset(sp_manifest, "/");
1867 	if (node < 0) {
1868 		ERROR("Did not find root node.\n");
1869 		return node;
1870 	}
1871 
1872 	ret = fdt_read_uint32_array(sp_manifest, node, "uuid",
1873 				    ARRAY_SIZE(sp->uuid), sp->uuid);
1874 	if (ret != 0) {
1875 		ERROR("Missing Secure Partition UUID.\n");
1876 		return ret;
1877 	}
1878 
1879 	ret = fdt_read_uint32(sp_manifest, node, "exception-level", &config_32);
1880 	if (ret != 0) {
1881 		ERROR("Missing SP Exception Level information.\n");
1882 		return ret;
1883 	}
1884 
1885 	sp->runtime_el = config_32;
1886 
1887 	ret = fdt_read_uint32(sp_manifest, node, "ffa-version", &config_32);
1888 	if (ret != 0) {
1889 		ERROR("Missing Secure Partition FF-A Version.\n");
1890 		return ret;
1891 	}
1892 
1893 	sp->ffa_version = config_32;
1894 
1895 	ret = fdt_read_uint32(sp_manifest, node, "execution-state", &config_32);
1896 	if (ret != 0) {
1897 		ERROR("Missing Secure Partition Execution State.\n");
1898 		return ret;
1899 	}
1900 
1901 	sp->execution_state = config_32;
1902 
1903 	ret = fdt_read_uint32(sp_manifest, node,
1904 			      "messaging-method", &config_32);
1905 	if (ret != 0) {
1906 		ERROR("Missing Secure Partition messaging method.\n");
1907 		return ret;
1908 	}
1909 
1910 	/* Validate this entry, we currently only support direct messaging. */
1911 	if ((config_32 & ~(FFA_PARTITION_DIRECT_REQ_RECV |
1912 			  FFA_PARTITION_DIRECT_REQ_SEND)) != 0U) {
1913 		WARN("Invalid Secure Partition messaging method (0x%x)\n",
1914 		     config_32);
1915 		return -EINVAL;
1916 	}
1917 
1918 	sp->properties = config_32;
1919 
1920 	ret = fdt_read_uint32(sp_manifest, node,
1921 			      "execution-ctx-count", &config_32);
1922 
1923 	if (ret != 0) {
1924 		ERROR("Missing SP Execution Context Count.\n");
1925 		return ret;
1926 	}
1927 
1928 	/*
1929 	 * Ensure this field is set correctly in the manifest however
1930 	 * since this is currently a hardcoded value for S-EL1 partitions
1931 	 * we don't need to save it here, just validate.
1932 	 */
1933 	if ((sp->runtime_el == S_EL1) && (config_32 != PLATFORM_CORE_COUNT)) {
1934 		ERROR("SP Execution Context Count (%u) must be %u.\n",
1935 			config_32, PLATFORM_CORE_COUNT);
1936 		return -EINVAL;
1937 	}
1938 
1939 	/*
1940 	 * Look for the optional fields that are expected to be present in
1941 	 * an SP manifest.
1942 	 */
1943 	ret = fdt_read_uint32(sp_manifest, node, "id", &config_32);
1944 	if (ret != 0) {
1945 		WARN("Missing Secure Partition ID.\n");
1946 	} else {
1947 		if (!is_ffa_secure_id_valid(config_32)) {
1948 			ERROR("Invalid Secure Partition ID (0x%x).\n",
1949 			      config_32);
1950 			return -EINVAL;
1951 		}
1952 		sp->sp_id = config_32;
1953 	}
1954 
1955 	ret = fdt_read_uint32(sp_manifest, node,
1956 			      "power-management-messages", &config_32);
1957 	if (ret != 0) {
1958 		WARN("Missing Power Management Messages entry.\n");
1959 	} else {
1960 		if ((sp->runtime_el == S_EL0) && (config_32 != 0)) {
1961 			ERROR("Power messages not supported for S-EL0 SP\n");
1962 			return -EINVAL;
1963 		}
1964 
1965 		/*
1966 		 * Ensure only the currently supported power messages have
1967 		 * been requested.
1968 		 */
1969 		if (config_32 & ~(FFA_PM_MSG_SUB_CPU_OFF |
1970 				  FFA_PM_MSG_SUB_CPU_SUSPEND |
1971 				  FFA_PM_MSG_SUB_CPU_SUSPEND_RESUME)) {
1972 			ERROR("Requested unsupported PM messages (%x)\n",
1973 			      config_32);
1974 			return -EINVAL;
1975 		}
1976 		sp->pwr_mgmt_msgs = config_32;
1977 	}
1978 
1979 	ret = fdt_read_uint32(sp_manifest, node,
1980 			      "gp-register-num", &config_32);
1981 	if (ret != 0) {
1982 		WARN("Missing boot information register.\n");
1983 	} else {
1984 		/* Check if a register number between 0-3 is specified. */
1985 		if (config_32 < 4) {
1986 			*boot_info_reg = config_32;
1987 		} else {
1988 			WARN("Incorrect boot information register (%u).\n",
1989 			     config_32);
1990 		}
1991 	}
1992 
1993 	return 0;
1994 }
1995 
1996 /*******************************************************************************
1997  * This function gets the Secure Partition Manifest base and maps the manifest
1998  * region.
1999  * Currently only one Secure Partition manifest is considered which is used to
2000  * prepare the context for the single Secure Partition.
2001  ******************************************************************************/
find_and_prepare_sp_context(void)2002 static int find_and_prepare_sp_context(void)
2003 {
2004 	void *sp_manifest;
2005 	uintptr_t manifest_base;
2006 	uintptr_t manifest_base_align;
2007 	entry_point_info_t *next_image_ep_info;
2008 	int32_t ret, boot_info_reg = -1;
2009 	struct secure_partition_desc *sp;
2010 
2011 	next_image_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
2012 	if (next_image_ep_info == NULL) {
2013 		WARN("No Secure Partition image provided by BL2.\n");
2014 		return -ENOENT;
2015 	}
2016 
2017 	sp_manifest = (void *)next_image_ep_info->args.arg0;
2018 	if (sp_manifest == NULL) {
2019 		WARN("Secure Partition manifest absent.\n");
2020 		return -ENOENT;
2021 	}
2022 
2023 	manifest_base = (uintptr_t)sp_manifest;
2024 	manifest_base_align = page_align(manifest_base, DOWN);
2025 
2026 	/*
2027 	 * Map the secure partition manifest region in the EL3 translation
2028 	 * regime.
2029 	 * Map an area equal to (2 * PAGE_SIZE) for now. During manifest base
2030 	 * alignment the region of 1 PAGE_SIZE from manifest align base may
2031 	 * not completely accommodate the secure partition manifest region.
2032 	 */
2033 	ret = mmap_add_dynamic_region((unsigned long long)manifest_base_align,
2034 				      manifest_base_align,
2035 				      PAGE_SIZE * 2,
2036 				      MT_RO_DATA);
2037 	if (ret != 0) {
2038 		ERROR("Error while mapping SP manifest (%d).\n", ret);
2039 		return ret;
2040 	}
2041 
2042 	ret = fdt_node_offset_by_compatible(sp_manifest, -1,
2043 					    "arm,ffa-manifest-1.0");
2044 	if (ret < 0) {
2045 		ERROR("Error happened in SP manifest reading.\n");
2046 		return -EINVAL;
2047 	}
2048 
2049 	/*
2050 	 * Store the size of the manifest so that it can be used later to pass
2051 	 * the manifest as boot information later.
2052 	 */
2053 	next_image_ep_info->args.arg1 = fdt_totalsize(sp_manifest);
2054 	INFO("Manifest adr = %lx , size = %lu bytes\n", manifest_base,
2055 	     next_image_ep_info->args.arg1);
2056 
2057 	/*
2058 	 * Select an SP descriptor for initialising the partition's execution
2059 	 * context on the primary CPU.
2060 	 */
2061 	sp = spmc_get_current_sp_ctx();
2062 
2063 #if SPMC_AT_EL3_SEL0_SP
2064 	/* Assign translation tables context. */
2065 	sp_desc->xlat_ctx_handle = spm_get_sp_xlat_context();
2066 
2067 #endif /* SPMC_AT_EL3_SEL0_SP */
2068 	/* Initialize entry point information for the SP */
2069 	SET_PARAM_HEAD(next_image_ep_info, PARAM_EP, VERSION_1,
2070 		       SECURE | EP_ST_ENABLE);
2071 
2072 	/* Parse the SP manifest. */
2073 	ret = sp_manifest_parse(sp_manifest, ret, sp, next_image_ep_info,
2074 				&boot_info_reg);
2075 	if (ret != 0) {
2076 		ERROR("Error in Secure Partition manifest parsing.\n");
2077 		return ret;
2078 	}
2079 
2080 	/* Check that the runtime EL in the manifest was correct. */
2081 	if (sp->runtime_el != S_EL0 && sp->runtime_el != S_EL1) {
2082 		ERROR("Unexpected runtime EL: %d\n", sp->runtime_el);
2083 		return -EINVAL;
2084 	}
2085 
2086 	/* Perform any common initialisation. */
2087 	spmc_sp_common_setup(sp, next_image_ep_info, boot_info_reg);
2088 
2089 	/* Perform any initialisation specific to S-EL1 SPs. */
2090 	if (sp->runtime_el == S_EL1) {
2091 		spmc_el1_sp_setup(sp, next_image_ep_info);
2092 	}
2093 
2094 #if SPMC_AT_EL3_SEL0_SP
2095 	/* Setup spsr in endpoint info for common context management routine. */
2096 	if (sp->runtime_el == S_EL0) {
2097 		spmc_el0_sp_spsr_setup(next_image_ep_info);
2098 	}
2099 #endif /* SPMC_AT_EL3_SEL0_SP */
2100 
2101 	/* Initialize the SP context with the required ep info. */
2102 	spmc_sp_common_ep_commit(sp, next_image_ep_info);
2103 
2104 #if SPMC_AT_EL3_SEL0_SP
2105 	/*
2106 	 * Perform any initialisation specific to S-EL0 not set by common
2107 	 * context management routine.
2108 	 */
2109 	if (sp->runtime_el == S_EL0) {
2110 		spmc_el0_sp_setup(sp, boot_info_reg, sp_manifest);
2111 	}
2112 #endif /* SPMC_AT_EL3_SEL0_SP */
2113 	return 0;
2114 }
2115 
2116 /*******************************************************************************
2117  * This function takes an SP context pointer and performs a synchronous entry
2118  * into it.
2119  ******************************************************************************/
logical_sp_init(void)2120 static int32_t logical_sp_init(void)
2121 {
2122 	int32_t rc = 0;
2123 	struct el3_lp_desc *el3_lp_descs;
2124 
2125 	/* Perform initial validation of the Logical Partitions. */
2126 	rc = el3_sp_desc_validate();
2127 	if (rc != 0) {
2128 		ERROR("Logical Partition validation failed!\n");
2129 		return rc;
2130 	}
2131 
2132 	el3_lp_descs = get_el3_lp_array();
2133 
2134 	INFO("Logical Secure Partition init start.\n");
2135 	for (unsigned int i = 0U; i < EL3_LP_DESCS_COUNT; i++) {
2136 		rc = el3_lp_descs[i].init();
2137 		if (rc != 0) {
2138 			ERROR("Logical SP (0x%x) Failed to Initialize\n",
2139 			      el3_lp_descs[i].sp_id);
2140 			return rc;
2141 		}
2142 		VERBOSE("Logical SP (0x%x) Initialized\n",
2143 			      el3_lp_descs[i].sp_id);
2144 	}
2145 
2146 	INFO("Logical Secure Partition init completed.\n");
2147 
2148 	return rc;
2149 }
2150 
spmc_sp_synchronous_entry(struct sp_exec_ctx * ec)2151 uint64_t spmc_sp_synchronous_entry(struct sp_exec_ctx *ec)
2152 {
2153 	uint64_t rc;
2154 
2155 	assert(ec != NULL);
2156 
2157 	/* Assign the context of the SP to this CPU */
2158 	cm_set_context(&(ec->cpu_ctx), SECURE);
2159 
2160 	/* Restore the context assigned above */
2161 	cm_el1_sysregs_context_restore(SECURE);
2162 	cm_set_next_eret_context(SECURE);
2163 
2164 	/* Invalidate TLBs at EL1. */
2165 	tlbivmalle1();
2166 	dsbish();
2167 
2168 	/* Enter Secure Partition */
2169 	rc = spm_secure_partition_enter(&ec->c_rt_ctx);
2170 
2171 	/* Save secure state */
2172 	cm_el1_sysregs_context_save(SECURE);
2173 
2174 	return rc;
2175 }
2176 
2177 /*******************************************************************************
2178  * SPMC Helper Functions.
2179  ******************************************************************************/
sp_init(void)2180 static int32_t sp_init(void)
2181 {
2182 	uint64_t rc;
2183 	struct secure_partition_desc *sp;
2184 	struct sp_exec_ctx *ec;
2185 
2186 	sp = spmc_get_current_sp_ctx();
2187 	ec = spmc_get_sp_ec(sp);
2188 	ec->rt_model = RT_MODEL_INIT;
2189 	ec->rt_state = RT_STATE_RUNNING;
2190 
2191 	INFO("Secure Partition (0x%x) init start.\n", sp->sp_id);
2192 
2193 	rc = spmc_sp_synchronous_entry(ec);
2194 	if (rc != 0) {
2195 		/* Indicate SP init was not successful. */
2196 		ERROR("SP (0x%x) failed to initialize (%lu).\n",
2197 		      sp->sp_id, rc);
2198 		return 0;
2199 	}
2200 
2201 	ec->rt_state = RT_STATE_WAITING;
2202 	INFO("Secure Partition initialized.\n");
2203 
2204 	return 1;
2205 }
2206 
initalize_sp_descs(void)2207 static void initalize_sp_descs(void)
2208 {
2209 	struct secure_partition_desc *sp;
2210 
2211 	for (unsigned int i = 0U; i < SECURE_PARTITION_COUNT; i++) {
2212 		sp = &sp_desc[i];
2213 		sp->sp_id = INV_SP_ID;
2214 		sp->mailbox.rx_buffer = NULL;
2215 		sp->mailbox.tx_buffer = NULL;
2216 		sp->mailbox.state = MAILBOX_STATE_EMPTY;
2217 		sp->secondary_ep = 0;
2218 	}
2219 }
2220 
initalize_ns_ep_descs(void)2221 static void initalize_ns_ep_descs(void)
2222 {
2223 	struct ns_endpoint_desc *ns_ep;
2224 
2225 	for (unsigned int i = 0U; i < NS_PARTITION_COUNT; i++) {
2226 		ns_ep = &ns_ep_desc[i];
2227 		/*
2228 		 * Clashes with the Hypervisor ID but will not be a
2229 		 * problem in practice.
2230 		 */
2231 		ns_ep->ns_ep_id = 0;
2232 		ns_ep->ffa_version = 0;
2233 		ns_ep->mailbox.rx_buffer = NULL;
2234 		ns_ep->mailbox.tx_buffer = NULL;
2235 		ns_ep->mailbox.state = MAILBOX_STATE_EMPTY;
2236 	}
2237 }
2238 
2239 /*******************************************************************************
2240  * Initialize SPMC attributes for the SPMD.
2241  ******************************************************************************/
spmc_populate_attrs(spmc_manifest_attribute_t * spmc_attrs)2242 void spmc_populate_attrs(spmc_manifest_attribute_t *spmc_attrs)
2243 {
2244 	spmc_attrs->major_version = FFA_VERSION_MAJOR;
2245 	spmc_attrs->minor_version = FFA_VERSION_MINOR;
2246 	spmc_attrs->exec_state = MODE_RW_64;
2247 	spmc_attrs->spmc_id = FFA_SPMC_ID;
2248 }
2249 
2250 /*******************************************************************************
2251  * Initialize contexts of all Secure Partitions.
2252  ******************************************************************************/
spmc_setup(void)2253 int32_t spmc_setup(void)
2254 {
2255 	int32_t ret;
2256 	uint32_t flags;
2257 
2258 	/* Initialize endpoint descriptors */
2259 	initalize_sp_descs();
2260 	initalize_ns_ep_descs();
2261 
2262 	/*
2263 	 * Retrieve the information of the datastore for tracking shared memory
2264 	 * requests allocated by platform code and zero the region if available.
2265 	 */
2266 	ret = plat_spmc_shmem_datastore_get(&spmc_shmem_obj_state.data,
2267 					    &spmc_shmem_obj_state.data_size);
2268 	if (ret != 0) {
2269 		ERROR("Failed to obtain memory descriptor backing store!\n");
2270 		return ret;
2271 	}
2272 	memset(spmc_shmem_obj_state.data, 0, spmc_shmem_obj_state.data_size);
2273 
2274 	/* Setup logical SPs. */
2275 	ret = logical_sp_init();
2276 	if (ret != 0) {
2277 		ERROR("Failed to initialize Logical Partitions.\n");
2278 		return ret;
2279 	}
2280 
2281 	/* Perform physical SP setup. */
2282 
2283 	/* Disable MMU at EL1 (initialized by BL2) */
2284 	disable_mmu_icache_el1();
2285 
2286 	/* Initialize context of the SP */
2287 	INFO("Secure Partition context setup start.\n");
2288 
2289 	ret = find_and_prepare_sp_context();
2290 	if (ret != 0) {
2291 		ERROR("Error in SP finding and context preparation.\n");
2292 		return ret;
2293 	}
2294 
2295 	/* Register power management hooks with PSCI */
2296 	psci_register_spd_pm_hook(&spmc_pm);
2297 
2298 	/*
2299 	 * Register an interrupt handler for S-EL1 interrupts
2300 	 * when generated during code executing in the
2301 	 * non-secure state.
2302 	 */
2303 	flags = 0;
2304 	set_interrupt_rm_flag(flags, NON_SECURE);
2305 	ret = register_interrupt_type_handler(INTR_TYPE_S_EL1,
2306 					      spmc_sp_interrupt_handler,
2307 					      flags);
2308 	if (ret != 0) {
2309 		ERROR("Failed to register interrupt handler! (%d)\n", ret);
2310 		panic();
2311 	}
2312 
2313 	/* Register init function for deferred init.  */
2314 	bl31_register_bl32_init(&sp_init);
2315 
2316 	INFO("Secure Partition setup done.\n");
2317 
2318 	return 0;
2319 }
2320 
2321 /*******************************************************************************
2322  * Secure Partition Manager SMC handler.
2323  ******************************************************************************/
spmc_smc_handler(uint32_t smc_fid,bool secure_origin,uint64_t x1,uint64_t x2,uint64_t x3,uint64_t x4,void * cookie,void * handle,uint64_t flags)2324 uint64_t spmc_smc_handler(uint32_t smc_fid,
2325 			  bool secure_origin,
2326 			  uint64_t x1,
2327 			  uint64_t x2,
2328 			  uint64_t x3,
2329 			  uint64_t x4,
2330 			  void *cookie,
2331 			  void *handle,
2332 			  uint64_t flags)
2333 {
2334 	switch (smc_fid) {
2335 
2336 	case FFA_VERSION:
2337 		return ffa_version_handler(smc_fid, secure_origin, x1, x2, x3,
2338 					   x4, cookie, handle, flags);
2339 
2340 	case FFA_SPM_ID_GET:
2341 		return ffa_spm_id_get_handler(smc_fid, secure_origin, x1, x2,
2342 					     x3, x4, cookie, handle, flags);
2343 
2344 	case FFA_ID_GET:
2345 		return ffa_id_get_handler(smc_fid, secure_origin, x1, x2, x3,
2346 					  x4, cookie, handle, flags);
2347 
2348 	case FFA_FEATURES:
2349 		return ffa_features_handler(smc_fid, secure_origin, x1, x2, x3,
2350 					    x4, cookie, handle, flags);
2351 
2352 	case FFA_SECONDARY_EP_REGISTER_SMC64:
2353 		return ffa_sec_ep_register_handler(smc_fid, secure_origin, x1,
2354 						   x2, x3, x4, cookie, handle,
2355 						   flags);
2356 
2357 	case FFA_MSG_SEND_DIRECT_REQ_SMC32:
2358 	case FFA_MSG_SEND_DIRECT_REQ_SMC64:
2359 		return direct_req_smc_handler(smc_fid, secure_origin, x1, x2,
2360 					      x3, x4, cookie, handle, flags);
2361 
2362 	case FFA_MSG_SEND_DIRECT_RESP_SMC32:
2363 	case FFA_MSG_SEND_DIRECT_RESP_SMC64:
2364 		return direct_resp_smc_handler(smc_fid, secure_origin, x1, x2,
2365 					       x3, x4, cookie, handle, flags);
2366 
2367 	case FFA_RXTX_MAP_SMC32:
2368 	case FFA_RXTX_MAP_SMC64:
2369 		return rxtx_map_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2370 					cookie, handle, flags);
2371 
2372 	case FFA_RXTX_UNMAP:
2373 		return rxtx_unmap_handler(smc_fid, secure_origin, x1, x2, x3,
2374 					  x4, cookie, handle, flags);
2375 
2376 	case FFA_PARTITION_INFO_GET:
2377 		return partition_info_get_handler(smc_fid, secure_origin, x1,
2378 						  x2, x3, x4, cookie, handle,
2379 						  flags);
2380 
2381 	case FFA_RX_RELEASE:
2382 		return rx_release_handler(smc_fid, secure_origin, x1, x2, x3,
2383 					  x4, cookie, handle, flags);
2384 
2385 	case FFA_MSG_WAIT:
2386 		return msg_wait_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2387 					cookie, handle, flags);
2388 
2389 	case FFA_ERROR:
2390 		return ffa_error_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2391 					cookie, handle, flags);
2392 
2393 	case FFA_MSG_RUN:
2394 		return ffa_run_handler(smc_fid, secure_origin, x1, x2, x3, x4,
2395 				       cookie, handle, flags);
2396 
2397 	case FFA_MEM_SHARE_SMC32:
2398 	case FFA_MEM_SHARE_SMC64:
2399 	case FFA_MEM_LEND_SMC32:
2400 	case FFA_MEM_LEND_SMC64:
2401 		return spmc_ffa_mem_send(smc_fid, secure_origin, x1, x2, x3, x4,
2402 					 cookie, handle, flags);
2403 
2404 	case FFA_MEM_FRAG_TX:
2405 		return spmc_ffa_mem_frag_tx(smc_fid, secure_origin, x1, x2, x3,
2406 					    x4, cookie, handle, flags);
2407 
2408 	case FFA_MEM_FRAG_RX:
2409 		return spmc_ffa_mem_frag_rx(smc_fid, secure_origin, x1, x2, x3,
2410 					    x4, cookie, handle, flags);
2411 
2412 	case FFA_MEM_RETRIEVE_REQ_SMC32:
2413 	case FFA_MEM_RETRIEVE_REQ_SMC64:
2414 		return spmc_ffa_mem_retrieve_req(smc_fid, secure_origin, x1, x2,
2415 						 x3, x4, cookie, handle, flags);
2416 
2417 	case FFA_MEM_RELINQUISH:
2418 		return spmc_ffa_mem_relinquish(smc_fid, secure_origin, x1, x2,
2419 					       x3, x4, cookie, handle, flags);
2420 
2421 	case FFA_MEM_RECLAIM:
2422 		return spmc_ffa_mem_reclaim(smc_fid, secure_origin, x1, x2, x3,
2423 						x4, cookie, handle, flags);
2424 	case FFA_CONSOLE_LOG_SMC32:
2425 	case FFA_CONSOLE_LOG_SMC64:
2426 		return spmc_ffa_console_log(smc_fid, secure_origin, x1, x2, x3,
2427 						x4, cookie, handle, flags);
2428 
2429 	case FFA_MEM_PERM_GET:
2430 		return ffa_mem_perm_get_handler(smc_fid, secure_origin, x1, x2,
2431 						x3, x4, cookie, handle, flags);
2432 
2433 	case FFA_MEM_PERM_SET:
2434 		return ffa_mem_perm_set_handler(smc_fid, secure_origin, x1, x2,
2435 						x3, x4, cookie, handle, flags);
2436 
2437 	default:
2438 		WARN("Unsupported FF-A call 0x%08x.\n", smc_fid);
2439 		break;
2440 	}
2441 	return spmc_ffa_error_return(handle, FFA_ERROR_NOT_SUPPORTED);
2442 }
2443 
2444 /*******************************************************************************
2445  * This function is the handler registered for S-EL1 interrupts by the SPMC. It
2446  * validates the interrupt and upon success arranges entry into the SP for
2447  * handling the interrupt.
2448  ******************************************************************************/
spmc_sp_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)2449 static uint64_t spmc_sp_interrupt_handler(uint32_t id,
2450 					  uint32_t flags,
2451 					  void *handle,
2452 					  void *cookie)
2453 {
2454 	struct secure_partition_desc *sp = spmc_get_current_sp_ctx();
2455 	struct sp_exec_ctx *ec;
2456 	uint32_t linear_id = plat_my_core_pos();
2457 
2458 	/* Sanity check for a NULL pointer dereference. */
2459 	assert(sp != NULL);
2460 
2461 	/* Check the security state when the exception was generated. */
2462 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
2463 
2464 	/* Panic if not an S-EL1 Partition. */
2465 	if (sp->runtime_el != S_EL1) {
2466 		ERROR("Interrupt received for a non S-EL1 SP on core%u.\n",
2467 		      linear_id);
2468 		panic();
2469 	}
2470 
2471 	/* Obtain a reference to the SP execution context. */
2472 	ec = spmc_get_sp_ec(sp);
2473 
2474 	/* Ensure that the execution context is in waiting state else panic. */
2475 	if (ec->rt_state != RT_STATE_WAITING) {
2476 		ERROR("SP EC on core%u is not waiting (%u), it is (%u).\n",
2477 		      linear_id, RT_STATE_WAITING, ec->rt_state);
2478 		panic();
2479 	}
2480 
2481 	/* Update the runtime model and state of the partition. */
2482 	ec->rt_model = RT_MODEL_INTR;
2483 	ec->rt_state = RT_STATE_RUNNING;
2484 
2485 	VERBOSE("SP (0x%x) interrupt start on core%u.\n", sp->sp_id, linear_id);
2486 
2487 	/*
2488 	 * Forward the interrupt to the S-EL1 SP. The interrupt ID is not
2489 	 * populated as the SP can determine this by itself.
2490 	 * The flags field is forced to 0 mainly to pass the SVE hint bit
2491 	 * cleared for consumption by the lower EL.
2492 	 */
2493 	return spmd_smc_switch_state(FFA_INTERRUPT, false,
2494 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
2495 				     FFA_PARAM_MBZ, FFA_PARAM_MBZ,
2496 				     handle, 0ULL);
2497 }
2498