1 /*
2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6 #include <assert.h>
7 #include <errno.h>
8 #include <inttypes.h>
9
10 #include <common/debug.h>
11 #include <common/runtime_svc.h>
12 #include <lib/object_pool.h>
13 #include <lib/spinlock.h>
14 #include <lib/xlat_tables/xlat_tables_v2.h>
15 #include <services/ffa_svc.h>
16 #include "spmc.h"
17 #include "spmc_shared_mem.h"
18
19 #include <platform_def.h>
20
21 /**
22 * struct spmc_shmem_obj - Shared memory object.
23 * @desc_size: Size of @desc.
24 * @desc_filled: Size of @desc already received.
25 * @in_use: Number of clients that have called ffa_mem_retrieve_req
26 * without a matching ffa_mem_relinquish call.
27 * @desc: FF-A memory region descriptor passed in ffa_mem_share.
28 */
29 struct spmc_shmem_obj {
30 size_t desc_size;
31 size_t desc_filled;
32 size_t in_use;
33 struct ffa_mtd desc;
34 };
35
36 /*
37 * Declare our data structure to store the metadata of memory share requests.
38 * The main datastore is allocated on a per platform basis to ensure enough
39 * storage can be made available.
40 * The address of the data store will be populated by the SPMC during its
41 * initialization.
42 */
43
44 struct spmc_shmem_obj_state spmc_shmem_obj_state = {
45 /* Set start value for handle so top 32 bits are needed quickly. */
46 .next_handle = 0xffffffc0U,
47 };
48
49 /**
50 * spmc_shmem_obj_size - Convert from descriptor size to object size.
51 * @desc_size: Size of struct ffa_memory_region_descriptor object.
52 *
53 * Return: Size of struct spmc_shmem_obj object.
54 */
spmc_shmem_obj_size(size_t desc_size)55 static size_t spmc_shmem_obj_size(size_t desc_size)
56 {
57 return desc_size + offsetof(struct spmc_shmem_obj, desc);
58 }
59
60 /**
61 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj.
62 * @state: Global state.
63 * @desc_size: Size of struct ffa_memory_region_descriptor object that
64 * allocated object will hold.
65 *
66 * Return: Pointer to newly allocated object, or %NULL if there not enough space
67 * left. The returned pointer is only valid while @state is locked, to
68 * used it again after unlocking @state, spmc_shmem_obj_lookup must be
69 * called.
70 */
71 static struct spmc_shmem_obj *
spmc_shmem_obj_alloc(struct spmc_shmem_obj_state * state,size_t desc_size)72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size)
73 {
74 struct spmc_shmem_obj *obj;
75 size_t free = state->data_size - state->allocated;
76 size_t obj_size;
77
78 if (state->data == NULL) {
79 ERROR("Missing shmem datastore!\n");
80 return NULL;
81 }
82
83 /* Ensure that descriptor size is aligned */
84 if (!is_aligned(desc_size, 16)) {
85 WARN("%s(0x%zx) desc_size not 16-byte aligned\n",
86 __func__, desc_size);
87 return NULL;
88 }
89
90 obj_size = spmc_shmem_obj_size(desc_size);
91
92 /* Ensure the obj size has not overflowed. */
93 if (obj_size < desc_size) {
94 WARN("%s(0x%zx) desc_size overflow\n",
95 __func__, desc_size);
96 return NULL;
97 }
98
99 if (obj_size > free) {
100 WARN("%s(0x%zx) failed, free 0x%zx\n",
101 __func__, desc_size, free);
102 return NULL;
103 }
104 obj = (struct spmc_shmem_obj *)(state->data + state->allocated);
105 obj->desc = (struct ffa_mtd) {0};
106 obj->desc_size = desc_size;
107 obj->desc_filled = 0;
108 obj->in_use = 0;
109 state->allocated += obj_size;
110 return obj;
111 }
112
113 /**
114 * spmc_shmem_obj_free - Free struct spmc_shmem_obj.
115 * @state: Global state.
116 * @obj: Object to free.
117 *
118 * Release memory used by @obj. Other objects may move, so on return all
119 * pointers to struct spmc_shmem_obj object should be considered invalid, not
120 * just @obj.
121 *
122 * The current implementation always compacts the remaining objects to simplify
123 * the allocator and to avoid fragmentation.
124 */
125
spmc_shmem_obj_free(struct spmc_shmem_obj_state * state,struct spmc_shmem_obj * obj)126 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state,
127 struct spmc_shmem_obj *obj)
128 {
129 size_t free_size = spmc_shmem_obj_size(obj->desc_size);
130 uint8_t *shift_dest = (uint8_t *)obj;
131 uint8_t *shift_src = shift_dest + free_size;
132 size_t shift_size = state->allocated - (shift_src - state->data);
133
134 if (shift_size != 0U) {
135 memmove(shift_dest, shift_src, shift_size);
136 }
137 state->allocated -= free_size;
138 }
139
140 /**
141 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle.
142 * @state: Global state.
143 * @handle: Unique handle of object to return.
144 *
145 * Return: struct spmc_shmem_obj_state object with handle matching @handle.
146 * %NULL, if not object in @state->data has a matching handle.
147 */
148 static struct spmc_shmem_obj *
spmc_shmem_obj_lookup(struct spmc_shmem_obj_state * state,uint64_t handle)149 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle)
150 {
151 uint8_t *curr = state->data;
152
153 while (curr - state->data < state->allocated) {
154 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
155
156 if (obj->desc.handle == handle) {
157 return obj;
158 }
159 curr += spmc_shmem_obj_size(obj->desc_size);
160 }
161 return NULL;
162 }
163
164 /**
165 * spmc_shmem_obj_get_next - Get the next memory object from an offset.
166 * @offset: Offset used to track which objects have previously been
167 * returned.
168 *
169 * Return: the next struct spmc_shmem_obj_state object from the provided
170 * offset.
171 * %NULL, if there are no more objects.
172 */
173 static struct spmc_shmem_obj *
spmc_shmem_obj_get_next(struct spmc_shmem_obj_state * state,size_t * offset)174 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset)
175 {
176 uint8_t *curr = state->data + *offset;
177
178 if (curr - state->data < state->allocated) {
179 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
180
181 *offset += spmc_shmem_obj_size(obj->desc_size);
182
183 return obj;
184 }
185 return NULL;
186 }
187
188 /*******************************************************************************
189 * FF-A memory descriptor helper functions.
190 ******************************************************************************/
191 /**
192 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the
193 * clients FF-A version.
194 * @desc: The memory transaction descriptor.
195 * @index: The index of the emad element to be accessed.
196 * @ffa_version: FF-A version of the provided structure.
197 * @emad_size: Will be populated with the size of the returned emad
198 * descriptor.
199 * Return: A pointer to the requested emad structure.
200 */
201 static void *
spmc_shmem_obj_get_emad(const struct ffa_mtd * desc,uint32_t index,uint32_t ffa_version,size_t * emad_size)202 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index,
203 uint32_t ffa_version, size_t *emad_size)
204 {
205 uint8_t *emad;
206
207 assert(index < desc->emad_count);
208
209 /*
210 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
211 * format, otherwise assume it is a v1.1 format.
212 */
213 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
214 emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad);
215 *emad_size = sizeof(struct ffa_emad_v1_0);
216 } else {
217 assert(is_aligned(desc->emad_offset, 16));
218 emad = ((uint8_t *) desc + desc->emad_offset);
219 *emad_size = desc->emad_size;
220 }
221
222 assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX);
223 return (emad + (*emad_size * index));
224 }
225
226 /**
227 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the
228 * FF-A version of the descriptor.
229 * @obj: Object containing ffa_memory_region_descriptor.
230 *
231 * Return: struct ffa_comp_mrd object corresponding to the composite memory
232 * region descriptor.
233 */
234 static struct ffa_comp_mrd *
spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj * obj,uint32_t ffa_version)235 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version)
236 {
237 size_t emad_size;
238 /*
239 * The comp_mrd_offset field of the emad descriptor remains consistent
240 * between FF-A versions therefore we can use the v1.0 descriptor here
241 * in all cases.
242 */
243 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
244 ffa_version,
245 &emad_size);
246
247 /* Ensure the composite descriptor offset is aligned. */
248 if (!is_aligned(emad->comp_mrd_offset, 8)) {
249 WARN("Unaligned composite memory region descriptor offset.\n");
250 return NULL;
251 }
252
253 return (struct ffa_comp_mrd *)
254 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset);
255 }
256
257 /**
258 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in
259 * a given memory transaction.
260 * @sp_id: Partition ID to validate.
261 * @obj: The shared memory object containing the descriptor
262 * of the memory transaction.
263 * Return: true if ID is valid, else false.
264 */
spmc_shmem_obj_validate_id(struct spmc_shmem_obj * obj,uint16_t sp_id)265 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id)
266 {
267 bool found = false;
268 struct ffa_mtd *desc = &obj->desc;
269 size_t desc_size = obj->desc_size;
270
271 /* Validate the partition is a valid participant. */
272 for (unsigned int i = 0U; i < desc->emad_count; i++) {
273 size_t emad_size;
274 struct ffa_emad_v1_0 *emad;
275
276 emad = spmc_shmem_obj_get_emad(desc, i,
277 MAKE_FFA_VERSION(1, 1),
278 &emad_size);
279 /*
280 * Validate the calculated emad address resides within the
281 * descriptor.
282 */
283 if ((emad == NULL) || (uintptr_t) emad >=
284 (uintptr_t)((uint8_t *) desc + desc_size)) {
285 VERBOSE("Invalid emad.\n");
286 break;
287 }
288 if (sp_id == emad->mapd.endpoint_id) {
289 found = true;
290 break;
291 }
292 }
293 return found;
294 }
295
296 /*
297 * Compare two memory regions to determine if any range overlaps with another
298 * ongoing memory transaction.
299 */
300 static bool
overlapping_memory_regions(struct ffa_comp_mrd * region1,struct ffa_comp_mrd * region2)301 overlapping_memory_regions(struct ffa_comp_mrd *region1,
302 struct ffa_comp_mrd *region2)
303 {
304 uint64_t region1_start;
305 uint64_t region1_size;
306 uint64_t region1_end;
307 uint64_t region2_start;
308 uint64_t region2_size;
309 uint64_t region2_end;
310
311 assert(region1 != NULL);
312 assert(region2 != NULL);
313
314 if (region1 == region2) {
315 return true;
316 }
317
318 /*
319 * Check each memory region in the request against existing
320 * transactions.
321 */
322 for (size_t i = 0; i < region1->address_range_count; i++) {
323
324 region1_start = region1->address_range_array[i].address;
325 region1_size =
326 region1->address_range_array[i].page_count *
327 PAGE_SIZE_4KB;
328 region1_end = region1_start + region1_size;
329
330 for (size_t j = 0; j < region2->address_range_count; j++) {
331
332 region2_start = region2->address_range_array[j].address;
333 region2_size =
334 region2->address_range_array[j].page_count *
335 PAGE_SIZE_4KB;
336 region2_end = region2_start + region2_size;
337
338 /* Check if regions are not overlapping. */
339 if (!((region2_end <= region1_start) ||
340 (region1_end <= region2_start))) {
341 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n",
342 region1_start, region1_end,
343 region2_start, region2_end);
344 return true;
345 }
346 }
347 }
348 return false;
349 }
350
351 /*******************************************************************************
352 * FF-A v1.0 Memory Descriptor Conversion Helpers.
353 ******************************************************************************/
354 /**
355 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1
356 * converted descriptor.
357 * @orig: The original v1.0 memory transaction descriptor.
358 * @desc_size: The size of the original v1.0 memory transaction descriptor.
359 *
360 * Return: the size required to store the descriptor store in the v1.1 format.
361 */
362 static uint64_t
spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 * orig,size_t desc_size)363 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size)
364 {
365 uint64_t size = 0;
366 struct ffa_comp_mrd *mrd;
367 struct ffa_emad_v1_0 *emad_array = orig->emad;
368
369 /* Get the size of the v1.1 descriptor. */
370 size += sizeof(struct ffa_mtd);
371
372 /* Add the size of the emad descriptors. */
373 size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
374
375 /* Add the size of the composite mrds. */
376 size += sizeof(struct ffa_comp_mrd);
377
378 /* Add the size of the constituent mrds. */
379 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
380 emad_array[0].comp_mrd_offset);
381
382 /* Add the size of the memory region descriptors. */
383 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
384
385 return size;
386 }
387
388 /**
389 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0
390 * converted descriptor.
391 * @orig: The original v1.1 memory transaction descriptor.
392 * @desc_size: The size of the original v1.1 memory transaction descriptor.
393 *
394 * Return: the size required to store the descriptor store in the v1.0 format.
395 */
396 static size_t
spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd * orig,size_t desc_size)397 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size)
398 {
399 size_t size = 0;
400 struct ffa_comp_mrd *mrd;
401 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *)
402 ((uint8_t *) orig +
403 orig->emad_offset);
404
405 /* Get the size of the v1.0 descriptor. */
406 size += sizeof(struct ffa_mtd_v1_0);
407
408 /* Add the size of the v1.0 emad descriptors. */
409 size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
410
411 /* Add the size of the composite mrds. */
412 size += sizeof(struct ffa_comp_mrd);
413
414 /* Add the size of the constituent mrds. */
415 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
416 emad_array[0].comp_mrd_offset);
417
418 /* Check the calculated address is within the memory descriptor. */
419 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
420 (uintptr_t)((uint8_t *) orig + desc_size)) {
421 return 0;
422 }
423 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
424
425 return size;
426 }
427
428 /**
429 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object.
430 * @out_obj: The shared memory object to populate the converted descriptor.
431 * @orig: The shared memory object containing the v1.0 descriptor.
432 *
433 * Return: true if the conversion is successful else false.
434 */
435 static bool
spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj * out_obj,struct spmc_shmem_obj * orig)436 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj,
437 struct spmc_shmem_obj *orig)
438 {
439 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc;
440 struct ffa_mtd *out = &out_obj->desc;
441 struct ffa_emad_v1_0 *emad_array_in;
442 struct ffa_emad_v1_0 *emad_array_out;
443 struct ffa_comp_mrd *mrd_in;
444 struct ffa_comp_mrd *mrd_out;
445
446 size_t mrd_in_offset;
447 size_t mrd_out_offset;
448 size_t mrd_size = 0;
449
450 /* Populate the new descriptor format from the v1.0 struct. */
451 out->sender_id = mtd_orig->sender_id;
452 out->memory_region_attributes = mtd_orig->memory_region_attributes;
453 out->flags = mtd_orig->flags;
454 out->handle = mtd_orig->handle;
455 out->tag = mtd_orig->tag;
456 out->emad_count = mtd_orig->emad_count;
457 out->emad_size = sizeof(struct ffa_emad_v1_0);
458
459 /*
460 * We will locate the emad descriptors directly after the ffa_mtd
461 * struct. This will be 8-byte aligned.
462 */
463 out->emad_offset = sizeof(struct ffa_mtd);
464
465 emad_array_in = mtd_orig->emad;
466 emad_array_out = (struct ffa_emad_v1_0 *)
467 ((uint8_t *) out + out->emad_offset);
468
469 /* Copy across the emad structs. */
470 for (unsigned int i = 0U; i < out->emad_count; i++) {
471 /* Bound check for emad array. */
472 if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) >
473 ((uint8_t *) mtd_orig + orig->desc_size)) {
474 VERBOSE("%s: Invalid mtd structure.\n", __func__);
475 return false;
476 }
477 memcpy(&emad_array_out[i], &emad_array_in[i],
478 sizeof(struct ffa_emad_v1_0));
479 }
480
481 /* Place the mrd descriptors after the end of the emad descriptors.*/
482 mrd_in_offset = emad_array_in->comp_mrd_offset;
483 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count);
484 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
485
486 /* Add the size of the composite memory region descriptor. */
487 mrd_size += sizeof(struct ffa_comp_mrd);
488
489 /* Find the mrd descriptor. */
490 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
491
492 /* Add the size of the constituent memory region descriptors. */
493 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
494
495 /*
496 * Update the offset in the emads by the delta between the input and
497 * output addresses.
498 */
499 for (unsigned int i = 0U; i < out->emad_count; i++) {
500 emad_array_out[i].comp_mrd_offset =
501 emad_array_in[i].comp_mrd_offset +
502 (mrd_out_offset - mrd_in_offset);
503 }
504
505 /* Verify that we stay within bound of the memory descriptors. */
506 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
507 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
508 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
509 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
510 ERROR("%s: Invalid mrd structure.\n", __func__);
511 return false;
512 }
513
514 /* Copy the mrd descriptors directly. */
515 memcpy(mrd_out, mrd_in, mrd_size);
516
517 return true;
518 }
519
520 /**
521 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to
522 * v1.0 memory object.
523 * @out_obj: The shared memory object to populate the v1.0 descriptor.
524 * @orig: The shared memory object containing the v1.1 descriptor.
525 *
526 * Return: true if the conversion is successful else false.
527 */
528 static bool
spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj * out_obj,struct spmc_shmem_obj * orig)529 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj,
530 struct spmc_shmem_obj *orig)
531 {
532 struct ffa_mtd *mtd_orig = &orig->desc;
533 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc;
534 struct ffa_emad_v1_0 *emad_in;
535 struct ffa_emad_v1_0 *emad_array_in;
536 struct ffa_emad_v1_0 *emad_array_out;
537 struct ffa_comp_mrd *mrd_in;
538 struct ffa_comp_mrd *mrd_out;
539
540 size_t mrd_in_offset;
541 size_t mrd_out_offset;
542 size_t emad_out_array_size;
543 size_t mrd_size = 0;
544 size_t orig_desc_size = orig->desc_size;
545
546 /* Populate the v1.0 descriptor format from the v1.1 struct. */
547 out->sender_id = mtd_orig->sender_id;
548 out->memory_region_attributes = mtd_orig->memory_region_attributes;
549 out->flags = mtd_orig->flags;
550 out->handle = mtd_orig->handle;
551 out->tag = mtd_orig->tag;
552 out->emad_count = mtd_orig->emad_count;
553
554 /* Determine the location of the emad array in both descriptors. */
555 emad_array_in = (struct ffa_emad_v1_0 *)
556 ((uint8_t *) mtd_orig + mtd_orig->emad_offset);
557 emad_array_out = out->emad;
558
559 /* Copy across the emad structs. */
560 emad_in = emad_array_in;
561 for (unsigned int i = 0U; i < out->emad_count; i++) {
562 /* Bound check for emad array. */
563 if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) >
564 ((uint8_t *) mtd_orig + orig_desc_size)) {
565 VERBOSE("%s: Invalid mtd structure.\n", __func__);
566 return false;
567 }
568 memcpy(&emad_array_out[i], emad_in,
569 sizeof(struct ffa_emad_v1_0));
570
571 emad_in += mtd_orig->emad_size;
572 }
573
574 /* Place the mrd descriptors after the end of the emad descriptors. */
575 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count;
576
577 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out +
578 emad_out_array_size;
579
580 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
581
582 mrd_in_offset = mtd_orig->emad_offset +
583 (mtd_orig->emad_size * mtd_orig->emad_count);
584
585 /* Add the size of the composite memory region descriptor. */
586 mrd_size += sizeof(struct ffa_comp_mrd);
587
588 /* Find the mrd descriptor. */
589 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
590
591 /* Add the size of the constituent memory region descriptors. */
592 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
593
594 /*
595 * Update the offset in the emads by the delta between the input and
596 * output addresses.
597 */
598 emad_in = emad_array_in;
599
600 for (unsigned int i = 0U; i < out->emad_count; i++) {
601 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset +
602 (mrd_out_offset -
603 mrd_in_offset);
604 emad_in += mtd_orig->emad_size;
605 }
606
607 /* Verify that we stay within bound of the memory descriptors. */
608 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
609 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
610 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
611 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
612 ERROR("%s: Invalid mrd structure.\n", __func__);
613 return false;
614 }
615
616 /* Copy the mrd descriptors directly. */
617 memcpy(mrd_out, mrd_in, mrd_size);
618
619 return true;
620 }
621
622 /**
623 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to
624 * the v1.0 format and populates the
625 * provided buffer.
626 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor.
627 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor.
628 * @buf_size: Size of the buffer to populate.
629 * @offset: The offset of the converted descriptor to copy.
630 * @copy_size: Will be populated with the number of bytes copied.
631 * @out_desc_size: Will be populated with the total size of the v1.0
632 * descriptor.
633 *
634 * Return: 0 if conversion and population succeeded.
635 * Note: This function invalidates the reference to @orig therefore
636 * `spmc_shmem_obj_lookup` must be called if further usage is required.
637 */
638 static uint32_t
spmc_populate_ffa_v1_0_descriptor(void * dst,struct spmc_shmem_obj * orig_obj,size_t buf_size,size_t offset,size_t * copy_size,size_t * v1_0_desc_size)639 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj,
640 size_t buf_size, size_t offset,
641 size_t *copy_size, size_t *v1_0_desc_size)
642 {
643 struct spmc_shmem_obj *v1_0_obj;
644
645 /* Calculate the size that the v1.0 descriptor will require. */
646 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size(
647 &orig_obj->desc, orig_obj->desc_size);
648
649 if (*v1_0_desc_size == 0) {
650 ERROR("%s: cannot determine size of descriptor.\n",
651 __func__);
652 return FFA_ERROR_INVALID_PARAMETER;
653 }
654
655 /* Get a new obj to store the v1.0 descriptor. */
656 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state,
657 *v1_0_desc_size);
658
659 if (!v1_0_obj) {
660 return FFA_ERROR_NO_MEMORY;
661 }
662
663 /* Perform the conversion from v1.1 to v1.0. */
664 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) {
665 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
666 return FFA_ERROR_INVALID_PARAMETER;
667 }
668
669 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size);
670 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size);
671
672 /*
673 * We're finished with the v1.0 descriptor for now so free it.
674 * Note that this will invalidate any references to the v1.1
675 * descriptor.
676 */
677 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
678
679 return 0;
680 }
681
682 static int
spmc_validate_mtd_start(struct ffa_mtd * desc,uint32_t ffa_version,size_t fragment_length,size_t total_length)683 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version,
684 size_t fragment_length, size_t total_length)
685 {
686 unsigned long long emad_end;
687 unsigned long long emad_size;
688 unsigned long long emad_offset;
689 unsigned int min_desc_size;
690
691 /* Determine the appropriate minimum descriptor size. */
692 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
693 min_desc_size = sizeof(struct ffa_mtd_v1_0);
694 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
695 min_desc_size = sizeof(struct ffa_mtd);
696 } else {
697 return FFA_ERROR_INVALID_PARAMETER;
698 }
699 if (fragment_length < min_desc_size) {
700 WARN("%s: invalid length %zu < %u\n", __func__, fragment_length,
701 min_desc_size);
702 return FFA_ERROR_INVALID_PARAMETER;
703 }
704
705 if (desc->emad_count == 0U) {
706 WARN("%s: unsupported attribute desc count %u.\n",
707 __func__, desc->emad_count);
708 return FFA_ERROR_INVALID_PARAMETER;
709 }
710
711 /*
712 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
713 * format, otherwise assume it is a v1.1 format.
714 */
715 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
716 emad_offset = emad_size = sizeof(struct ffa_emad_v1_0);
717 } else {
718 if (!is_aligned(desc->emad_offset, 16)) {
719 WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n",
720 __func__, desc->emad_offset);
721 return FFA_ERROR_INVALID_PARAMETER;
722 }
723 if (desc->emad_offset < sizeof(struct ffa_mtd)) {
724 WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n",
725 __func__, desc->emad_offset,
726 sizeof(struct ffa_mtd));
727 return FFA_ERROR_INVALID_PARAMETER;
728 }
729 emad_offset = desc->emad_offset;
730 if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) {
731 WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__,
732 desc->emad_size, sizeof(struct ffa_emad_v1_0));
733 return FFA_ERROR_INVALID_PARAMETER;
734 }
735 if (!is_aligned(desc->emad_size, 16)) {
736 WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n",
737 __func__, desc->emad_size);
738 return FFA_ERROR_INVALID_PARAMETER;
739 }
740 emad_size = desc->emad_size;
741 }
742
743 /*
744 * Overflow is impossible: the arithmetic happens in at least 64-bit
745 * precision, but all of the operands are bounded by UINT32_MAX, and
746 * ((2^32 - 1) * (2^32 - 1) + (2^32 - 1) + (2^32 - 1))
747 * = ((2^32 - 1) * ((2^32 - 1) + 1 + 1))
748 * = ((2^32 - 1) * (2^32 + 1))
749 * = (2^64 - 1).
750 */
751 CASSERT(sizeof(desc->emad_count) == 4, assert_emad_count_max_too_large);
752 emad_end = (desc->emad_count * (unsigned long long)emad_size) +
753 (unsigned long long)sizeof(struct ffa_comp_mrd) +
754 (unsigned long long)emad_offset;
755
756 if (emad_end > total_length) {
757 WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n",
758 __func__, emad_end, total_length);
759 return FFA_ERROR_INVALID_PARAMETER;
760 }
761
762 return 0;
763 }
764
765 static inline const struct ffa_emad_v1_0 *
emad_advance(const struct ffa_emad_v1_0 * emad,size_t offset)766 emad_advance(const struct ffa_emad_v1_0 *emad, size_t offset)
767 {
768 return (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + offset);
769 }
770
771 /**
772 * spmc_shmem_check_obj - Check that counts in descriptor match overall size.
773 * @obj: Object containing ffa_memory_region_descriptor.
774 * @ffa_version: FF-A version of the provided descriptor.
775 *
776 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if
777 * constituent_memory_region_descriptor offset or count is invalid.
778 */
spmc_shmem_check_obj(struct spmc_shmem_obj * obj,uint32_t ffa_version)779 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj,
780 uint32_t ffa_version)
781 {
782 unsigned long long total_page_count;
783 const struct ffa_emad_v1_0 *first_emad;
784 const struct ffa_emad_v1_0 *end_emad;
785 size_t emad_size;
786 uint32_t comp_mrd_offset;
787 size_t header_emad_size;
788 size_t size;
789 size_t count;
790 size_t expected_size;
791 const struct ffa_comp_mrd *comp;
792
793 if (obj->desc_filled != obj->desc_size) {
794 ERROR("BUG: %s called on incomplete object (%zu != %zu)\n",
795 __func__, obj->desc_filled, obj->desc_size);
796 panic();
797 }
798
799 if (spmc_validate_mtd_start(&obj->desc, ffa_version,
800 obj->desc_filled, obj->desc_size)) {
801 ERROR("BUG: %s called on object with corrupt memory region descriptor\n",
802 __func__);
803 panic();
804 }
805
806 first_emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
807 ffa_version, &emad_size);
808 end_emad = emad_advance(first_emad, obj->desc.emad_count * emad_size);
809 comp_mrd_offset = first_emad->comp_mrd_offset;
810
811 /* Loop through the endpoint descriptors, validating each of them. */
812 for (const struct ffa_emad_v1_0 *emad = first_emad; emad < end_emad;) {
813 ffa_endpoint_id16_t ep_id;
814
815 /*
816 * If a partition ID resides in the secure world validate that
817 * the partition ID is for a known partition. Ignore any
818 * partition ID belonging to the normal world as it is assumed
819 * the Hypervisor will have validated these.
820 */
821 ep_id = emad->mapd.endpoint_id;
822 if (ffa_is_secure_world_id(ep_id)) {
823 if (spmc_get_sp_ctx(ep_id) == NULL) {
824 WARN("%s: Invalid receiver id 0x%x\n",
825 __func__, ep_id);
826 return FFA_ERROR_INVALID_PARAMETER;
827 }
828 }
829
830 /*
831 * The offset provided to the composite memory region descriptor
832 * should be consistent across endpoint descriptors.
833 */
834 if (comp_mrd_offset != emad->comp_mrd_offset) {
835 ERROR("%s: mismatching offsets provided, %u != %u\n",
836 __func__, emad->comp_mrd_offset, comp_mrd_offset);
837 return FFA_ERROR_INVALID_PARAMETER;
838 }
839
840 /* Advance to the next endpoint descriptor */
841 emad = emad_advance(emad, emad_size);
842
843 /*
844 * Ensure neither this emad nor any subsequent emads have
845 * the same partition ID as the previous emad.
846 */
847 for (const struct ffa_emad_v1_0 *other_emad = emad;
848 other_emad < end_emad;
849 other_emad = emad_advance(other_emad, emad_size)) {
850 if (ep_id == other_emad->mapd.endpoint_id) {
851 WARN("%s: Duplicated endpoint id 0x%x\n",
852 __func__, emad->mapd.endpoint_id);
853 return FFA_ERROR_INVALID_PARAMETER;
854 }
855 }
856 }
857
858 header_emad_size = (size_t)((const uint8_t *)end_emad -
859 (const uint8_t *)&obj->desc);
860
861 /*
862 * Check that the composite descriptor
863 * is after the endpoint descriptors.
864 */
865 if (comp_mrd_offset < header_emad_size) {
866 WARN("%s: invalid object, offset %u < header + emad %zu\n",
867 __func__, comp_mrd_offset, header_emad_size);
868 return FFA_ERROR_INVALID_PARAMETER;
869 }
870
871 /* Ensure the composite descriptor offset is aligned. */
872 if (!is_aligned(comp_mrd_offset, 16)) {
873 WARN("%s: invalid object, unaligned composite memory "
874 "region descriptor offset %u.\n",
875 __func__, comp_mrd_offset);
876 return FFA_ERROR_INVALID_PARAMETER;
877 }
878
879 size = obj->desc_size;
880
881 /* Check that the composite descriptor is in bounds. */
882 if (comp_mrd_offset > size) {
883 WARN("%s: invalid object, offset %u > total size %zu\n",
884 __func__, comp_mrd_offset, obj->desc_size);
885 return FFA_ERROR_INVALID_PARAMETER;
886 }
887 size -= comp_mrd_offset;
888
889 /* Check that there is enough space for the composite descriptor. */
890 if (size < sizeof(struct ffa_comp_mrd)) {
891 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n",
892 __func__, comp_mrd_offset, obj->desc_size);
893 return FFA_ERROR_INVALID_PARAMETER;
894 }
895 size -= sizeof(*comp);
896
897 count = size / sizeof(struct ffa_cons_mrd);
898
899 comp = (const struct ffa_comp_mrd *)
900 ((const uint8_t *)(&obj->desc) + comp_mrd_offset);
901
902 if (comp->address_range_count != count) {
903 WARN("%s: invalid object, desc count %u != %zu\n",
904 __func__, comp->address_range_count, count);
905 return FFA_ERROR_INVALID_PARAMETER;
906 }
907
908 /* Ensure that the expected and actual sizes are equal. */
909 expected_size = comp_mrd_offset + sizeof(*comp) +
910 count * sizeof(struct ffa_cons_mrd);
911
912 if (expected_size != obj->desc_size) {
913 WARN("%s: invalid object, computed size %zu != size %zu\n",
914 __func__, expected_size, obj->desc_size);
915 return FFA_ERROR_INVALID_PARAMETER;
916 }
917
918 total_page_count = 0;
919
920 /*
921 * comp->address_range_count is 32-bit, so 'count' must fit in a
922 * uint32_t at this point.
923 */
924 for (size_t i = 0; i < count; i++) {
925 const struct ffa_cons_mrd *mrd = comp->address_range_array + i;
926
927 if (!is_aligned(mrd->address, PAGE_SIZE)) {
928 WARN("%s: invalid object, address in region descriptor "
929 "%zu not 4K aligned (got 0x%016llx)",
930 __func__, i, (unsigned long long)mrd->address);
931 }
932
933 /*
934 * No overflow possible: total_page_count can hold at
935 * least 2^64 - 1, but will be have at most 2^32 - 1.
936 * values added to it, each of which cannot exceed 2^32 - 1.
937 */
938 total_page_count += mrd->page_count;
939 }
940
941 if (comp->total_page_count != total_page_count) {
942 WARN("%s: invalid object, desc total_page_count %u != %llu\n",
943 __func__, comp->total_page_count, total_page_count);
944 return FFA_ERROR_INVALID_PARAMETER;
945 }
946
947 return 0;
948 }
949
950 /**
951 * spmc_shmem_check_state_obj - Check if the descriptor describes memory
952 * regions that are currently involved with an
953 * existing memory transactions. This implies that
954 * the memory is not in a valid state for lending.
955 * @obj: Object containing ffa_memory_region_descriptor.
956 *
957 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if invalid memory
958 * state.
959 */
spmc_shmem_check_state_obj(struct spmc_shmem_obj * obj,uint32_t ffa_version)960 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj,
961 uint32_t ffa_version)
962 {
963 size_t obj_offset = 0;
964 struct spmc_shmem_obj *inflight_obj;
965
966 struct ffa_comp_mrd *other_mrd;
967 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj,
968 ffa_version);
969
970 if (requested_mrd == NULL) {
971 return FFA_ERROR_INVALID_PARAMETER;
972 }
973
974 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
975 &obj_offset);
976
977 while (inflight_obj != NULL) {
978 /*
979 * Don't compare the transaction to itself or to partially
980 * transmitted descriptors.
981 */
982 if ((obj->desc.handle != inflight_obj->desc.handle) &&
983 (obj->desc_size == obj->desc_filled)) {
984 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj,
985 FFA_VERSION_COMPILED);
986 if (other_mrd == NULL) {
987 return FFA_ERROR_INVALID_PARAMETER;
988 }
989 if (overlapping_memory_regions(requested_mrd,
990 other_mrd)) {
991 return FFA_ERROR_INVALID_PARAMETER;
992 }
993 }
994
995 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
996 &obj_offset);
997 }
998 return 0;
999 }
1000
spmc_ffa_fill_desc(struct mailbox * mbox,struct spmc_shmem_obj * obj,uint32_t fragment_length,ffa_mtd_flag32_t mtd_flag,uint32_t ffa_version,void * smc_handle)1001 static long spmc_ffa_fill_desc(struct mailbox *mbox,
1002 struct spmc_shmem_obj *obj,
1003 uint32_t fragment_length,
1004 ffa_mtd_flag32_t mtd_flag,
1005 uint32_t ffa_version,
1006 void *smc_handle)
1007 {
1008 int ret;
1009 uint32_t handle_low;
1010 uint32_t handle_high;
1011
1012 if (mbox->rxtx_page_count == 0U) {
1013 WARN("%s: buffer pair not registered.\n", __func__);
1014 ret = FFA_ERROR_INVALID_PARAMETER;
1015 goto err_arg;
1016 }
1017
1018 CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count);
1019 if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) {
1020 WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__,
1021 fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB);
1022 ret = FFA_ERROR_INVALID_PARAMETER;
1023 goto err_arg;
1024 }
1025
1026 if (fragment_length > obj->desc_size - obj->desc_filled) {
1027 WARN("%s: bad fragment size %u > %zu remaining\n", __func__,
1028 fragment_length, obj->desc_size - obj->desc_filled);
1029 ret = FFA_ERROR_INVALID_PARAMETER;
1030 goto err_arg;
1031 }
1032
1033 memcpy((uint8_t *)&obj->desc + obj->desc_filled,
1034 (uint8_t *) mbox->tx_buffer, fragment_length);
1035
1036 /* Ensure that the sender ID resides in the normal world. */
1037 if (ffa_is_secure_world_id(obj->desc.sender_id)) {
1038 WARN("%s: Invalid sender ID 0x%x.\n",
1039 __func__, obj->desc.sender_id);
1040 ret = FFA_ERROR_DENIED;
1041 goto err_arg;
1042 }
1043
1044 /* Ensure the NS bit is set to 0. */
1045 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1046 WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1047 ret = FFA_ERROR_INVALID_PARAMETER;
1048 goto err_arg;
1049 }
1050
1051 /*
1052 * We don't currently support any optional flags so ensure none are
1053 * requested.
1054 */
1055 if (obj->desc.flags != 0U && mtd_flag != 0U &&
1056 (obj->desc.flags != mtd_flag)) {
1057 WARN("%s: invalid memory transaction flags %u != %u\n",
1058 __func__, obj->desc.flags, mtd_flag);
1059 ret = FFA_ERROR_INVALID_PARAMETER;
1060 goto err_arg;
1061 }
1062
1063 if (obj->desc_filled == 0U) {
1064 /* First fragment, descriptor header has been copied */
1065 ret = spmc_validate_mtd_start(&obj->desc, ffa_version,
1066 fragment_length, obj->desc_size);
1067 if (ret != 0) {
1068 goto err_bad_desc;
1069 }
1070
1071 obj->desc.handle = spmc_shmem_obj_state.next_handle++;
1072 obj->desc.flags |= mtd_flag;
1073 }
1074
1075 obj->desc_filled += fragment_length;
1076
1077 handle_low = (uint32_t)obj->desc.handle;
1078 handle_high = obj->desc.handle >> 32;
1079
1080 if (obj->desc_filled != obj->desc_size) {
1081 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low,
1082 handle_high, obj->desc_filled,
1083 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0);
1084 }
1085
1086 /* The full descriptor has been received, perform any final checks. */
1087
1088 /* Ensure the NS bit is set to 1 since we only allow non-secure senders. */
1089 obj->desc.memory_region_attributes |= FFA_MEM_ATTR_NS_BIT;
1090
1091 ret = spmc_shmem_check_obj(obj, ffa_version);
1092 if (ret != 0) {
1093 goto err_bad_desc;
1094 }
1095
1096 ret = spmc_shmem_check_state_obj(obj, ffa_version);
1097 if (ret) {
1098 ERROR("%s: invalid memory region descriptor.\n", __func__);
1099 goto err_bad_desc;
1100 }
1101
1102 /*
1103 * Everything checks out, if the sender was using FF-A v1.0, convert
1104 * the descriptor format to use the v1.1 structures.
1105 */
1106 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1107 struct spmc_shmem_obj *v1_1_obj;
1108 uint64_t mem_handle;
1109
1110 /* Calculate the size that the v1.1 descriptor will required. */
1111 uint64_t v1_1_desc_size =
1112 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc,
1113 obj->desc_size);
1114
1115 if (v1_1_desc_size > UINT32_MAX) {
1116 ret = FFA_ERROR_NO_MEMORY;
1117 goto err_arg;
1118 }
1119
1120 /* Get a new obj to store the v1.1 descriptor. */
1121 v1_1_obj =
1122 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, (size_t)v1_1_desc_size);
1123
1124 if (!v1_1_obj) {
1125 ret = FFA_ERROR_NO_MEMORY;
1126 goto err_arg;
1127 }
1128
1129 /* Perform the conversion from v1.0 to v1.1. */
1130 v1_1_obj->desc_size = (uint32_t)v1_1_desc_size;
1131 v1_1_obj->desc_filled = (uint32_t)v1_1_desc_size;
1132 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) {
1133 ERROR("%s: Could not convert mtd!\n", __func__);
1134 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj);
1135 goto err_arg;
1136 }
1137
1138 /*
1139 * We're finished with the v1.0 descriptor so free it
1140 * and continue our checks with the new v1.1 descriptor.
1141 */
1142 mem_handle = obj->desc.handle;
1143 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1144 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1145 if (obj == NULL) {
1146 ERROR("%s: Failed to find converted descriptor.\n",
1147 __func__);
1148 ret = FFA_ERROR_INVALID_PARAMETER;
1149 return spmc_ffa_error_return(smc_handle, ret);
1150 }
1151 }
1152
1153 /* Allow for platform specific operations to be performed. */
1154 ret = plat_spmc_shmem_begin(&obj->desc);
1155 if (ret != 0) {
1156 goto err_arg;
1157 }
1158
1159 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0,
1160 0, 0, 0);
1161
1162 err_bad_desc:
1163 err_arg:
1164 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1165 return spmc_ffa_error_return(smc_handle, ret);
1166 }
1167
1168 /**
1169 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation.
1170 * @client: Client state.
1171 * @total_length: Total length of shared memory descriptor.
1172 * @fragment_length: Length of fragment of shared memory descriptor passed in
1173 * this call.
1174 * @address: Not supported, must be 0.
1175 * @page_count: Not supported, must be 0.
1176 * @smc_handle: Handle passed to smc call. Used to return
1177 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1178 *
1179 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed
1180 * to share or lend memory from non-secure os to secure os (with no stream
1181 * endpoints).
1182 *
1183 * Return: 0 on success, error code on failure.
1184 */
spmc_ffa_mem_send(uint32_t smc_fid,bool secure_origin,uint64_t total_length,uint32_t fragment_length,uint64_t address,uint32_t page_count,void * cookie,void * handle,uint64_t flags)1185 long spmc_ffa_mem_send(uint32_t smc_fid,
1186 bool secure_origin,
1187 uint64_t total_length,
1188 uint32_t fragment_length,
1189 uint64_t address,
1190 uint32_t page_count,
1191 void *cookie,
1192 void *handle,
1193 uint64_t flags)
1194
1195 {
1196 long ret;
1197 struct spmc_shmem_obj *obj;
1198 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1199 ffa_mtd_flag32_t mtd_flag;
1200 uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1201 size_t min_desc_size;
1202
1203 if (address != 0U || page_count != 0U) {
1204 WARN("%s: custom memory region for message not supported.\n",
1205 __func__);
1206 return spmc_ffa_error_return(handle,
1207 FFA_ERROR_INVALID_PARAMETER);
1208 }
1209
1210 if (secure_origin) {
1211 WARN("%s: unsupported share direction.\n", __func__);
1212 return spmc_ffa_error_return(handle,
1213 FFA_ERROR_INVALID_PARAMETER);
1214 }
1215
1216 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1217 min_desc_size = sizeof(struct ffa_mtd_v1_0);
1218 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
1219 min_desc_size = sizeof(struct ffa_mtd);
1220 } else {
1221 WARN("%s: bad FF-A version.\n", __func__);
1222 return spmc_ffa_error_return(handle,
1223 FFA_ERROR_INVALID_PARAMETER);
1224 }
1225
1226 /* Check if the descriptor is too small for the FF-A version. */
1227 if (fragment_length < min_desc_size) {
1228 WARN("%s: bad first fragment size %u < %zu\n",
1229 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0));
1230 return spmc_ffa_error_return(handle,
1231 FFA_ERROR_INVALID_PARAMETER);
1232 }
1233
1234 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) {
1235 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY;
1236 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) {
1237 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY;
1238 } else {
1239 WARN("%s: invalid memory management operation.\n", __func__);
1240 return spmc_ffa_error_return(handle,
1241 FFA_ERROR_INVALID_PARAMETER);
1242 }
1243
1244 spin_lock(&spmc_shmem_obj_state.lock);
1245 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length);
1246 if (obj == NULL) {
1247 ret = FFA_ERROR_NO_MEMORY;
1248 goto err_unlock;
1249 }
1250
1251 spin_lock(&mbox->lock);
1252 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag,
1253 ffa_version, handle);
1254 spin_unlock(&mbox->lock);
1255
1256 spin_unlock(&spmc_shmem_obj_state.lock);
1257 return ret;
1258
1259 err_unlock:
1260 spin_unlock(&spmc_shmem_obj_state.lock);
1261 return spmc_ffa_error_return(handle, ret);
1262 }
1263
1264 /**
1265 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation.
1266 * @client: Client state.
1267 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX.
1268 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX.
1269 * @fragment_length: Length of fragments transmitted.
1270 * @sender_id: Vmid of sender in bits [31:16]
1271 * @smc_handle: Handle passed to smc call. Used to return
1272 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1273 *
1274 * Return: @smc_handle on success, error code on failure.
1275 */
spmc_ffa_mem_frag_tx(uint32_t smc_fid,bool secure_origin,uint64_t handle_low,uint64_t handle_high,uint32_t fragment_length,uint32_t sender_id,void * cookie,void * handle,uint64_t flags)1276 long spmc_ffa_mem_frag_tx(uint32_t smc_fid,
1277 bool secure_origin,
1278 uint64_t handle_low,
1279 uint64_t handle_high,
1280 uint32_t fragment_length,
1281 uint32_t sender_id,
1282 void *cookie,
1283 void *handle,
1284 uint64_t flags)
1285 {
1286 long ret;
1287 uint32_t desc_sender_id;
1288 uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1289 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1290
1291 struct spmc_shmem_obj *obj;
1292 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1293
1294 spin_lock(&spmc_shmem_obj_state.lock);
1295
1296 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1297 if (obj == NULL) {
1298 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1299 __func__, mem_handle);
1300 ret = FFA_ERROR_INVALID_PARAMETER;
1301 goto err_unlock;
1302 }
1303
1304 desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1305 if (sender_id != desc_sender_id) {
1306 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1307 sender_id, desc_sender_id);
1308 ret = FFA_ERROR_INVALID_PARAMETER;
1309 goto err_unlock;
1310 }
1311
1312 if (obj->desc_filled == obj->desc_size) {
1313 WARN("%s: object desc already filled, %zu\n", __func__,
1314 obj->desc_filled);
1315 ret = FFA_ERROR_INVALID_PARAMETER;
1316 goto err_unlock;
1317 }
1318
1319 spin_lock(&mbox->lock);
1320 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version,
1321 handle);
1322 spin_unlock(&mbox->lock);
1323
1324 spin_unlock(&spmc_shmem_obj_state.lock);
1325 return ret;
1326
1327 err_unlock:
1328 spin_unlock(&spmc_shmem_obj_state.lock);
1329 return spmc_ffa_error_return(handle, ret);
1330 }
1331
1332 /**
1333 * spmc_ffa_mem_retrieve_clear_ns_bit - Clear the NS bit in the response descriptor
1334 * if the caller implements a version smaller
1335 * than FF-A 1.1 and if they have not requested
1336 * the functionality.
1337 * TODO: We are assuming that the caller is
1338 * an SP. To support retrieval from the
1339 * normal world this function will need to be
1340 * expanded accordingly.
1341 * @resp: Descriptor populated in callers RX buffer.
1342 * @sp_ctx: Context of the calling SP.
1343 */
spmc_ffa_mem_retrieve_clear_ns_bit(struct ffa_mtd * resp,struct secure_partition_desc * sp_ctx)1344 void spmc_ffa_mem_retrieve_clear_ns_bit(struct ffa_mtd *resp,
1345 struct secure_partition_desc *sp_ctx)
1346 {
1347 if (sp_ctx->ffa_version < MAKE_FFA_VERSION(1, 1) &&
1348 !sp_ctx->ns_bit_requested) {
1349 resp->memory_region_attributes &= ~FFA_MEM_ATTR_NS_BIT;
1350 }
1351 }
1352
1353 /**
1354 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation.
1355 * @smc_fid: FID of SMC
1356 * @total_length: Total length of retrieve request descriptor if this is
1357 * the first call. Otherwise (unsupported) must be 0.
1358 * @fragment_length: Length of fragment of retrieve request descriptor passed
1359 * in this call. Only @fragment_length == @length is
1360 * supported by this implementation.
1361 * @address: Not supported, must be 0.
1362 * @page_count: Not supported, must be 0.
1363 * @smc_handle: Handle passed to smc call. Used to return
1364 * FFA_MEM_RETRIEVE_RESP.
1365 *
1366 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call.
1367 * Used by secure os to retrieve memory already shared by non-secure os,
1368 * or by the hypervisor to retrieve the memory region for a specific handle.
1369 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message,
1370 * the client must call FFA_MEM_FRAG_RX until the full response has been
1371 * received.
1372 *
1373 * Return: @handle on success, error code on failure.
1374 */
1375 long
spmc_ffa_mem_retrieve_req(uint32_t smc_fid,bool secure_origin,uint32_t total_length,uint32_t fragment_length,uint64_t address,uint32_t page_count,void * cookie,void * handle,uint64_t flags)1376 spmc_ffa_mem_retrieve_req(uint32_t smc_fid,
1377 bool secure_origin,
1378 uint32_t total_length,
1379 uint32_t fragment_length,
1380 uint64_t address,
1381 uint32_t page_count,
1382 void *cookie,
1383 void *handle,
1384 uint64_t flags)
1385 {
1386 int ret;
1387 size_t buf_size;
1388 size_t copy_size = 0;
1389 size_t min_desc_size;
1390 size_t out_desc_size = 0;
1391
1392 /*
1393 * Currently we are only accessing fields that are the same in both the
1394 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly
1395 * here. We only need validate against the appropriate struct size.
1396 */
1397 struct ffa_mtd *resp;
1398 const struct ffa_mtd *req;
1399 struct spmc_shmem_obj *obj = NULL;
1400 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1401 uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1402 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1403
1404 if (address != 0U || page_count != 0U) {
1405 WARN("%s: custom memory region not supported.\n", __func__);
1406 return spmc_ffa_error_return(handle,
1407 FFA_ERROR_INVALID_PARAMETER);
1408 }
1409
1410 spin_lock(&mbox->lock);
1411
1412 req = mbox->tx_buffer;
1413 resp = mbox->rx_buffer;
1414 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1415
1416 if (mbox->rxtx_page_count == 0U) {
1417 WARN("%s: buffer pair not registered.\n", __func__);
1418 ret = FFA_ERROR_INVALID_PARAMETER;
1419 goto err_unlock_mailbox;
1420 }
1421
1422 if (mbox->state != MAILBOX_STATE_EMPTY) {
1423 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state);
1424 ret = FFA_ERROR_DENIED;
1425 goto err_unlock_mailbox;
1426 }
1427
1428 if (fragment_length != total_length) {
1429 WARN("%s: fragmented retrieve request not supported.\n",
1430 __func__);
1431 ret = FFA_ERROR_INVALID_PARAMETER;
1432 goto err_unlock_mailbox;
1433 }
1434
1435 /* req->emad_count is not set for retrieve by hypervisor */
1436 if (secure_origin && req->emad_count == 0U) {
1437 WARN("%s: unsupported attribute desc count %u.\n",
1438 __func__, obj->desc.emad_count);
1439 ret = FFA_ERROR_INVALID_PARAMETER;
1440 goto err_unlock_mailbox;
1441 }
1442
1443 /* Determine the appropriate minimum descriptor size. */
1444 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1445 min_desc_size = sizeof(struct ffa_mtd_v1_0);
1446 } else {
1447 min_desc_size = sizeof(struct ffa_mtd);
1448 }
1449 if (total_length < min_desc_size) {
1450 WARN("%s: invalid length %u < %zu\n", __func__, total_length,
1451 min_desc_size);
1452 ret = FFA_ERROR_INVALID_PARAMETER;
1453 goto err_unlock_mailbox;
1454 }
1455
1456 spin_lock(&spmc_shmem_obj_state.lock);
1457
1458 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1459 if (obj == NULL) {
1460 ret = FFA_ERROR_INVALID_PARAMETER;
1461 goto err_unlock_all;
1462 }
1463
1464 if (obj->desc_filled != obj->desc_size) {
1465 WARN("%s: incomplete object desc filled %zu < size %zu\n",
1466 __func__, obj->desc_filled, obj->desc_size);
1467 ret = FFA_ERROR_INVALID_PARAMETER;
1468 goto err_unlock_all;
1469 }
1470
1471 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) {
1472 WARN("%s: wrong sender id 0x%x != 0x%x\n",
1473 __func__, req->sender_id, obj->desc.sender_id);
1474 ret = FFA_ERROR_INVALID_PARAMETER;
1475 goto err_unlock_all;
1476 }
1477
1478 if (req->emad_count != 0U && req->tag != obj->desc.tag) {
1479 WARN("%s: wrong tag 0x%lx != 0x%lx\n",
1480 __func__, req->tag, obj->desc.tag);
1481 ret = FFA_ERROR_INVALID_PARAMETER;
1482 goto err_unlock_all;
1483 }
1484
1485 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) {
1486 WARN("%s: mistmatch of endpoint counts %u != %u\n",
1487 __func__, req->emad_count, obj->desc.emad_count);
1488 ret = FFA_ERROR_INVALID_PARAMETER;
1489 goto err_unlock_all;
1490 }
1491
1492 /*
1493 * TODO: add support for descriptors with more than one EMAD
1494 * If we get a retrieve from the hypervisor, we currently just
1495 * copy the existing descriptor below as is. The spec requires
1496 * that the returned descriptor only contain one EMAD, so for
1497 * now we enforce that here.
1498 */
1499 if (req->emad_count == 0U && obj->desc.emad_count != 1U) {
1500 WARN("%s: unsupported endpoint count %u != 1\n", __func__,
1501 obj->desc.emad_count);
1502 ret = FFA_ERROR_INVALID_PARAMETER;
1503 goto err_unlock_all;
1504 }
1505
1506 /* Ensure the NS bit is set to 0 in the request. */
1507 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1508 WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1509 ret = FFA_ERROR_INVALID_PARAMETER;
1510 goto err_unlock_all;
1511 }
1512
1513 if (req->flags != 0U) {
1514 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) !=
1515 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) {
1516 /*
1517 * If the retrieve request specifies the memory
1518 * transaction ensure it matches what we expect.
1519 */
1520 WARN("%s: wrong mem transaction flags %x != %x\n",
1521 __func__, req->flags, obj->desc.flags);
1522 ret = FFA_ERROR_INVALID_PARAMETER;
1523 goto err_unlock_all;
1524 }
1525
1526 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY &&
1527 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) {
1528 /*
1529 * Current implementation does not support donate and
1530 * it supports no other flags.
1531 */
1532 WARN("%s: invalid flags 0x%x\n", __func__, req->flags);
1533 ret = FFA_ERROR_INVALID_PARAMETER;
1534 goto err_unlock_all;
1535 }
1536 }
1537
1538 /* Validate the caller is a valid participant. */
1539 if (req->emad_count != 0U &&
1540 !spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1541 WARN("%s: Invalid endpoint ID (0x%x).\n",
1542 __func__, sp_ctx->sp_id);
1543 ret = FFA_ERROR_INVALID_PARAMETER;
1544 goto err_unlock_all;
1545 }
1546
1547 /* Validate that the provided emad offset and structure is valid.*/
1548 for (size_t i = 0; i < req->emad_count; i++) {
1549 size_t emad_size;
1550 struct ffa_emad_v1_0 *emad;
1551
1552 emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1553 &emad_size);
1554
1555 if ((uintptr_t) emad >= (uintptr_t)
1556 ((uint8_t *) req + total_length)) {
1557 WARN("Invalid emad access.\n");
1558 ret = FFA_ERROR_INVALID_PARAMETER;
1559 goto err_unlock_all;
1560 }
1561 }
1562
1563 /*
1564 * Validate all the endpoints match in the case of multiple
1565 * borrowers. We don't mandate that the order of the borrowers
1566 * must match in the descriptors therefore check to see if the
1567 * endpoints match in any order.
1568 */
1569 for (size_t i = 0; i < req->emad_count; i++) {
1570 bool found = false;
1571 size_t emad_size;
1572 struct ffa_emad_v1_0 *emad;
1573 struct ffa_emad_v1_0 *other_emad;
1574
1575 emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1576 &emad_size);
1577
1578 for (size_t j = 0; j < obj->desc.emad_count; j++) {
1579 other_emad = spmc_shmem_obj_get_emad(
1580 &obj->desc, j, MAKE_FFA_VERSION(1, 1),
1581 &emad_size);
1582
1583 if (req->emad_count &&
1584 emad->mapd.endpoint_id ==
1585 other_emad->mapd.endpoint_id) {
1586 found = true;
1587 break;
1588 }
1589 }
1590
1591 if (!found) {
1592 WARN("%s: invalid receiver id (0x%x).\n",
1593 __func__, emad->mapd.endpoint_id);
1594 ret = FFA_ERROR_INVALID_PARAMETER;
1595 goto err_unlock_all;
1596 }
1597 }
1598
1599 mbox->state = MAILBOX_STATE_FULL;
1600
1601 if (req->emad_count != 0U) {
1602 obj->in_use++;
1603 }
1604
1605 /*
1606 * If the caller is v1.0 convert the descriptor, otherwise copy
1607 * directly.
1608 */
1609 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1610 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0,
1611 ©_size,
1612 &out_desc_size);
1613 if (ret != 0U) {
1614 ERROR("%s: Failed to process descriptor.\n", __func__);
1615 goto err_unlock_all;
1616 }
1617 } else {
1618 copy_size = MIN(obj->desc_size, buf_size);
1619 out_desc_size = obj->desc_size;
1620
1621 memcpy(resp, &obj->desc, copy_size);
1622 }
1623
1624 if (req->emad_count == 0U) {
1625 size_t emad_size;
1626 struct ffa_emad_v1_0 *emad;
1627
1628 assert(resp->handle == req->handle);
1629 assert(resp->emad_count == 1U);
1630
1631 emad = spmc_shmem_obj_get_emad(resp, 0, ffa_version,
1632 &emad_size);
1633 /*
1634 * The Sender endpoint ID field must be set to the Lender
1635 * or Owner VM ID in the transaction descriptor.
1636 */
1637 emad->mapd.endpoint_id = obj->desc.sender_id;
1638 }
1639
1640 /* Clear the NS bit in the response if applicable. */
1641 if (secure_origin) {
1642 spmc_ffa_mem_retrieve_clear_ns_bit(resp, sp_ctx);
1643 } else {
1644 /*
1645 * The NS bit is set by the SPMC in the corresponding invocation
1646 * of the FFA_MEM_RETRIEVE_RESP ABI at the Non-secure physical
1647 * FF-A instance as follows.
1648 */
1649 if (ffa_version > MAKE_FFA_VERSION(1, 0)) {
1650 /*
1651 * The bit is set to b’1 if the version of the Framework
1652 * implemented by the Hypervisor is greater than v1.0
1653 */
1654 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT;
1655 } else {
1656 /*
1657 * The bit is set to b’0 if the version of the Framework
1658 * implemented by the Hypervisor is v1.0
1659 */
1660 resp->memory_region_attributes &= ~FFA_MEM_ATTR_NS_BIT;
1661 }
1662 }
1663
1664 spin_unlock(&spmc_shmem_obj_state.lock);
1665 spin_unlock(&mbox->lock);
1666
1667 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size,
1668 copy_size, 0, 0, 0, 0, 0);
1669
1670 err_unlock_all:
1671 spin_unlock(&spmc_shmem_obj_state.lock);
1672 err_unlock_mailbox:
1673 spin_unlock(&mbox->lock);
1674 return spmc_ffa_error_return(handle, ret);
1675 }
1676
1677 /**
1678 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation.
1679 * @client: Client state.
1680 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0].
1681 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32].
1682 * @fragment_offset: Byte offset in descriptor to resume at.
1683 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a
1684 * hypervisor. 0 otherwise.
1685 * @smc_handle: Handle passed to smc call. Used to return
1686 * FFA_MEM_FRAG_TX.
1687 *
1688 * Return: @smc_handle on success, error code on failure.
1689 */
spmc_ffa_mem_frag_rx(uint32_t smc_fid,bool secure_origin,uint32_t handle_low,uint32_t handle_high,uint32_t fragment_offset,uint32_t sender_id,void * cookie,void * handle,uint64_t flags)1690 long spmc_ffa_mem_frag_rx(uint32_t smc_fid,
1691 bool secure_origin,
1692 uint32_t handle_low,
1693 uint32_t handle_high,
1694 uint32_t fragment_offset,
1695 uint32_t sender_id,
1696 void *cookie,
1697 void *handle,
1698 uint64_t flags)
1699 {
1700 int ret;
1701 void *src;
1702 size_t buf_size;
1703 size_t copy_size;
1704 size_t full_copy_size;
1705 uint32_t desc_sender_id;
1706 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1707 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1708 struct spmc_shmem_obj *obj;
1709 uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1710
1711 spin_lock(&spmc_shmem_obj_state.lock);
1712
1713 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1714 if (obj == NULL) {
1715 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1716 __func__, mem_handle);
1717 ret = FFA_ERROR_INVALID_PARAMETER;
1718 goto err_unlock_shmem;
1719 }
1720
1721 desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1722 if (sender_id != 0U && sender_id != desc_sender_id) {
1723 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1724 sender_id, desc_sender_id);
1725 ret = FFA_ERROR_INVALID_PARAMETER;
1726 goto err_unlock_shmem;
1727 }
1728
1729 if (fragment_offset >= obj->desc_size) {
1730 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n",
1731 __func__, fragment_offset, obj->desc_size);
1732 ret = FFA_ERROR_INVALID_PARAMETER;
1733 goto err_unlock_shmem;
1734 }
1735
1736 spin_lock(&mbox->lock);
1737
1738 if (mbox->rxtx_page_count == 0U) {
1739 WARN("%s: buffer pair not registered.\n", __func__);
1740 ret = FFA_ERROR_INVALID_PARAMETER;
1741 goto err_unlock_all;
1742 }
1743
1744 if (mbox->state != MAILBOX_STATE_EMPTY) {
1745 WARN("%s: RX Buffer is full!\n", __func__);
1746 ret = FFA_ERROR_DENIED;
1747 goto err_unlock_all;
1748 }
1749
1750 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1751
1752 mbox->state = MAILBOX_STATE_FULL;
1753
1754 /*
1755 * If the caller is v1.0 convert the descriptor, otherwise copy
1756 * directly.
1757 */
1758 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1759 size_t out_desc_size;
1760
1761 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj,
1762 buf_size,
1763 fragment_offset,
1764 ©_size,
1765 &out_desc_size);
1766 if (ret != 0U) {
1767 ERROR("%s: Failed to process descriptor.\n", __func__);
1768 goto err_unlock_all;
1769 }
1770 } else {
1771 full_copy_size = obj->desc_size - fragment_offset;
1772 copy_size = MIN(full_copy_size, buf_size);
1773
1774 src = &obj->desc;
1775
1776 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size);
1777 }
1778
1779 spin_unlock(&mbox->lock);
1780 spin_unlock(&spmc_shmem_obj_state.lock);
1781
1782 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high,
1783 copy_size, sender_id, 0, 0, 0);
1784
1785 err_unlock_all:
1786 spin_unlock(&mbox->lock);
1787 err_unlock_shmem:
1788 spin_unlock(&spmc_shmem_obj_state.lock);
1789 return spmc_ffa_error_return(handle, ret);
1790 }
1791
1792 /**
1793 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation.
1794 * @client: Client state.
1795 *
1796 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call.
1797 * Used by secure os release previously shared memory to non-secure os.
1798 *
1799 * The handle to release must be in the client's (secure os's) transmit buffer.
1800 *
1801 * Return: 0 on success, error code on failure.
1802 */
spmc_ffa_mem_relinquish(uint32_t smc_fid,bool secure_origin,uint32_t handle_low,uint32_t handle_high,uint32_t fragment_offset,uint32_t sender_id,void * cookie,void * handle,uint64_t flags)1803 int spmc_ffa_mem_relinquish(uint32_t smc_fid,
1804 bool secure_origin,
1805 uint32_t handle_low,
1806 uint32_t handle_high,
1807 uint32_t fragment_offset,
1808 uint32_t sender_id,
1809 void *cookie,
1810 void *handle,
1811 uint64_t flags)
1812 {
1813 int ret;
1814 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1815 struct spmc_shmem_obj *obj;
1816 const struct ffa_mem_relinquish_descriptor *req;
1817 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1818
1819 if (!secure_origin) {
1820 WARN("%s: unsupported relinquish direction.\n", __func__);
1821 return spmc_ffa_error_return(handle,
1822 FFA_ERROR_INVALID_PARAMETER);
1823 }
1824
1825 spin_lock(&mbox->lock);
1826
1827 if (mbox->rxtx_page_count == 0U) {
1828 WARN("%s: buffer pair not registered.\n", __func__);
1829 ret = FFA_ERROR_INVALID_PARAMETER;
1830 goto err_unlock_mailbox;
1831 }
1832
1833 req = mbox->tx_buffer;
1834
1835 if (req->flags != 0U) {
1836 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags);
1837 ret = FFA_ERROR_INVALID_PARAMETER;
1838 goto err_unlock_mailbox;
1839 }
1840
1841 if (req->endpoint_count == 0) {
1842 WARN("%s: endpoint count cannot be 0.\n", __func__);
1843 ret = FFA_ERROR_INVALID_PARAMETER;
1844 goto err_unlock_mailbox;
1845 }
1846
1847 spin_lock(&spmc_shmem_obj_state.lock);
1848
1849 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1850 if (obj == NULL) {
1851 ret = FFA_ERROR_INVALID_PARAMETER;
1852 goto err_unlock_all;
1853 }
1854
1855 /*
1856 * Validate the endpoint ID was populated correctly. We don't currently
1857 * support proxy endpoints so the endpoint count should always be 1.
1858 */
1859 if (req->endpoint_count != 1U) {
1860 WARN("%s: unsupported endpoint count %u != 1\n", __func__,
1861 req->endpoint_count);
1862 ret = FFA_ERROR_INVALID_PARAMETER;
1863 goto err_unlock_all;
1864 }
1865
1866 /* Validate provided endpoint ID matches the partition ID. */
1867 if (req->endpoint_array[0] != sp_ctx->sp_id) {
1868 WARN("%s: invalid endpoint ID %u != %u\n", __func__,
1869 req->endpoint_array[0], sp_ctx->sp_id);
1870 ret = FFA_ERROR_INVALID_PARAMETER;
1871 goto err_unlock_all;
1872 }
1873
1874 /* Validate the caller is a valid participant. */
1875 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1876 WARN("%s: Invalid endpoint ID (0x%x).\n",
1877 __func__, req->endpoint_array[0]);
1878 ret = FFA_ERROR_INVALID_PARAMETER;
1879 goto err_unlock_all;
1880 }
1881
1882 if (obj->in_use == 0U) {
1883 ret = FFA_ERROR_INVALID_PARAMETER;
1884 goto err_unlock_all;
1885 }
1886 obj->in_use--;
1887
1888 spin_unlock(&spmc_shmem_obj_state.lock);
1889 spin_unlock(&mbox->lock);
1890
1891 SMC_RET1(handle, FFA_SUCCESS_SMC32);
1892
1893 err_unlock_all:
1894 spin_unlock(&spmc_shmem_obj_state.lock);
1895 err_unlock_mailbox:
1896 spin_unlock(&mbox->lock);
1897 return spmc_ffa_error_return(handle, ret);
1898 }
1899
1900 /**
1901 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation.
1902 * @client: Client state.
1903 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0].
1904 * @handle_high: Unique handle of shared memory object to reclaim.
1905 * Bit[63:32].
1906 * @flags: Unsupported, ignored.
1907 *
1908 * Implements a subset of the FF-A FFA_MEM_RECLAIM call.
1909 * Used by non-secure os reclaim memory previously shared with secure os.
1910 *
1911 * Return: 0 on success, error code on failure.
1912 */
spmc_ffa_mem_reclaim(uint32_t smc_fid,bool secure_origin,uint32_t handle_low,uint32_t handle_high,uint32_t mem_flags,uint64_t x4,void * cookie,void * handle,uint64_t flags)1913 int spmc_ffa_mem_reclaim(uint32_t smc_fid,
1914 bool secure_origin,
1915 uint32_t handle_low,
1916 uint32_t handle_high,
1917 uint32_t mem_flags,
1918 uint64_t x4,
1919 void *cookie,
1920 void *handle,
1921 uint64_t flags)
1922 {
1923 int ret;
1924 struct spmc_shmem_obj *obj;
1925 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1926
1927 if (secure_origin) {
1928 WARN("%s: unsupported reclaim direction.\n", __func__);
1929 return spmc_ffa_error_return(handle,
1930 FFA_ERROR_INVALID_PARAMETER);
1931 }
1932
1933 if (mem_flags != 0U) {
1934 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags);
1935 return spmc_ffa_error_return(handle,
1936 FFA_ERROR_INVALID_PARAMETER);
1937 }
1938
1939 spin_lock(&spmc_shmem_obj_state.lock);
1940
1941 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1942 if (obj == NULL) {
1943 ret = FFA_ERROR_INVALID_PARAMETER;
1944 goto err_unlock;
1945 }
1946 if (obj->in_use != 0U) {
1947 ret = FFA_ERROR_DENIED;
1948 goto err_unlock;
1949 }
1950
1951 if (obj->desc_filled != obj->desc_size) {
1952 WARN("%s: incomplete object desc filled %zu < size %zu\n",
1953 __func__, obj->desc_filled, obj->desc_size);
1954 ret = FFA_ERROR_INVALID_PARAMETER;
1955 goto err_unlock;
1956 }
1957
1958 /* Allow for platform specific operations to be performed. */
1959 ret = plat_spmc_shmem_reclaim(&obj->desc);
1960 if (ret != 0) {
1961 goto err_unlock;
1962 }
1963
1964 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1965 spin_unlock(&spmc_shmem_obj_state.lock);
1966
1967 SMC_RET1(handle, FFA_SUCCESS_SMC32);
1968
1969 err_unlock:
1970 spin_unlock(&spmc_shmem_obj_state.lock);
1971 return spmc_ffa_error_return(handle, ret);
1972 }
1973