1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGE_MM_H
3 #define _LINUX_HUGE_MM_H
4
5 #include <linux/mm_types.h>
6
7 #include <linux/fs.h> /* only for vma_is_dax() */
8 #include <linux/kobject.h>
9
10 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf);
11 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
12 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
13 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
14 void huge_pmd_set_accessed(struct vm_fault *vmf);
15 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
16 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
17 struct vm_area_struct *vma);
18
19 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
20 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud);
21 #else
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)22 static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
23 {
24 }
25 #endif
26
27 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf);
28 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
29 pmd_t *pmd, unsigned long addr, unsigned long next);
30 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd,
31 unsigned long addr);
32 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud,
33 unsigned long addr);
34 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
35 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd);
36 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
37 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
38 unsigned long cp_flags);
39
40 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write);
41 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write);
42
43 enum transparent_hugepage_flag {
44 TRANSPARENT_HUGEPAGE_UNSUPPORTED,
45 TRANSPARENT_HUGEPAGE_FLAG,
46 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
47 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
48 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
49 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
50 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
51 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG,
52 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG,
53 };
54
55 struct kobject;
56 struct kobj_attribute;
57
58 ssize_t single_hugepage_flag_store(struct kobject *kobj,
59 struct kobj_attribute *attr,
60 const char *buf, size_t count,
61 enum transparent_hugepage_flag flag);
62 ssize_t single_hugepage_flag_show(struct kobject *kobj,
63 struct kobj_attribute *attr, char *buf,
64 enum transparent_hugepage_flag flag);
65 extern struct kobj_attribute shmem_enabled_attr;
66 extern struct kobj_attribute thpsize_shmem_enabled_attr;
67
68 /*
69 * Mask of all large folio orders supported for anonymous THP; all orders up to
70 * and including PMD_ORDER, except order-0 (which is not "huge") and order-1
71 * (which is a limitation of the THP implementation).
72 */
73 #define THP_ORDERS_ALL_ANON ((BIT(PMD_ORDER + 1) - 1) & ~(BIT(0) | BIT(1)))
74
75 /*
76 * Mask of all large folio orders supported for file THP. Folios in a DAX
77 * file is never split and the MAX_PAGECACHE_ORDER limit does not apply to
78 * it. Same to PFNMAPs where there's neither page* nor pagecache.
79 */
80 #define THP_ORDERS_ALL_SPECIAL \
81 (BIT(PMD_ORDER) | BIT(PUD_ORDER))
82 #define THP_ORDERS_ALL_FILE_DEFAULT \
83 ((BIT(MAX_PAGECACHE_ORDER + 1) - 1) & ~BIT(0))
84
85 /*
86 * Mask of all large folio orders supported for THP.
87 */
88 #define THP_ORDERS_ALL \
89 (THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_SPECIAL | THP_ORDERS_ALL_FILE_DEFAULT)
90
91 #define TVA_SMAPS (1 << 0) /* Will be used for procfs */
92 #define TVA_IN_PF (1 << 1) /* Page fault handler */
93 #define TVA_ENFORCE_SYSFS (1 << 2) /* Obey sysfs configuration */
94
95 #define thp_vma_allowable_order(vma, vm_flags, tva_flags, order) \
96 (!!thp_vma_allowable_orders(vma, vm_flags, tva_flags, BIT(order)))
97
98 #define split_folio(f) split_folio_to_list(f, NULL)
99
100 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
101 #define HPAGE_PMD_SHIFT PMD_SHIFT
102 #define HPAGE_PUD_SHIFT PUD_SHIFT
103 #else
104 #define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; })
105 #define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; })
106 #endif
107
108 #define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT)
109 #define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER)
110 #define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1))
111 #define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT)
112
113 #define HPAGE_PUD_ORDER (HPAGE_PUD_SHIFT-PAGE_SHIFT)
114 #define HPAGE_PUD_NR (1<<HPAGE_PUD_ORDER)
115 #define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1))
116 #define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT)
117
118 enum mthp_stat_item {
119 MTHP_STAT_ANON_FAULT_ALLOC,
120 MTHP_STAT_ANON_FAULT_FALLBACK,
121 MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE,
122 MTHP_STAT_ZSWPOUT,
123 MTHP_STAT_SWPIN,
124 MTHP_STAT_SWPIN_FALLBACK,
125 MTHP_STAT_SWPIN_FALLBACK_CHARGE,
126 MTHP_STAT_SWPOUT,
127 MTHP_STAT_SWPOUT_FALLBACK,
128 MTHP_STAT_SHMEM_ALLOC,
129 MTHP_STAT_SHMEM_FALLBACK,
130 MTHP_STAT_SHMEM_FALLBACK_CHARGE,
131 MTHP_STAT_SPLIT,
132 MTHP_STAT_SPLIT_FAILED,
133 MTHP_STAT_SPLIT_DEFERRED,
134 MTHP_STAT_NR_ANON,
135 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED,
136 __MTHP_STAT_COUNT
137 };
138
139 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
140 struct mthp_stat {
141 unsigned long stats[ilog2(MAX_PTRS_PER_PTE) + 1][__MTHP_STAT_COUNT];
142 };
143
144 DECLARE_PER_CPU(struct mthp_stat, mthp_stats);
145
mod_mthp_stat(int order,enum mthp_stat_item item,int delta)146 static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta)
147 {
148 if (order <= 0 || order > PMD_ORDER)
149 return;
150
151 this_cpu_add(mthp_stats.stats[order][item], delta);
152 }
153
count_mthp_stat(int order,enum mthp_stat_item item)154 static inline void count_mthp_stat(int order, enum mthp_stat_item item)
155 {
156 mod_mthp_stat(order, item, 1);
157 }
158
159 #else
mod_mthp_stat(int order,enum mthp_stat_item item,int delta)160 static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta)
161 {
162 }
163
count_mthp_stat(int order,enum mthp_stat_item item)164 static inline void count_mthp_stat(int order, enum mthp_stat_item item)
165 {
166 }
167 #endif
168
169 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
170
171 extern unsigned long transparent_hugepage_flags;
172 extern unsigned long huge_anon_orders_always;
173 extern unsigned long huge_anon_orders_madvise;
174 extern unsigned long huge_anon_orders_inherit;
175
hugepage_global_enabled(void)176 static inline bool hugepage_global_enabled(void)
177 {
178 return transparent_hugepage_flags &
179 ((1<<TRANSPARENT_HUGEPAGE_FLAG) |
180 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG));
181 }
182
hugepage_global_always(void)183 static inline bool hugepage_global_always(void)
184 {
185 return transparent_hugepage_flags &
186 (1<<TRANSPARENT_HUGEPAGE_FLAG);
187 }
188
highest_order(unsigned long orders)189 static inline int highest_order(unsigned long orders)
190 {
191 return fls_long(orders) - 1;
192 }
193
next_order(unsigned long * orders,int prev)194 static inline int next_order(unsigned long *orders, int prev)
195 {
196 *orders &= ~BIT(prev);
197 return highest_order(*orders);
198 }
199
200 /*
201 * Do the below checks:
202 * - For file vma, check if the linear page offset of vma is
203 * order-aligned within the file. The hugepage is
204 * guaranteed to be order-aligned within the file, but we must
205 * check that the order-aligned addresses in the VMA map to
206 * order-aligned offsets within the file, else the hugepage will
207 * not be mappable.
208 * - For all vmas, check if the haddr is in an aligned hugepage
209 * area.
210 */
thp_vma_suitable_order(struct vm_area_struct * vma,unsigned long addr,int order)211 static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
212 unsigned long addr, int order)
213 {
214 unsigned long hpage_size = PAGE_SIZE << order;
215 unsigned long haddr;
216
217 /* Don't have to check pgoff for anonymous vma */
218 if (!vma_is_anonymous(vma)) {
219 if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
220 hpage_size >> PAGE_SHIFT))
221 return false;
222 }
223
224 haddr = ALIGN_DOWN(addr, hpage_size);
225
226 if (haddr < vma->vm_start || haddr + hpage_size > vma->vm_end)
227 return false;
228 return true;
229 }
230
231 /*
232 * Filter the bitfield of input orders to the ones suitable for use in the vma.
233 * See thp_vma_suitable_order().
234 * All orders that pass the checks are returned as a bitfield.
235 */
thp_vma_suitable_orders(struct vm_area_struct * vma,unsigned long addr,unsigned long orders)236 static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
237 unsigned long addr, unsigned long orders)
238 {
239 int order;
240
241 /*
242 * Iterate over orders, highest to lowest, removing orders that don't
243 * meet alignment requirements from the set. Exit loop at first order
244 * that meets requirements, since all lower orders must also meet
245 * requirements.
246 */
247
248 order = highest_order(orders);
249
250 while (orders) {
251 if (thp_vma_suitable_order(vma, addr, order))
252 break;
253 order = next_order(&orders, order);
254 }
255
256 return orders;
257 }
258
259 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
260 unsigned long vm_flags,
261 unsigned long tva_flags,
262 unsigned long orders);
263
264 /**
265 * thp_vma_allowable_orders - determine hugepage orders that are allowed for vma
266 * @vma: the vm area to check
267 * @vm_flags: use these vm_flags instead of vma->vm_flags
268 * @tva_flags: Which TVA flags to honour
269 * @orders: bitfield of all orders to consider
270 *
271 * Calculates the intersection of the requested hugepage orders and the allowed
272 * hugepage orders for the provided vma. Permitted orders are encoded as a set
273 * bit at the corresponding bit position (bit-2 corresponds to order-2, bit-3
274 * corresponds to order-3, etc). Order-0 is never considered a hugepage order.
275 *
276 * Return: bitfield of orders allowed for hugepage in the vma. 0 if no hugepage
277 * orders are allowed.
278 */
279 static inline
thp_vma_allowable_orders(struct vm_area_struct * vma,unsigned long vm_flags,unsigned long tva_flags,unsigned long orders)280 unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
281 unsigned long vm_flags,
282 unsigned long tva_flags,
283 unsigned long orders)
284 {
285 /* Optimization to check if required orders are enabled early. */
286 if ((tva_flags & TVA_ENFORCE_SYSFS) && vma_is_anonymous(vma)) {
287 unsigned long mask = READ_ONCE(huge_anon_orders_always);
288
289 if (vm_flags & VM_HUGEPAGE)
290 mask |= READ_ONCE(huge_anon_orders_madvise);
291 if (hugepage_global_always() ||
292 ((vm_flags & VM_HUGEPAGE) && hugepage_global_enabled()))
293 mask |= READ_ONCE(huge_anon_orders_inherit);
294
295 orders &= mask;
296 if (!orders)
297 return 0;
298 }
299
300 return __thp_vma_allowable_orders(vma, vm_flags, tva_flags, orders);
301 }
302
303 struct thpsize {
304 struct kobject kobj;
305 struct list_head node;
306 int order;
307 };
308
309 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
310
311 #define transparent_hugepage_use_zero_page() \
312 (transparent_hugepage_flags & \
313 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG))
314
vma_thp_disabled(struct vm_area_struct * vma,unsigned long vm_flags)315 static inline bool vma_thp_disabled(struct vm_area_struct *vma,
316 unsigned long vm_flags)
317 {
318 /*
319 * Explicitly disabled through madvise or prctl, or some
320 * architectures may disable THP for some mappings, for
321 * example, s390 kvm.
322 */
323 return (vm_flags & VM_NOHUGEPAGE) ||
324 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags);
325 }
326
thp_disabled_by_hw(void)327 static inline bool thp_disabled_by_hw(void)
328 {
329 /* If the hardware/firmware marked hugepage support disabled. */
330 return transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED);
331 }
332
333 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
334 unsigned long len, unsigned long pgoff, unsigned long flags);
335 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
336 unsigned long len, unsigned long pgoff, unsigned long flags,
337 vm_flags_t vm_flags);
338
339 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins);
340 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
341 unsigned int new_order);
342 int min_order_for_split(struct folio *folio);
343 int split_folio_to_list(struct folio *folio, struct list_head *list);
split_huge_page(struct page * page)344 static inline int split_huge_page(struct page *page)
345 {
346 struct folio *folio = page_folio(page);
347 int ret = min_order_for_split(folio);
348
349 if (ret < 0)
350 return ret;
351
352 /*
353 * split_huge_page() locks the page before splitting and
354 * expects the same page that has been split to be locked when
355 * returned. split_folio(page_folio(page)) cannot be used here
356 * because it converts the page to folio and passes the head
357 * page to be split.
358 */
359 return split_huge_page_to_list_to_order(page, NULL, ret);
360 }
361 void deferred_split_folio(struct folio *folio, bool partially_mapped);
362
363 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
364 unsigned long address, bool freeze, struct folio *folio);
365
366 #define split_huge_pmd(__vma, __pmd, __address) \
367 do { \
368 pmd_t *____pmd = (__pmd); \
369 if (is_swap_pmd(*____pmd) || pmd_trans_huge(*____pmd) \
370 || pmd_devmap(*____pmd)) \
371 __split_huge_pmd(__vma, __pmd, __address, \
372 false, NULL); \
373 } while (0)
374
375
376 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
377 bool freeze, struct folio *folio);
378
379 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
380 unsigned long address);
381
382 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
383 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
384 pud_t *pudp, unsigned long addr, pgprot_t newprot,
385 unsigned long cp_flags);
386 #else
387 static inline int
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)388 change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
389 pud_t *pudp, unsigned long addr, pgprot_t newprot,
390 unsigned long cp_flags) { return 0; }
391 #endif
392
393 #define split_huge_pud(__vma, __pud, __address) \
394 do { \
395 pud_t *____pud = (__pud); \
396 if (pud_trans_huge(*____pud) \
397 || pud_devmap(*____pud)) \
398 __split_huge_pud(__vma, __pud, __address); \
399 } while (0)
400
401 int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags,
402 int advice);
403 int madvise_collapse(struct vm_area_struct *vma,
404 struct vm_area_struct **prev,
405 unsigned long start, unsigned long end);
406 void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start,
407 unsigned long end, long adjust_next);
408 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma);
409 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma);
410
is_swap_pmd(pmd_t pmd)411 static inline int is_swap_pmd(pmd_t pmd)
412 {
413 return !pmd_none(pmd) && !pmd_present(pmd);
414 }
415
416 /* mmap_lock must be held on entry */
pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)417 static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
418 struct vm_area_struct *vma)
419 {
420 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd))
421 return __pmd_trans_huge_lock(pmd, vma);
422 else
423 return NULL;
424 }
pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)425 static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
426 struct vm_area_struct *vma)
427 {
428 if (pud_trans_huge(*pud) || pud_devmap(*pud))
429 return __pud_trans_huge_lock(pud, vma);
430 else
431 return NULL;
432 }
433
434 /**
435 * folio_test_pmd_mappable - Can we map this folio with a PMD?
436 * @folio: The folio to test
437 */
folio_test_pmd_mappable(struct folio * folio)438 static inline bool folio_test_pmd_mappable(struct folio *folio)
439 {
440 return folio_order(folio) >= HPAGE_PMD_ORDER;
441 }
442
443 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
444 pmd_t *pmd, int flags, struct dev_pagemap **pgmap);
445
446 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf);
447
448 extern struct folio *huge_zero_folio;
449 extern unsigned long huge_zero_pfn;
450
is_huge_zero_folio(const struct folio * folio)451 static inline bool is_huge_zero_folio(const struct folio *folio)
452 {
453 return READ_ONCE(huge_zero_folio) == folio;
454 }
455
is_huge_zero_pmd(pmd_t pmd)456 static inline bool is_huge_zero_pmd(pmd_t pmd)
457 {
458 return pmd_present(pmd) && READ_ONCE(huge_zero_pfn) == pmd_pfn(pmd);
459 }
460
461 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm);
462 void mm_put_huge_zero_folio(struct mm_struct *mm);
463
464 #define mk_huge_pmd(page, prot) pmd_mkhuge(mk_pmd(page, prot))
465
thp_migration_supported(void)466 static inline bool thp_migration_supported(void)
467 {
468 return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION);
469 }
470
471 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
472 pmd_t *pmd, bool freeze, struct folio *folio);
473 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
474 pmd_t *pmdp, struct folio *folio);
475
476 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
477
folio_test_pmd_mappable(struct folio * folio)478 static inline bool folio_test_pmd_mappable(struct folio *folio)
479 {
480 return false;
481 }
482
thp_vma_suitable_order(struct vm_area_struct * vma,unsigned long addr,int order)483 static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
484 unsigned long addr, int order)
485 {
486 return false;
487 }
488
thp_vma_suitable_orders(struct vm_area_struct * vma,unsigned long addr,unsigned long orders)489 static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
490 unsigned long addr, unsigned long orders)
491 {
492 return 0;
493 }
494
thp_vma_allowable_orders(struct vm_area_struct * vma,unsigned long vm_flags,unsigned long tva_flags,unsigned long orders)495 static inline unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
496 unsigned long vm_flags,
497 unsigned long tva_flags,
498 unsigned long orders)
499 {
500 return 0;
501 }
502
503 #define transparent_hugepage_flags 0UL
504
505 #define thp_get_unmapped_area NULL
506
507 static inline unsigned long
thp_get_unmapped_area_vmflags(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)508 thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
509 unsigned long len, unsigned long pgoff,
510 unsigned long flags, vm_flags_t vm_flags)
511 {
512 return 0;
513 }
514
515 static inline bool
can_split_folio(struct folio * folio,int caller_pins,int * pextra_pins)516 can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
517 {
518 return false;
519 }
520 static inline int
split_huge_page_to_list_to_order(struct page * page,struct list_head * list,unsigned int new_order)521 split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
522 unsigned int new_order)
523 {
524 return 0;
525 }
split_huge_page(struct page * page)526 static inline int split_huge_page(struct page *page)
527 {
528 return 0;
529 }
530
split_folio_to_list(struct folio * folio,struct list_head * list)531 static inline int split_folio_to_list(struct folio *folio, struct list_head *list)
532 {
533 return 0;
534 }
535
deferred_split_folio(struct folio * folio,bool partially_mapped)536 static inline void deferred_split_folio(struct folio *folio, bool partially_mapped) {}
537 #define split_huge_pmd(__vma, __pmd, __address) \
538 do { } while (0)
539
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)540 static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
541 unsigned long address, bool freeze, struct folio *folio) {}
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)542 static inline void split_huge_pmd_address(struct vm_area_struct *vma,
543 unsigned long address, bool freeze, struct folio *folio) {}
split_huge_pmd_locked(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,bool freeze,struct folio * folio)544 static inline void split_huge_pmd_locked(struct vm_area_struct *vma,
545 unsigned long address, pmd_t *pmd,
546 bool freeze, struct folio *folio) {}
547
unmap_huge_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)548 static inline bool unmap_huge_pmd_locked(struct vm_area_struct *vma,
549 unsigned long addr, pmd_t *pmdp,
550 struct folio *folio)
551 {
552 return false;
553 }
554
555 #define split_huge_pud(__vma, __pmd, __address) \
556 do { } while (0)
557
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)558 static inline int hugepage_madvise(struct vm_area_struct *vma,
559 unsigned long *vm_flags, int advice)
560 {
561 return -EINVAL;
562 }
563
madvise_collapse(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)564 static inline int madvise_collapse(struct vm_area_struct *vma,
565 struct vm_area_struct **prev,
566 unsigned long start, unsigned long end)
567 {
568 return -EINVAL;
569 }
570
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)571 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma,
572 unsigned long start,
573 unsigned long end,
574 long adjust_next)
575 {
576 }
is_swap_pmd(pmd_t pmd)577 static inline int is_swap_pmd(pmd_t pmd)
578 {
579 return 0;
580 }
pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)581 static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
582 struct vm_area_struct *vma)
583 {
584 return NULL;
585 }
pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)586 static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
587 struct vm_area_struct *vma)
588 {
589 return NULL;
590 }
591
do_huge_pmd_numa_page(struct vm_fault * vmf)592 static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
593 {
594 return 0;
595 }
596
is_huge_zero_folio(const struct folio * folio)597 static inline bool is_huge_zero_folio(const struct folio *folio)
598 {
599 return false;
600 }
601
is_huge_zero_pmd(pmd_t pmd)602 static inline bool is_huge_zero_pmd(pmd_t pmd)
603 {
604 return false;
605 }
606
mm_put_huge_zero_folio(struct mm_struct * mm)607 static inline void mm_put_huge_zero_folio(struct mm_struct *mm)
608 {
609 return;
610 }
611
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)612 static inline struct page *follow_devmap_pmd(struct vm_area_struct *vma,
613 unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
614 {
615 return NULL;
616 }
617
thp_migration_supported(void)618 static inline bool thp_migration_supported(void)
619 {
620 return false;
621 }
622
highest_order(unsigned long orders)623 static inline int highest_order(unsigned long orders)
624 {
625 return 0;
626 }
627
next_order(unsigned long * orders,int prev)628 static inline int next_order(unsigned long *orders, int prev)
629 {
630 return 0;
631 }
632
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)633 static inline void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
634 unsigned long address)
635 {
636 }
637
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)638 static inline int change_huge_pud(struct mmu_gather *tlb,
639 struct vm_area_struct *vma, pud_t *pudp,
640 unsigned long addr, pgprot_t newprot,
641 unsigned long cp_flags)
642 {
643 return 0;
644 }
645 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
646
split_folio_to_list_to_order(struct folio * folio,struct list_head * list,int new_order)647 static inline int split_folio_to_list_to_order(struct folio *folio,
648 struct list_head *list, int new_order)
649 {
650 return split_huge_page_to_list_to_order(&folio->page, list, new_order);
651 }
652
split_folio_to_order(struct folio * folio,int new_order)653 static inline int split_folio_to_order(struct folio *folio, int new_order)
654 {
655 return split_folio_to_list_to_order(folio, NULL, new_order);
656 }
657
658 #endif /* _LINUX_HUGE_MM_H */
659