1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/cpuid.h>
34 #include <asm/apic.h>
35 #include <linux/uaccess.h>
36 #include <asm/mwait.h>
37 #include <asm/fpu/api.h>
38 #include <asm/fpu/sched.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/debugreg.h>
41 #include <asm/nmi.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mce.h>
44 #include <asm/vm86.h>
45 #include <asm/switch_to.h>
46 #include <asm/desc.h>
47 #include <asm/prctl.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/io_bitmap.h>
50 #include <asm/proto.h>
51 #include <asm/frame.h>
52 #include <asm/unwind.h>
53 #include <asm/tdx.h>
54 #include <asm/mmu_context.h>
55 #include <asm/shstk.h>
56 
57 #include "process.h"
58 
59 /*
60  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
61  * no more per-task TSS's. The TSS size is kept cacheline-aligned
62  * so they are allowed to end up in the .data..cacheline_aligned
63  * section. Since TSS's are completely CPU-local, we want them
64  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
65  */
66 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
67 	.x86_tss = {
68 		/*
69 		 * .sp0 is only used when entering ring 0 from a lower
70 		 * privilege level.  Since the init task never runs anything
71 		 * but ring 0 code, there is no need for a valid value here.
72 		 * Poison it.
73 		 */
74 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
75 
76 #ifdef CONFIG_X86_32
77 		.sp1 = TOP_OF_INIT_STACK,
78 
79 		.ss0 = __KERNEL_DS,
80 		.ss1 = __KERNEL_CS,
81 #endif
82 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
83 	 },
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86 
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89 
90 /*
91  * this gets called so that we can store lazy state into memory and copy the
92  * current task into the new thread.
93  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 	/* init_task is not dynamically sized (incomplete FPU state) */
97 	if (unlikely(src == &init_task))
98 		memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(init_task), 0);
99 	else
100 		memcpy(dst, src, arch_task_struct_size);
101 
102 #ifdef CONFIG_VM86
103 	dst->thread.vm86 = NULL;
104 #endif
105 	/* Drop the copied pointer to current's fpstate */
106 	dst->thread.fpu.fpstate = NULL;
107 
108 	return 0;
109 }
110 
111 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)112 void arch_release_task_struct(struct task_struct *tsk)
113 {
114 	if (fpu_state_size_dynamic())
115 		fpstate_free(&tsk->thread.fpu);
116 }
117 #endif
118 
119 /*
120  * Free thread data structures etc..
121  */
exit_thread(struct task_struct * tsk)122 void exit_thread(struct task_struct *tsk)
123 {
124 	struct thread_struct *t = &tsk->thread;
125 	struct fpu *fpu = &t->fpu;
126 
127 	if (test_thread_flag(TIF_IO_BITMAP))
128 		io_bitmap_exit(tsk);
129 
130 	free_vm86(t);
131 
132 	shstk_free(tsk);
133 	fpu__drop(fpu);
134 }
135 
set_new_tls(struct task_struct * p,unsigned long tls)136 static int set_new_tls(struct task_struct *p, unsigned long tls)
137 {
138 	struct user_desc __user *utls = (struct user_desc __user *)tls;
139 
140 	if (in_ia32_syscall())
141 		return do_set_thread_area(p, -1, utls, 0);
142 	else
143 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
144 }
145 
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)146 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
147 				     int (*fn)(void *), void *fn_arg)
148 {
149 	schedule_tail(prev);
150 
151 	/* Is this a kernel thread? */
152 	if (unlikely(fn)) {
153 		fn(fn_arg);
154 		/*
155 		 * A kernel thread is allowed to return here after successfully
156 		 * calling kernel_execve().  Exit to userspace to complete the
157 		 * execve() syscall.
158 		 */
159 		regs->ax = 0;
160 	}
161 
162 	syscall_exit_to_user_mode(regs);
163 }
164 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)165 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
166 {
167 	unsigned long clone_flags = args->flags;
168 	unsigned long sp = args->stack;
169 	unsigned long tls = args->tls;
170 	struct inactive_task_frame *frame;
171 	struct fork_frame *fork_frame;
172 	struct pt_regs *childregs;
173 	unsigned long new_ssp;
174 	int ret = 0;
175 
176 	childregs = task_pt_regs(p);
177 	fork_frame = container_of(childregs, struct fork_frame, regs);
178 	frame = &fork_frame->frame;
179 
180 	frame->bp = encode_frame_pointer(childregs);
181 	frame->ret_addr = (unsigned long) ret_from_fork_asm;
182 	p->thread.sp = (unsigned long) fork_frame;
183 	p->thread.io_bitmap = NULL;
184 	p->thread.iopl_warn = 0;
185 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
186 
187 #ifdef CONFIG_X86_64
188 	current_save_fsgs();
189 	p->thread.fsindex = current->thread.fsindex;
190 	p->thread.fsbase = current->thread.fsbase;
191 	p->thread.gsindex = current->thread.gsindex;
192 	p->thread.gsbase = current->thread.gsbase;
193 
194 	savesegment(es, p->thread.es);
195 	savesegment(ds, p->thread.ds);
196 
197 	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
198 		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
199 #else
200 	p->thread.sp0 = (unsigned long) (childregs + 1);
201 	savesegment(gs, p->thread.gs);
202 	/*
203 	 * Clear all status flags including IF and set fixed bit. 64bit
204 	 * does not have this initialization as the frame does not contain
205 	 * flags. The flags consistency (especially vs. AC) is there
206 	 * ensured via objtool, which lacks 32bit support.
207 	 */
208 	frame->flags = X86_EFLAGS_FIXED;
209 #endif
210 
211 	/*
212 	 * Allocate a new shadow stack for thread if needed. If shadow stack,
213 	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
214 	 * update it.
215 	 */
216 	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
217 	if (IS_ERR_VALUE(new_ssp))
218 		return PTR_ERR((void *)new_ssp);
219 
220 	fpu_clone(p, clone_flags, args->fn, new_ssp);
221 
222 	/* Kernel thread ? */
223 	if (unlikely(p->flags & PF_KTHREAD)) {
224 		p->thread.pkru = pkru_get_init_value();
225 		memset(childregs, 0, sizeof(struct pt_regs));
226 		kthread_frame_init(frame, args->fn, args->fn_arg);
227 		return 0;
228 	}
229 
230 	/*
231 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
232 	 * is only valid when scheduled out.
233 	 */
234 	p->thread.pkru = read_pkru();
235 
236 	frame->bx = 0;
237 	*childregs = *current_pt_regs();
238 	childregs->ax = 0;
239 	if (sp)
240 		childregs->sp = sp;
241 
242 	if (unlikely(args->fn)) {
243 		/*
244 		 * A user space thread, but it doesn't return to
245 		 * ret_after_fork().
246 		 *
247 		 * In order to indicate that to tools like gdb,
248 		 * we reset the stack and instruction pointers.
249 		 *
250 		 * It does the same kernel frame setup to return to a kernel
251 		 * function that a kernel thread does.
252 		 */
253 		childregs->sp = 0;
254 		childregs->ip = 0;
255 		kthread_frame_init(frame, args->fn, args->fn_arg);
256 		return 0;
257 	}
258 
259 	/* Set a new TLS for the child thread? */
260 	if (clone_flags & CLONE_SETTLS)
261 		ret = set_new_tls(p, tls);
262 
263 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
264 		io_bitmap_share(p);
265 
266 	return ret;
267 }
268 
pkru_flush_thread(void)269 static void pkru_flush_thread(void)
270 {
271 	/*
272 	 * If PKRU is enabled the default PKRU value has to be loaded into
273 	 * the hardware right here (similar to context switch).
274 	 */
275 	pkru_write_default();
276 }
277 
flush_thread(void)278 void flush_thread(void)
279 {
280 	struct task_struct *tsk = current;
281 
282 	flush_ptrace_hw_breakpoint(tsk);
283 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
284 
285 	fpu_flush_thread();
286 	pkru_flush_thread();
287 }
288 
disable_TSC(void)289 void disable_TSC(void)
290 {
291 	preempt_disable();
292 	if (!test_and_set_thread_flag(TIF_NOTSC))
293 		/*
294 		 * Must flip the CPU state synchronously with
295 		 * TIF_NOTSC in the current running context.
296 		 */
297 		cr4_set_bits(X86_CR4_TSD);
298 	preempt_enable();
299 }
300 
enable_TSC(void)301 static void enable_TSC(void)
302 {
303 	preempt_disable();
304 	if (test_and_clear_thread_flag(TIF_NOTSC))
305 		/*
306 		 * Must flip the CPU state synchronously with
307 		 * TIF_NOTSC in the current running context.
308 		 */
309 		cr4_clear_bits(X86_CR4_TSD);
310 	preempt_enable();
311 }
312 
get_tsc_mode(unsigned long adr)313 int get_tsc_mode(unsigned long adr)
314 {
315 	unsigned int val;
316 
317 	if (test_thread_flag(TIF_NOTSC))
318 		val = PR_TSC_SIGSEGV;
319 	else
320 		val = PR_TSC_ENABLE;
321 
322 	return put_user(val, (unsigned int __user *)adr);
323 }
324 
set_tsc_mode(unsigned int val)325 int set_tsc_mode(unsigned int val)
326 {
327 	if (val == PR_TSC_SIGSEGV)
328 		disable_TSC();
329 	else if (val == PR_TSC_ENABLE)
330 		enable_TSC();
331 	else
332 		return -EINVAL;
333 
334 	return 0;
335 }
336 
337 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
338 
set_cpuid_faulting(bool on)339 static void set_cpuid_faulting(bool on)
340 {
341 	u64 msrval;
342 
343 	msrval = this_cpu_read(msr_misc_features_shadow);
344 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
345 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
346 	this_cpu_write(msr_misc_features_shadow, msrval);
347 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
348 }
349 
disable_cpuid(void)350 static void disable_cpuid(void)
351 {
352 	preempt_disable();
353 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
354 		/*
355 		 * Must flip the CPU state synchronously with
356 		 * TIF_NOCPUID in the current running context.
357 		 */
358 		set_cpuid_faulting(true);
359 	}
360 	preempt_enable();
361 }
362 
enable_cpuid(void)363 static void enable_cpuid(void)
364 {
365 	preempt_disable();
366 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
367 		/*
368 		 * Must flip the CPU state synchronously with
369 		 * TIF_NOCPUID in the current running context.
370 		 */
371 		set_cpuid_faulting(false);
372 	}
373 	preempt_enable();
374 }
375 
get_cpuid_mode(void)376 static int get_cpuid_mode(void)
377 {
378 	return !test_thread_flag(TIF_NOCPUID);
379 }
380 
set_cpuid_mode(unsigned long cpuid_enabled)381 static int set_cpuid_mode(unsigned long cpuid_enabled)
382 {
383 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
384 		return -ENODEV;
385 
386 	if (cpuid_enabled)
387 		enable_cpuid();
388 	else
389 		disable_cpuid();
390 
391 	return 0;
392 }
393 
394 /*
395  * Called immediately after a successful exec.
396  */
arch_setup_new_exec(void)397 void arch_setup_new_exec(void)
398 {
399 	/* If cpuid was previously disabled for this task, re-enable it. */
400 	if (test_thread_flag(TIF_NOCPUID))
401 		enable_cpuid();
402 
403 	/*
404 	 * Don't inherit TIF_SSBD across exec boundary when
405 	 * PR_SPEC_DISABLE_NOEXEC is used.
406 	 */
407 	if (test_thread_flag(TIF_SSBD) &&
408 	    task_spec_ssb_noexec(current)) {
409 		clear_thread_flag(TIF_SSBD);
410 		task_clear_spec_ssb_disable(current);
411 		task_clear_spec_ssb_noexec(current);
412 		speculation_ctrl_update(read_thread_flags());
413 	}
414 
415 	mm_reset_untag_mask(current->mm);
416 }
417 
418 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)419 static inline void switch_to_bitmap(unsigned long tifp)
420 {
421 	/*
422 	 * Invalidate I/O bitmap if the previous task used it. This prevents
423 	 * any possible leakage of an active I/O bitmap.
424 	 *
425 	 * If the next task has an I/O bitmap it will handle it on exit to
426 	 * user mode.
427 	 */
428 	if (tifp & _TIF_IO_BITMAP)
429 		tss_invalidate_io_bitmap();
430 }
431 
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)432 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
433 {
434 	/*
435 	 * Copy at least the byte range of the incoming tasks bitmap which
436 	 * covers the permitted I/O ports.
437 	 *
438 	 * If the previous task which used an I/O bitmap had more bits
439 	 * permitted, then the copy needs to cover those as well so they
440 	 * get turned off.
441 	 */
442 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
443 	       max(tss->io_bitmap.prev_max, iobm->max));
444 
445 	/*
446 	 * Store the new max and the sequence number of this bitmap
447 	 * and a pointer to the bitmap itself.
448 	 */
449 	tss->io_bitmap.prev_max = iobm->max;
450 	tss->io_bitmap.prev_sequence = iobm->sequence;
451 }
452 
453 /**
454  * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
455  */
native_tss_update_io_bitmap(void)456 void native_tss_update_io_bitmap(void)
457 {
458 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
459 	struct thread_struct *t = &current->thread;
460 	u16 *base = &tss->x86_tss.io_bitmap_base;
461 
462 	if (!test_thread_flag(TIF_IO_BITMAP)) {
463 		native_tss_invalidate_io_bitmap();
464 		return;
465 	}
466 
467 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
468 		*base = IO_BITMAP_OFFSET_VALID_ALL;
469 	} else {
470 		struct io_bitmap *iobm = t->io_bitmap;
471 
472 		/*
473 		 * Only copy bitmap data when the sequence number differs. The
474 		 * update time is accounted to the incoming task.
475 		 */
476 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
477 			tss_copy_io_bitmap(tss, iobm);
478 
479 		/* Enable the bitmap */
480 		*base = IO_BITMAP_OFFSET_VALID_MAP;
481 	}
482 
483 	/*
484 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
485 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
486 	 * access from user space to trigger a #GP because the bitmap is outside
487 	 * the TSS limit.
488 	 */
489 	refresh_tss_limit();
490 }
491 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)492 static inline void switch_to_bitmap(unsigned long tifp) { }
493 #endif
494 
495 #ifdef CONFIG_SMP
496 
497 struct ssb_state {
498 	struct ssb_state	*shared_state;
499 	raw_spinlock_t		lock;
500 	unsigned int		disable_state;
501 	unsigned long		local_state;
502 };
503 
504 #define LSTATE_SSB	0
505 
506 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
507 
speculative_store_bypass_ht_init(void)508 void speculative_store_bypass_ht_init(void)
509 {
510 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
511 	unsigned int this_cpu = smp_processor_id();
512 	unsigned int cpu;
513 
514 	st->local_state = 0;
515 
516 	/*
517 	 * Shared state setup happens once on the first bringup
518 	 * of the CPU. It's not destroyed on CPU hotunplug.
519 	 */
520 	if (st->shared_state)
521 		return;
522 
523 	raw_spin_lock_init(&st->lock);
524 
525 	/*
526 	 * Go over HT siblings and check whether one of them has set up the
527 	 * shared state pointer already.
528 	 */
529 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
530 		if (cpu == this_cpu)
531 			continue;
532 
533 		if (!per_cpu(ssb_state, cpu).shared_state)
534 			continue;
535 
536 		/* Link it to the state of the sibling: */
537 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
538 		return;
539 	}
540 
541 	/*
542 	 * First HT sibling to come up on the core.  Link shared state of
543 	 * the first HT sibling to itself. The siblings on the same core
544 	 * which come up later will see the shared state pointer and link
545 	 * themselves to the state of this CPU.
546 	 */
547 	st->shared_state = st;
548 }
549 
550 /*
551  * Logic is: First HT sibling enables SSBD for both siblings in the core
552  * and last sibling to disable it, disables it for the whole core. This how
553  * MSR_SPEC_CTRL works in "hardware":
554  *
555  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
556  */
amd_set_core_ssb_state(unsigned long tifn)557 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
558 {
559 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
560 	u64 msr = x86_amd_ls_cfg_base;
561 
562 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
563 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
564 		wrmsrl(MSR_AMD64_LS_CFG, msr);
565 		return;
566 	}
567 
568 	if (tifn & _TIF_SSBD) {
569 		/*
570 		 * Since this can race with prctl(), block reentry on the
571 		 * same CPU.
572 		 */
573 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
574 			return;
575 
576 		msr |= x86_amd_ls_cfg_ssbd_mask;
577 
578 		raw_spin_lock(&st->shared_state->lock);
579 		/* First sibling enables SSBD: */
580 		if (!st->shared_state->disable_state)
581 			wrmsrl(MSR_AMD64_LS_CFG, msr);
582 		st->shared_state->disable_state++;
583 		raw_spin_unlock(&st->shared_state->lock);
584 	} else {
585 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
586 			return;
587 
588 		raw_spin_lock(&st->shared_state->lock);
589 		st->shared_state->disable_state--;
590 		if (!st->shared_state->disable_state)
591 			wrmsrl(MSR_AMD64_LS_CFG, msr);
592 		raw_spin_unlock(&st->shared_state->lock);
593 	}
594 }
595 #else
amd_set_core_ssb_state(unsigned long tifn)596 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
597 {
598 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
599 
600 	wrmsrl(MSR_AMD64_LS_CFG, msr);
601 }
602 #endif
603 
amd_set_ssb_virt_state(unsigned long tifn)604 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
605 {
606 	/*
607 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
608 	 * so ssbd_tif_to_spec_ctrl() just works.
609 	 */
610 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
611 }
612 
613 /*
614  * Update the MSRs managing speculation control, during context switch.
615  *
616  * tifp: Previous task's thread flags
617  * tifn: Next task's thread flags
618  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)619 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
620 						      unsigned long tifn)
621 {
622 	unsigned long tif_diff = tifp ^ tifn;
623 	u64 msr = x86_spec_ctrl_base;
624 	bool updmsr = false;
625 
626 	lockdep_assert_irqs_disabled();
627 
628 	/* Handle change of TIF_SSBD depending on the mitigation method. */
629 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
630 		if (tif_diff & _TIF_SSBD)
631 			amd_set_ssb_virt_state(tifn);
632 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
633 		if (tif_diff & _TIF_SSBD)
634 			amd_set_core_ssb_state(tifn);
635 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
636 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
637 		updmsr |= !!(tif_diff & _TIF_SSBD);
638 		msr |= ssbd_tif_to_spec_ctrl(tifn);
639 	}
640 
641 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
642 	if (IS_ENABLED(CONFIG_SMP) &&
643 	    static_branch_unlikely(&switch_to_cond_stibp)) {
644 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
645 		msr |= stibp_tif_to_spec_ctrl(tifn);
646 	}
647 
648 	if (updmsr)
649 		update_spec_ctrl_cond(msr);
650 }
651 
speculation_ctrl_update_tif(struct task_struct * tsk)652 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
653 {
654 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
655 		if (task_spec_ssb_disable(tsk))
656 			set_tsk_thread_flag(tsk, TIF_SSBD);
657 		else
658 			clear_tsk_thread_flag(tsk, TIF_SSBD);
659 
660 		if (task_spec_ib_disable(tsk))
661 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
662 		else
663 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
664 	}
665 	/* Return the updated threadinfo flags*/
666 	return read_task_thread_flags(tsk);
667 }
668 
speculation_ctrl_update(unsigned long tif)669 void speculation_ctrl_update(unsigned long tif)
670 {
671 	unsigned long flags;
672 
673 	/* Forced update. Make sure all relevant TIF flags are different */
674 	local_irq_save(flags);
675 	__speculation_ctrl_update(~tif, tif);
676 	local_irq_restore(flags);
677 }
678 
679 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)680 void speculation_ctrl_update_current(void)
681 {
682 	preempt_disable();
683 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
684 	preempt_enable();
685 }
686 
cr4_toggle_bits_irqsoff(unsigned long mask)687 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
688 {
689 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
690 
691 	newval = cr4 ^ mask;
692 	if (newval != cr4) {
693 		this_cpu_write(cpu_tlbstate.cr4, newval);
694 		__write_cr4(newval);
695 	}
696 }
697 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)698 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
699 {
700 	unsigned long tifp, tifn;
701 
702 	tifn = read_task_thread_flags(next_p);
703 	tifp = read_task_thread_flags(prev_p);
704 
705 	switch_to_bitmap(tifp);
706 
707 	propagate_user_return_notify(prev_p, next_p);
708 
709 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
710 	    arch_has_block_step()) {
711 		unsigned long debugctl, msk;
712 
713 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
714 		debugctl &= ~DEBUGCTLMSR_BTF;
715 		msk = tifn & _TIF_BLOCKSTEP;
716 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
717 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
718 	}
719 
720 	if ((tifp ^ tifn) & _TIF_NOTSC)
721 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
722 
723 	if ((tifp ^ tifn) & _TIF_NOCPUID)
724 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
725 
726 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
727 		__speculation_ctrl_update(tifp, tifn);
728 	} else {
729 		speculation_ctrl_update_tif(prev_p);
730 		tifn = speculation_ctrl_update_tif(next_p);
731 
732 		/* Enforce MSR update to ensure consistent state */
733 		__speculation_ctrl_update(~tifn, tifn);
734 	}
735 }
736 
737 /*
738  * Idle related variables and functions
739  */
740 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
741 EXPORT_SYMBOL(boot_option_idle_override);
742 
743 /*
744  * We use this if we don't have any better idle routine..
745  */
default_idle(void)746 void __cpuidle default_idle(void)
747 {
748 	raw_safe_halt();
749 	raw_local_irq_disable();
750 }
751 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
752 EXPORT_SYMBOL(default_idle);
753 #endif
754 
755 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
756 
x86_idle_set(void)757 static bool x86_idle_set(void)
758 {
759 	return !!static_call_query(x86_idle);
760 }
761 
762 #ifndef CONFIG_SMP
play_dead(void)763 static inline void __noreturn play_dead(void)
764 {
765 	BUG();
766 }
767 #endif
768 
arch_cpu_idle_enter(void)769 void arch_cpu_idle_enter(void)
770 {
771 	tsc_verify_tsc_adjust(false);
772 	local_touch_nmi();
773 }
774 
arch_cpu_idle_dead(void)775 void __noreturn arch_cpu_idle_dead(void)
776 {
777 	play_dead();
778 }
779 
780 /*
781  * Called from the generic idle code.
782  */
arch_cpu_idle(void)783 void __cpuidle arch_cpu_idle(void)
784 {
785 	static_call(x86_idle)();
786 }
787 EXPORT_SYMBOL_GPL(arch_cpu_idle);
788 
789 #ifdef CONFIG_XEN
xen_set_default_idle(void)790 bool xen_set_default_idle(void)
791 {
792 	bool ret = x86_idle_set();
793 
794 	static_call_update(x86_idle, default_idle);
795 
796 	return ret;
797 }
798 #endif
799 
800 struct cpumask cpus_stop_mask;
801 
stop_this_cpu(void * dummy)802 void __noreturn stop_this_cpu(void *dummy)
803 {
804 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
805 	unsigned int cpu = smp_processor_id();
806 
807 	local_irq_disable();
808 
809 	/*
810 	 * Remove this CPU from the online mask and disable it
811 	 * unconditionally. This might be redundant in case that the reboot
812 	 * vector was handled late and stop_other_cpus() sent an NMI.
813 	 *
814 	 * According to SDM and APM NMIs can be accepted even after soft
815 	 * disabling the local APIC.
816 	 */
817 	set_cpu_online(cpu, false);
818 	disable_local_APIC();
819 	mcheck_cpu_clear(c);
820 
821 	/*
822 	 * Use wbinvd on processors that support SME. This provides support
823 	 * for performing a successful kexec when going from SME inactive
824 	 * to SME active (or vice-versa). The cache must be cleared so that
825 	 * if there are entries with the same physical address, both with and
826 	 * without the encryption bit, they don't race each other when flushed
827 	 * and potentially end up with the wrong entry being committed to
828 	 * memory.
829 	 *
830 	 * Test the CPUID bit directly because the machine might've cleared
831 	 * X86_FEATURE_SME due to cmdline options.
832 	 */
833 	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
834 		wbinvd();
835 
836 	/*
837 	 * This brings a cache line back and dirties it, but
838 	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
839 	 * observed that all CPUs reported stop. This write will invalidate
840 	 * the related cache line on this CPU.
841 	 */
842 	cpumask_clear_cpu(cpu, &cpus_stop_mask);
843 
844 #ifdef CONFIG_SMP
845 	if (smp_ops.stop_this_cpu) {
846 		smp_ops.stop_this_cpu();
847 		BUG();
848 	}
849 #endif
850 
851 	for (;;) {
852 		/*
853 		 * Use native_halt() so that memory contents don't change
854 		 * (stack usage and variables) after possibly issuing the
855 		 * wbinvd() above.
856 		 */
857 		native_halt();
858 	}
859 }
860 
861 /*
862  * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
863  * exists and whenever MONITOR/MWAIT extensions are present there is at
864  * least one C1 substate.
865  *
866  * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
867  * is passed to kernel commandline parameter.
868  */
prefer_mwait_c1_over_halt(void)869 static __init bool prefer_mwait_c1_over_halt(void)
870 {
871 	const struct cpuinfo_x86 *c = &boot_cpu_data;
872 	u32 eax, ebx, ecx, edx;
873 
874 	/* If override is enforced on the command line, fall back to HALT. */
875 	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
876 		return false;
877 
878 	/* MWAIT is not supported on this platform. Fallback to HALT */
879 	if (!cpu_has(c, X86_FEATURE_MWAIT))
880 		return false;
881 
882 	/* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
883 	if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
884 		return false;
885 
886 	cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &edx);
887 
888 	/*
889 	 * If MWAIT extensions are not available, it is safe to use MWAIT
890 	 * with EAX=0, ECX=0.
891 	 */
892 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
893 		return true;
894 
895 	/*
896 	 * If MWAIT extensions are available, there should be at least one
897 	 * MWAIT C1 substate present.
898 	 */
899 	return !!(edx & MWAIT_C1_SUBSTATE_MASK);
900 }
901 
902 /*
903  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
904  * with interrupts enabled and no flags, which is backwards compatible with the
905  * original MWAIT implementation.
906  */
mwait_idle(void)907 static __cpuidle void mwait_idle(void)
908 {
909 	if (!current_set_polling_and_test()) {
910 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
911 			mb(); /* quirk */
912 			clflush((void *)&current_thread_info()->flags);
913 			mb(); /* quirk */
914 		}
915 
916 		__monitor((void *)&current_thread_info()->flags, 0, 0);
917 		if (!need_resched()) {
918 			__sti_mwait(0, 0);
919 			raw_local_irq_disable();
920 		}
921 	}
922 	__current_clr_polling();
923 }
924 
select_idle_routine(void)925 void __init select_idle_routine(void)
926 {
927 	if (boot_option_idle_override == IDLE_POLL) {
928 		if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
929 			pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
930 		return;
931 	}
932 
933 	/* Required to guard against xen_set_default_idle() */
934 	if (x86_idle_set())
935 		return;
936 
937 	if (prefer_mwait_c1_over_halt()) {
938 		pr_info("using mwait in idle threads\n");
939 		static_call_update(x86_idle, mwait_idle);
940 	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
941 		pr_info("using TDX aware idle routine\n");
942 		static_call_update(x86_idle, tdx_halt);
943 	} else {
944 		static_call_update(x86_idle, default_idle);
945 	}
946 }
947 
amd_e400_c1e_apic_setup(void)948 void amd_e400_c1e_apic_setup(void)
949 {
950 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
951 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
952 		local_irq_disable();
953 		tick_broadcast_force();
954 		local_irq_enable();
955 	}
956 }
957 
arch_post_acpi_subsys_init(void)958 void __init arch_post_acpi_subsys_init(void)
959 {
960 	u32 lo, hi;
961 
962 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
963 		return;
964 
965 	/*
966 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
967 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
968 	 * MSR_K8_INT_PENDING_MSG.
969 	 */
970 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
971 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
972 		return;
973 
974 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
975 
976 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
977 		mark_tsc_unstable("TSC halt in AMD C1E");
978 
979 	if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
980 		static_branch_enable(&arch_needs_tick_broadcast);
981 	pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
982 }
983 
idle_setup(char * str)984 static int __init idle_setup(char *str)
985 {
986 	if (!str)
987 		return -EINVAL;
988 
989 	if (!strcmp(str, "poll")) {
990 		pr_info("using polling idle threads\n");
991 		boot_option_idle_override = IDLE_POLL;
992 		cpu_idle_poll_ctrl(true);
993 	} else if (!strcmp(str, "halt")) {
994 		/* 'idle=halt' HALT for idle. C-states are disabled. */
995 		boot_option_idle_override = IDLE_HALT;
996 	} else if (!strcmp(str, "nomwait")) {
997 		/* 'idle=nomwait' disables MWAIT for idle */
998 		boot_option_idle_override = IDLE_NOMWAIT;
999 	} else {
1000 		return -EINVAL;
1001 	}
1002 
1003 	return 0;
1004 }
1005 early_param("idle", idle_setup);
1006 
arch_align_stack(unsigned long sp)1007 unsigned long arch_align_stack(unsigned long sp)
1008 {
1009 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1010 		sp -= get_random_u32_below(8192);
1011 	return sp & ~0xf;
1012 }
1013 
arch_randomize_brk(struct mm_struct * mm)1014 unsigned long arch_randomize_brk(struct mm_struct *mm)
1015 {
1016 	if (mmap_is_ia32())
1017 		return randomize_page(mm->brk, SZ_32M);
1018 
1019 	return randomize_page(mm->brk, SZ_1G);
1020 }
1021 
1022 /*
1023  * Called from fs/proc with a reference on @p to find the function
1024  * which called into schedule(). This needs to be done carefully
1025  * because the task might wake up and we might look at a stack
1026  * changing under us.
1027  */
__get_wchan(struct task_struct * p)1028 unsigned long __get_wchan(struct task_struct *p)
1029 {
1030 	struct unwind_state state;
1031 	unsigned long addr = 0;
1032 
1033 	if (!try_get_task_stack(p))
1034 		return 0;
1035 
1036 	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1037 	     unwind_next_frame(&state)) {
1038 		addr = unwind_get_return_address(&state);
1039 		if (!addr)
1040 			break;
1041 		if (in_sched_functions(addr))
1042 			continue;
1043 		break;
1044 	}
1045 
1046 	put_task_stack(p);
1047 
1048 	return addr;
1049 }
1050 
do_arch_prctl_common(int option,unsigned long arg2)1051 long do_arch_prctl_common(int option, unsigned long arg2)
1052 {
1053 	switch (option) {
1054 	case ARCH_GET_CPUID:
1055 		return get_cpuid_mode();
1056 	case ARCH_SET_CPUID:
1057 		return set_cpuid_mode(arg2);
1058 	case ARCH_GET_XCOMP_SUPP:
1059 	case ARCH_GET_XCOMP_PERM:
1060 	case ARCH_REQ_XCOMP_PERM:
1061 	case ARCH_GET_XCOMP_GUEST_PERM:
1062 	case ARCH_REQ_XCOMP_GUEST_PERM:
1063 		return fpu_xstate_prctl(option, arg2);
1064 	}
1065 
1066 	return -EINVAL;
1067 }
1068