1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/cpuid.h>
34 #include <asm/apic.h>
35 #include <linux/uaccess.h>
36 #include <asm/mwait.h>
37 #include <asm/fpu/api.h>
38 #include <asm/fpu/sched.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/debugreg.h>
41 #include <asm/nmi.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mce.h>
44 #include <asm/vm86.h>
45 #include <asm/switch_to.h>
46 #include <asm/desc.h>
47 #include <asm/prctl.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/io_bitmap.h>
50 #include <asm/proto.h>
51 #include <asm/frame.h>
52 #include <asm/unwind.h>
53 #include <asm/tdx.h>
54 #include <asm/mmu_context.h>
55 #include <asm/shstk.h>
56
57 #include "process.h"
58
59 /*
60 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
61 * no more per-task TSS's. The TSS size is kept cacheline-aligned
62 * so they are allowed to end up in the .data..cacheline_aligned
63 * section. Since TSS's are completely CPU-local, we want them
64 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
65 */
66 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
67 .x86_tss = {
68 /*
69 * .sp0 is only used when entering ring 0 from a lower
70 * privilege level. Since the init task never runs anything
71 * but ring 0 code, there is no need for a valid value here.
72 * Poison it.
73 */
74 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
75
76 #ifdef CONFIG_X86_32
77 .sp1 = TOP_OF_INIT_STACK,
78
79 .ss0 = __KERNEL_DS,
80 .ss1 = __KERNEL_CS,
81 #endif
82 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
83 },
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89
90 /*
91 * this gets called so that we can store lazy state into memory and copy the
92 * current task into the new thread.
93 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 /* init_task is not dynamically sized (incomplete FPU state) */
97 if (unlikely(src == &init_task))
98 memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(init_task), 0);
99 else
100 memcpy(dst, src, arch_task_struct_size);
101
102 #ifdef CONFIG_VM86
103 dst->thread.vm86 = NULL;
104 #endif
105 /* Drop the copied pointer to current's fpstate */
106 dst->thread.fpu.fpstate = NULL;
107
108 return 0;
109 }
110
111 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)112 void arch_release_task_struct(struct task_struct *tsk)
113 {
114 if (fpu_state_size_dynamic())
115 fpstate_free(&tsk->thread.fpu);
116 }
117 #endif
118
119 /*
120 * Free thread data structures etc..
121 */
exit_thread(struct task_struct * tsk)122 void exit_thread(struct task_struct *tsk)
123 {
124 struct thread_struct *t = &tsk->thread;
125 struct fpu *fpu = &t->fpu;
126
127 if (test_thread_flag(TIF_IO_BITMAP))
128 io_bitmap_exit(tsk);
129
130 free_vm86(t);
131
132 shstk_free(tsk);
133 fpu__drop(fpu);
134 }
135
set_new_tls(struct task_struct * p,unsigned long tls)136 static int set_new_tls(struct task_struct *p, unsigned long tls)
137 {
138 struct user_desc __user *utls = (struct user_desc __user *)tls;
139
140 if (in_ia32_syscall())
141 return do_set_thread_area(p, -1, utls, 0);
142 else
143 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
144 }
145
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)146 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
147 int (*fn)(void *), void *fn_arg)
148 {
149 schedule_tail(prev);
150
151 /* Is this a kernel thread? */
152 if (unlikely(fn)) {
153 fn(fn_arg);
154 /*
155 * A kernel thread is allowed to return here after successfully
156 * calling kernel_execve(). Exit to userspace to complete the
157 * execve() syscall.
158 */
159 regs->ax = 0;
160 }
161
162 syscall_exit_to_user_mode(regs);
163 }
164
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)165 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
166 {
167 unsigned long clone_flags = args->flags;
168 unsigned long sp = args->stack;
169 unsigned long tls = args->tls;
170 struct inactive_task_frame *frame;
171 struct fork_frame *fork_frame;
172 struct pt_regs *childregs;
173 unsigned long new_ssp;
174 int ret = 0;
175
176 childregs = task_pt_regs(p);
177 fork_frame = container_of(childregs, struct fork_frame, regs);
178 frame = &fork_frame->frame;
179
180 frame->bp = encode_frame_pointer(childregs);
181 frame->ret_addr = (unsigned long) ret_from_fork_asm;
182 p->thread.sp = (unsigned long) fork_frame;
183 p->thread.io_bitmap = NULL;
184 p->thread.iopl_warn = 0;
185 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
186
187 #ifdef CONFIG_X86_64
188 current_save_fsgs();
189 p->thread.fsindex = current->thread.fsindex;
190 p->thread.fsbase = current->thread.fsbase;
191 p->thread.gsindex = current->thread.gsindex;
192 p->thread.gsbase = current->thread.gsbase;
193
194 savesegment(es, p->thread.es);
195 savesegment(ds, p->thread.ds);
196
197 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
198 set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
199 #else
200 p->thread.sp0 = (unsigned long) (childregs + 1);
201 savesegment(gs, p->thread.gs);
202 /*
203 * Clear all status flags including IF and set fixed bit. 64bit
204 * does not have this initialization as the frame does not contain
205 * flags. The flags consistency (especially vs. AC) is there
206 * ensured via objtool, which lacks 32bit support.
207 */
208 frame->flags = X86_EFLAGS_FIXED;
209 #endif
210
211 /*
212 * Allocate a new shadow stack for thread if needed. If shadow stack,
213 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
214 * update it.
215 */
216 new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
217 if (IS_ERR_VALUE(new_ssp))
218 return PTR_ERR((void *)new_ssp);
219
220 fpu_clone(p, clone_flags, args->fn, new_ssp);
221
222 /* Kernel thread ? */
223 if (unlikely(p->flags & PF_KTHREAD)) {
224 p->thread.pkru = pkru_get_init_value();
225 memset(childregs, 0, sizeof(struct pt_regs));
226 kthread_frame_init(frame, args->fn, args->fn_arg);
227 return 0;
228 }
229
230 /*
231 * Clone current's PKRU value from hardware. tsk->thread.pkru
232 * is only valid when scheduled out.
233 */
234 p->thread.pkru = read_pkru();
235
236 frame->bx = 0;
237 *childregs = *current_pt_regs();
238 childregs->ax = 0;
239 if (sp)
240 childregs->sp = sp;
241
242 if (unlikely(args->fn)) {
243 /*
244 * A user space thread, but it doesn't return to
245 * ret_after_fork().
246 *
247 * In order to indicate that to tools like gdb,
248 * we reset the stack and instruction pointers.
249 *
250 * It does the same kernel frame setup to return to a kernel
251 * function that a kernel thread does.
252 */
253 childregs->sp = 0;
254 childregs->ip = 0;
255 kthread_frame_init(frame, args->fn, args->fn_arg);
256 return 0;
257 }
258
259 /* Set a new TLS for the child thread? */
260 if (clone_flags & CLONE_SETTLS)
261 ret = set_new_tls(p, tls);
262
263 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
264 io_bitmap_share(p);
265
266 return ret;
267 }
268
pkru_flush_thread(void)269 static void pkru_flush_thread(void)
270 {
271 /*
272 * If PKRU is enabled the default PKRU value has to be loaded into
273 * the hardware right here (similar to context switch).
274 */
275 pkru_write_default();
276 }
277
flush_thread(void)278 void flush_thread(void)
279 {
280 struct task_struct *tsk = current;
281
282 flush_ptrace_hw_breakpoint(tsk);
283 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
284
285 fpu_flush_thread();
286 pkru_flush_thread();
287 }
288
disable_TSC(void)289 void disable_TSC(void)
290 {
291 preempt_disable();
292 if (!test_and_set_thread_flag(TIF_NOTSC))
293 /*
294 * Must flip the CPU state synchronously with
295 * TIF_NOTSC in the current running context.
296 */
297 cr4_set_bits(X86_CR4_TSD);
298 preempt_enable();
299 }
300
enable_TSC(void)301 static void enable_TSC(void)
302 {
303 preempt_disable();
304 if (test_and_clear_thread_flag(TIF_NOTSC))
305 /*
306 * Must flip the CPU state synchronously with
307 * TIF_NOTSC in the current running context.
308 */
309 cr4_clear_bits(X86_CR4_TSD);
310 preempt_enable();
311 }
312
get_tsc_mode(unsigned long adr)313 int get_tsc_mode(unsigned long adr)
314 {
315 unsigned int val;
316
317 if (test_thread_flag(TIF_NOTSC))
318 val = PR_TSC_SIGSEGV;
319 else
320 val = PR_TSC_ENABLE;
321
322 return put_user(val, (unsigned int __user *)adr);
323 }
324
set_tsc_mode(unsigned int val)325 int set_tsc_mode(unsigned int val)
326 {
327 if (val == PR_TSC_SIGSEGV)
328 disable_TSC();
329 else if (val == PR_TSC_ENABLE)
330 enable_TSC();
331 else
332 return -EINVAL;
333
334 return 0;
335 }
336
337 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
338
set_cpuid_faulting(bool on)339 static void set_cpuid_faulting(bool on)
340 {
341 u64 msrval;
342
343 msrval = this_cpu_read(msr_misc_features_shadow);
344 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
345 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
346 this_cpu_write(msr_misc_features_shadow, msrval);
347 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
348 }
349
disable_cpuid(void)350 static void disable_cpuid(void)
351 {
352 preempt_disable();
353 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
354 /*
355 * Must flip the CPU state synchronously with
356 * TIF_NOCPUID in the current running context.
357 */
358 set_cpuid_faulting(true);
359 }
360 preempt_enable();
361 }
362
enable_cpuid(void)363 static void enable_cpuid(void)
364 {
365 preempt_disable();
366 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
367 /*
368 * Must flip the CPU state synchronously with
369 * TIF_NOCPUID in the current running context.
370 */
371 set_cpuid_faulting(false);
372 }
373 preempt_enable();
374 }
375
get_cpuid_mode(void)376 static int get_cpuid_mode(void)
377 {
378 return !test_thread_flag(TIF_NOCPUID);
379 }
380
set_cpuid_mode(unsigned long cpuid_enabled)381 static int set_cpuid_mode(unsigned long cpuid_enabled)
382 {
383 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
384 return -ENODEV;
385
386 if (cpuid_enabled)
387 enable_cpuid();
388 else
389 disable_cpuid();
390
391 return 0;
392 }
393
394 /*
395 * Called immediately after a successful exec.
396 */
arch_setup_new_exec(void)397 void arch_setup_new_exec(void)
398 {
399 /* If cpuid was previously disabled for this task, re-enable it. */
400 if (test_thread_flag(TIF_NOCPUID))
401 enable_cpuid();
402
403 /*
404 * Don't inherit TIF_SSBD across exec boundary when
405 * PR_SPEC_DISABLE_NOEXEC is used.
406 */
407 if (test_thread_flag(TIF_SSBD) &&
408 task_spec_ssb_noexec(current)) {
409 clear_thread_flag(TIF_SSBD);
410 task_clear_spec_ssb_disable(current);
411 task_clear_spec_ssb_noexec(current);
412 speculation_ctrl_update(read_thread_flags());
413 }
414
415 mm_reset_untag_mask(current->mm);
416 }
417
418 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)419 static inline void switch_to_bitmap(unsigned long tifp)
420 {
421 /*
422 * Invalidate I/O bitmap if the previous task used it. This prevents
423 * any possible leakage of an active I/O bitmap.
424 *
425 * If the next task has an I/O bitmap it will handle it on exit to
426 * user mode.
427 */
428 if (tifp & _TIF_IO_BITMAP)
429 tss_invalidate_io_bitmap();
430 }
431
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)432 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
433 {
434 /*
435 * Copy at least the byte range of the incoming tasks bitmap which
436 * covers the permitted I/O ports.
437 *
438 * If the previous task which used an I/O bitmap had more bits
439 * permitted, then the copy needs to cover those as well so they
440 * get turned off.
441 */
442 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
443 max(tss->io_bitmap.prev_max, iobm->max));
444
445 /*
446 * Store the new max and the sequence number of this bitmap
447 * and a pointer to the bitmap itself.
448 */
449 tss->io_bitmap.prev_max = iobm->max;
450 tss->io_bitmap.prev_sequence = iobm->sequence;
451 }
452
453 /**
454 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
455 */
native_tss_update_io_bitmap(void)456 void native_tss_update_io_bitmap(void)
457 {
458 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
459 struct thread_struct *t = ¤t->thread;
460 u16 *base = &tss->x86_tss.io_bitmap_base;
461
462 if (!test_thread_flag(TIF_IO_BITMAP)) {
463 native_tss_invalidate_io_bitmap();
464 return;
465 }
466
467 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
468 *base = IO_BITMAP_OFFSET_VALID_ALL;
469 } else {
470 struct io_bitmap *iobm = t->io_bitmap;
471
472 /*
473 * Only copy bitmap data when the sequence number differs. The
474 * update time is accounted to the incoming task.
475 */
476 if (tss->io_bitmap.prev_sequence != iobm->sequence)
477 tss_copy_io_bitmap(tss, iobm);
478
479 /* Enable the bitmap */
480 *base = IO_BITMAP_OFFSET_VALID_MAP;
481 }
482
483 /*
484 * Make sure that the TSS limit is covering the IO bitmap. It might have
485 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
486 * access from user space to trigger a #GP because the bitmap is outside
487 * the TSS limit.
488 */
489 refresh_tss_limit();
490 }
491 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)492 static inline void switch_to_bitmap(unsigned long tifp) { }
493 #endif
494
495 #ifdef CONFIG_SMP
496
497 struct ssb_state {
498 struct ssb_state *shared_state;
499 raw_spinlock_t lock;
500 unsigned int disable_state;
501 unsigned long local_state;
502 };
503
504 #define LSTATE_SSB 0
505
506 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
507
speculative_store_bypass_ht_init(void)508 void speculative_store_bypass_ht_init(void)
509 {
510 struct ssb_state *st = this_cpu_ptr(&ssb_state);
511 unsigned int this_cpu = smp_processor_id();
512 unsigned int cpu;
513
514 st->local_state = 0;
515
516 /*
517 * Shared state setup happens once on the first bringup
518 * of the CPU. It's not destroyed on CPU hotunplug.
519 */
520 if (st->shared_state)
521 return;
522
523 raw_spin_lock_init(&st->lock);
524
525 /*
526 * Go over HT siblings and check whether one of them has set up the
527 * shared state pointer already.
528 */
529 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
530 if (cpu == this_cpu)
531 continue;
532
533 if (!per_cpu(ssb_state, cpu).shared_state)
534 continue;
535
536 /* Link it to the state of the sibling: */
537 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
538 return;
539 }
540
541 /*
542 * First HT sibling to come up on the core. Link shared state of
543 * the first HT sibling to itself. The siblings on the same core
544 * which come up later will see the shared state pointer and link
545 * themselves to the state of this CPU.
546 */
547 st->shared_state = st;
548 }
549
550 /*
551 * Logic is: First HT sibling enables SSBD for both siblings in the core
552 * and last sibling to disable it, disables it for the whole core. This how
553 * MSR_SPEC_CTRL works in "hardware":
554 *
555 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
556 */
amd_set_core_ssb_state(unsigned long tifn)557 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
558 {
559 struct ssb_state *st = this_cpu_ptr(&ssb_state);
560 u64 msr = x86_amd_ls_cfg_base;
561
562 if (!static_cpu_has(X86_FEATURE_ZEN)) {
563 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
564 wrmsrl(MSR_AMD64_LS_CFG, msr);
565 return;
566 }
567
568 if (tifn & _TIF_SSBD) {
569 /*
570 * Since this can race with prctl(), block reentry on the
571 * same CPU.
572 */
573 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
574 return;
575
576 msr |= x86_amd_ls_cfg_ssbd_mask;
577
578 raw_spin_lock(&st->shared_state->lock);
579 /* First sibling enables SSBD: */
580 if (!st->shared_state->disable_state)
581 wrmsrl(MSR_AMD64_LS_CFG, msr);
582 st->shared_state->disable_state++;
583 raw_spin_unlock(&st->shared_state->lock);
584 } else {
585 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
586 return;
587
588 raw_spin_lock(&st->shared_state->lock);
589 st->shared_state->disable_state--;
590 if (!st->shared_state->disable_state)
591 wrmsrl(MSR_AMD64_LS_CFG, msr);
592 raw_spin_unlock(&st->shared_state->lock);
593 }
594 }
595 #else
amd_set_core_ssb_state(unsigned long tifn)596 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
597 {
598 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
599
600 wrmsrl(MSR_AMD64_LS_CFG, msr);
601 }
602 #endif
603
amd_set_ssb_virt_state(unsigned long tifn)604 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
605 {
606 /*
607 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
608 * so ssbd_tif_to_spec_ctrl() just works.
609 */
610 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
611 }
612
613 /*
614 * Update the MSRs managing speculation control, during context switch.
615 *
616 * tifp: Previous task's thread flags
617 * tifn: Next task's thread flags
618 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)619 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
620 unsigned long tifn)
621 {
622 unsigned long tif_diff = tifp ^ tifn;
623 u64 msr = x86_spec_ctrl_base;
624 bool updmsr = false;
625
626 lockdep_assert_irqs_disabled();
627
628 /* Handle change of TIF_SSBD depending on the mitigation method. */
629 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
630 if (tif_diff & _TIF_SSBD)
631 amd_set_ssb_virt_state(tifn);
632 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
633 if (tif_diff & _TIF_SSBD)
634 amd_set_core_ssb_state(tifn);
635 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
636 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
637 updmsr |= !!(tif_diff & _TIF_SSBD);
638 msr |= ssbd_tif_to_spec_ctrl(tifn);
639 }
640
641 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
642 if (IS_ENABLED(CONFIG_SMP) &&
643 static_branch_unlikely(&switch_to_cond_stibp)) {
644 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
645 msr |= stibp_tif_to_spec_ctrl(tifn);
646 }
647
648 if (updmsr)
649 update_spec_ctrl_cond(msr);
650 }
651
speculation_ctrl_update_tif(struct task_struct * tsk)652 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
653 {
654 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
655 if (task_spec_ssb_disable(tsk))
656 set_tsk_thread_flag(tsk, TIF_SSBD);
657 else
658 clear_tsk_thread_flag(tsk, TIF_SSBD);
659
660 if (task_spec_ib_disable(tsk))
661 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
662 else
663 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
664 }
665 /* Return the updated threadinfo flags*/
666 return read_task_thread_flags(tsk);
667 }
668
speculation_ctrl_update(unsigned long tif)669 void speculation_ctrl_update(unsigned long tif)
670 {
671 unsigned long flags;
672
673 /* Forced update. Make sure all relevant TIF flags are different */
674 local_irq_save(flags);
675 __speculation_ctrl_update(~tif, tif);
676 local_irq_restore(flags);
677 }
678
679 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)680 void speculation_ctrl_update_current(void)
681 {
682 preempt_disable();
683 speculation_ctrl_update(speculation_ctrl_update_tif(current));
684 preempt_enable();
685 }
686
cr4_toggle_bits_irqsoff(unsigned long mask)687 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
688 {
689 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
690
691 newval = cr4 ^ mask;
692 if (newval != cr4) {
693 this_cpu_write(cpu_tlbstate.cr4, newval);
694 __write_cr4(newval);
695 }
696 }
697
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)698 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
699 {
700 unsigned long tifp, tifn;
701
702 tifn = read_task_thread_flags(next_p);
703 tifp = read_task_thread_flags(prev_p);
704
705 switch_to_bitmap(tifp);
706
707 propagate_user_return_notify(prev_p, next_p);
708
709 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
710 arch_has_block_step()) {
711 unsigned long debugctl, msk;
712
713 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
714 debugctl &= ~DEBUGCTLMSR_BTF;
715 msk = tifn & _TIF_BLOCKSTEP;
716 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
717 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
718 }
719
720 if ((tifp ^ tifn) & _TIF_NOTSC)
721 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
722
723 if ((tifp ^ tifn) & _TIF_NOCPUID)
724 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
725
726 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
727 __speculation_ctrl_update(tifp, tifn);
728 } else {
729 speculation_ctrl_update_tif(prev_p);
730 tifn = speculation_ctrl_update_tif(next_p);
731
732 /* Enforce MSR update to ensure consistent state */
733 __speculation_ctrl_update(~tifn, tifn);
734 }
735 }
736
737 /*
738 * Idle related variables and functions
739 */
740 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
741 EXPORT_SYMBOL(boot_option_idle_override);
742
743 /*
744 * We use this if we don't have any better idle routine..
745 */
default_idle(void)746 void __cpuidle default_idle(void)
747 {
748 raw_safe_halt();
749 raw_local_irq_disable();
750 }
751 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
752 EXPORT_SYMBOL(default_idle);
753 #endif
754
755 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
756
x86_idle_set(void)757 static bool x86_idle_set(void)
758 {
759 return !!static_call_query(x86_idle);
760 }
761
762 #ifndef CONFIG_SMP
play_dead(void)763 static inline void __noreturn play_dead(void)
764 {
765 BUG();
766 }
767 #endif
768
arch_cpu_idle_enter(void)769 void arch_cpu_idle_enter(void)
770 {
771 tsc_verify_tsc_adjust(false);
772 local_touch_nmi();
773 }
774
arch_cpu_idle_dead(void)775 void __noreturn arch_cpu_idle_dead(void)
776 {
777 play_dead();
778 }
779
780 /*
781 * Called from the generic idle code.
782 */
arch_cpu_idle(void)783 void __cpuidle arch_cpu_idle(void)
784 {
785 static_call(x86_idle)();
786 }
787 EXPORT_SYMBOL_GPL(arch_cpu_idle);
788
789 #ifdef CONFIG_XEN
xen_set_default_idle(void)790 bool xen_set_default_idle(void)
791 {
792 bool ret = x86_idle_set();
793
794 static_call_update(x86_idle, default_idle);
795
796 return ret;
797 }
798 #endif
799
800 struct cpumask cpus_stop_mask;
801
stop_this_cpu(void * dummy)802 void __noreturn stop_this_cpu(void *dummy)
803 {
804 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
805 unsigned int cpu = smp_processor_id();
806
807 local_irq_disable();
808
809 /*
810 * Remove this CPU from the online mask and disable it
811 * unconditionally. This might be redundant in case that the reboot
812 * vector was handled late and stop_other_cpus() sent an NMI.
813 *
814 * According to SDM and APM NMIs can be accepted even after soft
815 * disabling the local APIC.
816 */
817 set_cpu_online(cpu, false);
818 disable_local_APIC();
819 mcheck_cpu_clear(c);
820
821 /*
822 * Use wbinvd on processors that support SME. This provides support
823 * for performing a successful kexec when going from SME inactive
824 * to SME active (or vice-versa). The cache must be cleared so that
825 * if there are entries with the same physical address, both with and
826 * without the encryption bit, they don't race each other when flushed
827 * and potentially end up with the wrong entry being committed to
828 * memory.
829 *
830 * Test the CPUID bit directly because the machine might've cleared
831 * X86_FEATURE_SME due to cmdline options.
832 */
833 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
834 wbinvd();
835
836 /*
837 * This brings a cache line back and dirties it, but
838 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
839 * observed that all CPUs reported stop. This write will invalidate
840 * the related cache line on this CPU.
841 */
842 cpumask_clear_cpu(cpu, &cpus_stop_mask);
843
844 #ifdef CONFIG_SMP
845 if (smp_ops.stop_this_cpu) {
846 smp_ops.stop_this_cpu();
847 BUG();
848 }
849 #endif
850
851 for (;;) {
852 /*
853 * Use native_halt() so that memory contents don't change
854 * (stack usage and variables) after possibly issuing the
855 * wbinvd() above.
856 */
857 native_halt();
858 }
859 }
860
861 /*
862 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
863 * exists and whenever MONITOR/MWAIT extensions are present there is at
864 * least one C1 substate.
865 *
866 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
867 * is passed to kernel commandline parameter.
868 */
prefer_mwait_c1_over_halt(void)869 static __init bool prefer_mwait_c1_over_halt(void)
870 {
871 const struct cpuinfo_x86 *c = &boot_cpu_data;
872 u32 eax, ebx, ecx, edx;
873
874 /* If override is enforced on the command line, fall back to HALT. */
875 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
876 return false;
877
878 /* MWAIT is not supported on this platform. Fallback to HALT */
879 if (!cpu_has(c, X86_FEATURE_MWAIT))
880 return false;
881
882 /* Monitor has a bug or APIC stops in C1E. Fallback to HALT */
883 if (boot_cpu_has_bug(X86_BUG_MONITOR) || boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
884 return false;
885
886 cpuid(CPUID_LEAF_MWAIT, &eax, &ebx, &ecx, &edx);
887
888 /*
889 * If MWAIT extensions are not available, it is safe to use MWAIT
890 * with EAX=0, ECX=0.
891 */
892 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
893 return true;
894
895 /*
896 * If MWAIT extensions are available, there should be at least one
897 * MWAIT C1 substate present.
898 */
899 return !!(edx & MWAIT_C1_SUBSTATE_MASK);
900 }
901
902 /*
903 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
904 * with interrupts enabled and no flags, which is backwards compatible with the
905 * original MWAIT implementation.
906 */
mwait_idle(void)907 static __cpuidle void mwait_idle(void)
908 {
909 if (!current_set_polling_and_test()) {
910 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
911 mb(); /* quirk */
912 clflush((void *)¤t_thread_info()->flags);
913 mb(); /* quirk */
914 }
915
916 __monitor((void *)¤t_thread_info()->flags, 0, 0);
917 if (!need_resched()) {
918 __sti_mwait(0, 0);
919 raw_local_irq_disable();
920 }
921 }
922 __current_clr_polling();
923 }
924
select_idle_routine(void)925 void __init select_idle_routine(void)
926 {
927 if (boot_option_idle_override == IDLE_POLL) {
928 if (IS_ENABLED(CONFIG_SMP) && __max_threads_per_core > 1)
929 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
930 return;
931 }
932
933 /* Required to guard against xen_set_default_idle() */
934 if (x86_idle_set())
935 return;
936
937 if (prefer_mwait_c1_over_halt()) {
938 pr_info("using mwait in idle threads\n");
939 static_call_update(x86_idle, mwait_idle);
940 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
941 pr_info("using TDX aware idle routine\n");
942 static_call_update(x86_idle, tdx_halt);
943 } else {
944 static_call_update(x86_idle, default_idle);
945 }
946 }
947
amd_e400_c1e_apic_setup(void)948 void amd_e400_c1e_apic_setup(void)
949 {
950 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
951 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
952 local_irq_disable();
953 tick_broadcast_force();
954 local_irq_enable();
955 }
956 }
957
arch_post_acpi_subsys_init(void)958 void __init arch_post_acpi_subsys_init(void)
959 {
960 u32 lo, hi;
961
962 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
963 return;
964
965 /*
966 * AMD E400 detection needs to happen after ACPI has been enabled. If
967 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
968 * MSR_K8_INT_PENDING_MSG.
969 */
970 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
971 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
972 return;
973
974 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
975
976 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
977 mark_tsc_unstable("TSC halt in AMD C1E");
978
979 if (IS_ENABLED(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE))
980 static_branch_enable(&arch_needs_tick_broadcast);
981 pr_info("System has AMD C1E erratum E400. Workaround enabled.\n");
982 }
983
idle_setup(char * str)984 static int __init idle_setup(char *str)
985 {
986 if (!str)
987 return -EINVAL;
988
989 if (!strcmp(str, "poll")) {
990 pr_info("using polling idle threads\n");
991 boot_option_idle_override = IDLE_POLL;
992 cpu_idle_poll_ctrl(true);
993 } else if (!strcmp(str, "halt")) {
994 /* 'idle=halt' HALT for idle. C-states are disabled. */
995 boot_option_idle_override = IDLE_HALT;
996 } else if (!strcmp(str, "nomwait")) {
997 /* 'idle=nomwait' disables MWAIT for idle */
998 boot_option_idle_override = IDLE_NOMWAIT;
999 } else {
1000 return -EINVAL;
1001 }
1002
1003 return 0;
1004 }
1005 early_param("idle", idle_setup);
1006
arch_align_stack(unsigned long sp)1007 unsigned long arch_align_stack(unsigned long sp)
1008 {
1009 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1010 sp -= get_random_u32_below(8192);
1011 return sp & ~0xf;
1012 }
1013
arch_randomize_brk(struct mm_struct * mm)1014 unsigned long arch_randomize_brk(struct mm_struct *mm)
1015 {
1016 if (mmap_is_ia32())
1017 return randomize_page(mm->brk, SZ_32M);
1018
1019 return randomize_page(mm->brk, SZ_1G);
1020 }
1021
1022 /*
1023 * Called from fs/proc with a reference on @p to find the function
1024 * which called into schedule(). This needs to be done carefully
1025 * because the task might wake up and we might look at a stack
1026 * changing under us.
1027 */
__get_wchan(struct task_struct * p)1028 unsigned long __get_wchan(struct task_struct *p)
1029 {
1030 struct unwind_state state;
1031 unsigned long addr = 0;
1032
1033 if (!try_get_task_stack(p))
1034 return 0;
1035
1036 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1037 unwind_next_frame(&state)) {
1038 addr = unwind_get_return_address(&state);
1039 if (!addr)
1040 break;
1041 if (in_sched_functions(addr))
1042 continue;
1043 break;
1044 }
1045
1046 put_task_stack(p);
1047
1048 return addr;
1049 }
1050
do_arch_prctl_common(int option,unsigned long arg2)1051 long do_arch_prctl_common(int option, unsigned long arg2)
1052 {
1053 switch (option) {
1054 case ARCH_GET_CPUID:
1055 return get_cpuid_mode();
1056 case ARCH_SET_CPUID:
1057 return set_cpuid_mode(arg2);
1058 case ARCH_GET_XCOMP_SUPP:
1059 case ARCH_GET_XCOMP_PERM:
1060 case ARCH_REQ_XCOMP_PERM:
1061 case ARCH_GET_XCOMP_GUEST_PERM:
1062 case ARCH_REQ_XCOMP_GUEST_PERM:
1063 return fpu_xstate_prctl(option, arg2);
1064 }
1065
1066 return -EINVAL;
1067 }
1068